
MONALISA: AN AGENT BASED, DYNAMIC SERVICE SYSTEM TO
MONITOR, CONTROL AND OPTIMIZE GRID BASED APPLICATIONS

I.C.Legrand, H.B.Newman, California Institute of Technology, Pasadena, CA 91125, USA

 R.Voicu, European Center for Nuclear Research – CERN, Geneva, Switzerland
C.Cirstoiu, C.Grigoras, M.Toarta, C. Dobre, Polytechnic University Bucharest, Romania

Abstract

The MonALISA (Monitoring Agents in A Large
Integrated Services Architecture) system provides a
distributed service architecture which is used to collect
and process monitoring information. While its initial
target field of application is networks and Grid systems
supporting data processing and analysis for global high
energy and nuclear physics collaborations, MonALISA is
broadly applicable to many fields of “data intensive”
science, and to the monitoring and management of major
research and education networks. MonALISA is based on
a scalable Dynamic Distributed Services Architecture),
and is implemented in Java using JINI and WSDL
technologies. The scalability of the system derives from
the use of a multi threaded engine to host a variety of
loosely coupled self-describing dynamic services, the
ability of each service to register itself and then to be
discovered and used by any other services, or clients that
require such information. The framework integrates
many existing monitoring tools and procedures to collect
parameters describing computational nodes, applications
and network performance. Specialized mobile agents are
used in the MonALISA framework to perform global
optimization tasks or help and improve the operation of
large distributed system by performing supervising tasks
for different applications or real time parameters.
MonALISA is currently running around the clock
monitoring several Grids and distributed applications on
around 160 sites.

 INTRODUCTION

An essential part of managing a global Data Grid is a
monitoring system that is able to monitor and track the
many site facilities, networks, and the many tasks in
progress, in real time. The monitoring information
gathered also is essential for developing the required
higher level services, and components of the Grid system
that provide decision support, and eventually some degree
of automated decisions, to help maintain and optimize
workflow through the Grid.

We therefore developed the MonALISA [1] system,
designed as an ensemble of autonomous multi-threaded,
self-describing agent-based subsystems which are
registered as dynamic services, and are able to collaborate
and cooperate in performing a wide range of monitoring

tasks in large scale distributed applications. Each
MonALISA service is capable of being discovered and
used by other services or clients that require such
information. The distributed service system [2] uses
mobile agents to gather, disseminate and coordinate
configuration, time-dependent state and other information
in the Grid system as a whole. Mobile code (implemented
through agents and proxy-servers) is used to provide a
flexible approach to accessing and analyzing information
in distributed systems.

The design of this structure is based on a Station Server
unit, which is a generic network server that can host a
variety of agent-based Dynamic Services. The Station
Services are dynamically interconnected (peer-to-peer)
and provide a distributed “fabric” for hosting services.
The Station Service implementation is made available as a
network service using JINI [3] technology. This
framework allows cooperating services and applications
to access each other seamlessly, to adapt to a dynamic
environment, and to share code and configuration
information transparently. This system design avoids
single points of failure, and allows for automatic service
replication and re-activation. These features make it
capable of providing reliable, autonomous support for
large scale distributed applications such as global Grid
systems under real conditions, where individual (or
multiple) components may fail.

THE DISTRIBUTED SERVICES

ARCHITECTURE

A service in the DDSA framework is a component that

interacts autonomously with other services through
dynamic proxies or agents that use self-describing
protocols. By using dedicated lookup services, a set of
distributed services registry, and the discovery and
notification mechanisms, the services are able to access
each other seamlessly. The use of dynamic remote event
subscription allows a service to register itself to be
notified of a selected set of event types, even if there is no
provider to do the notification at registration time. The
lookup discovery service will then automatically notify all
the subscribed services, when a new service, or a new
service attribute, becomes available.

The services are managed by an efficient
multithreading engine that schedules and oversees their
execution, such that data handling operations are not
disrupted if one or more tasks (threads) are unable to

continue. The system design also provides reliable “non-
stop” support for large distributed applications under
realistic working conditions, through service replication,
and automatic re-activation of services. These
mechanisms make the system robust against the failure or
inaccessibility of multiple Grid components.

THE MONITORING SERVICE

MonALISA is designed to easily integrate existing

monitoring tools and procedures and to provide this
information in a dynamic, self describing way to any
other services or clients. MonALISA services are
organized in groups and this attribute is used for
registration and discovery.

The system monitors and tracks site computing farms
and network links, routers and switches using SNMP [4],
and it dynamically loads modules that make it capable of
interfacing existing monitoring applications and tools
(e.g. Ganglia [5], MRTG [6]).

The core of the monitoring service is based on a multi-
threaded system used to perform the many data collection
tasks in parallel, independently. The modules used for
collecting different sets of information, or interfacing with
other monitoring tools, are dynamically loaded and
executed in independent threads. In order to reduce the
load on systems running MonALISA, a dynamic pool of
threads is created once, and the threads are then reused
when a task assigned to a thread is completed. This allows
one to run concurrently and independently a large number
of monitoring modules, and to dynamically adapt to the
load and the response time of the components in the
system. If a monitoring task fails or hangs due to I/O
errors, the other tasks are not delayed or disrupted, since
they are executing in other, independent threads. A
dedicated control thread is used to stop properly the
threads in case of I/O errors, and to reschedule those tasks
that have not been successfully completed. A priority
queue is used for the tasks that need to be performed
periodically. This approach makes it relatively easy to
monitor a large number of heterogeneous nodes with
different response times, and at the same time to handle
monitored units which are down or not responding,
without affecting the other measurements. The system
allows collecting information in both push and pull modes
from different types of tools or applications.

The clients, other services or agents can get any real-
time or historical data by using a predicate mechanism for
requesting or subscribing to selected measured values.
These predicates are based on regular expressions to
match the attribute description of the measured values a
client is interested in. They may also be used to impose
additional conditions or constraints for selecting the
values. The subscription requests create a dedicated
thread, to serve each client. This thread performs a
matching test for all the predicates submitted by a client
with the measured values in the data flow. The same
thread is responsible to send the selected results back to

the client as compressed serialized objects. Having an
independent thread per client allows sending the
information they need, in a fast and reliable way, and it is
not affected by communication errors which may occur
with other clients. In case of communication problems
these threads will try to reestablish the connection or to
clean-up the subscriptions for a client or a service which
is no longer active.

Monitoring data requests with the predicate mechanism
is also possible using the WSDL/SOAP binding from
clients or services written in other languages. The class
description for predicates and the methods to be used are
described in WSDL, and any client can create
dynamically and instantiate the objects it needs for
communication. Currently, Web Services technology does
not provide the functionality to register as a listener, and
to receive the future measurements a client may want to
receive.

Other applications or clients may also use the Agent
Filters to receive the information they need. The Agent
Filter is a java module which can be dynamically
deployed to any MonALISA service. It is designed to
perform a dedicated data processing task on local data (by
subscribing with a predicate to the data flow) and to
return the processed information periodically. The
MonALISA service provides the run time environment
for these agents, which must be digitally signed by a
trusted certificate. Dynamically loadable alarm agents,
and agents able to take actions when abnormal behavior is
detected, are currently being developed to help with
managing and improving the working efficiency of the
facilities, and the overall Grid system being monitored.

The clients, or any other services, use a set of proxies
to connect and get information from the monitoring
services. These proxy services are used to allow
monitoring services to run behind firewalls, and to control
the connections performed by services. At the same time,
these services are used to provide an intelligent
multiplexing of the same information if requested by
more than one client or service. The way clients connect
to monitoring information using the MonALISA proxy
services is presented in Figure 2.

Figure 2. MonALISA proxy services are used for
accessing monitoring information from clients or other
services.

 DDaattaa
FFiilltteerrss&&AAggeennttss

Registratio

Discover

Discover

MonaLISA
service

Services
Proxy

Services
Proxy MonaLISA

service

Client
other services

MonaLISA
service

Lookup
Service

Lookup
Service Client

other services

In general, clients discover the nearest proxy service
and use it to get the information, but a dynamic load-
balancing mechanism is also used to distribute the load
among the available proxies, so that monitoring
information is served to many clients or services without
increasing the number of connections or load on
individual monitoring services.
MonALISA provides a secure Administration mechanism
(SSL with X.509 certificates) for dynamic configuration,
using a dedicated GUI, of farms / network elements, and
support for other higher level services that aim to manage
a distributed set of facilities and/or optimize workflow.
The system is currently deployed on many sites and
maintaining and updating such widely deployed
applications often requires a significant effort. For this
reason we developed a mechanism in MonALISA that
allows us to automatically update the monitoring service.

CLIENTS AND DATA ACCESS

We have developed a global graphical client which uses

the discovery mechanism to find all of the active services
from a list of user defined groups. This graphical client is
implemented as a Web Start application that can be started
and used from any web browser with little effort.

A MonALISA service may provide its own GUI to any
client as a complex proxy containing the marshaled
components as an attributed to the service [1]. This GUI
communicates with each service from which the user
wants detailed information and plots the requested values.
MonALISA provides flexible access to real-time or
historical monitoring values by using either a predicate
subscription mechanism or dynamically loadable filter
agents. These mechanisms are used by any interested
client to query and subscribe to only the information it
needs, or to generate specific aggregate values in an
appropriate format. When a client subscribes with a
predicate to certain values, the GUI will automatically
update as new values matching the subscriptions are
collected.

The graphical user interface allows users to visualize
global parameters from multiple sites, as well as detailed
tracking of parameters for any individual site or
component in the entire system. The graphical clients also
use the remote notification mechanism, and thus are able
to dynamically show when new services are started or
when services become unavailable.

In Figure 3, we present a few examples in how real-
time and historical data are presented in MonALISA.
The GUI panels allow statistical operations to be run on
the monitoring data in order to generate aggregate values
or distributions. MonALISA can be used by any
application to report specific parameters such that the
execution can be monitored and results verified.

Figure 3. MonALISA is used to monitor the Grid2003 [7]
(around 30 sites and ~2800 CPUs) and the Abilene
backbone. It provides real-time and historical data for
each component in the system as well as the number of
jobs or grid-ftp transfers executed on any of the sites.

GLOBAL REPOSITORIES

A generic framework for building “pseudo-clients” for

the MonALISA services has been developed. This has
been used for creating dedicated Web service repositories
with selected information from specific groups of
MonALISA services. The “pseudo-clients” use the LUSs
to find all of the active MonALISA services from a
specified set of groups. Next they subscribe to these
services with a list of predicates and filters. These
predicates and filters specify the information that the
pseudo-client wants to collect from all the services. The
“pseudo-client” stores all of the values received from the
running services in a local database, and uses procedures
written as Java threads to compress old data.

The storage client is a Java application that connects to
a given set of MonALISA services, registers a set of
predicates, and stores the data received in a database. This
data is used to plot a variety of charts in the web interface
attached to the storage client. This way the users have a
customized global view of the Grid. Data storage is
optimized for space and speed.

The Global Repository [8] also has the ability to
dynamically display the stored data in multiple chart
types: history charts, real-time bar charts, real-time pie
charts, history pie charts, combined views and map
information. Each chart has a corresponding configuration
file with a very simple structure that offers flexibility to
the site administrators. The plots are dynamically
generated and allow the user to select any time interval
and to compare different sites or parameters.
The same web interface is used to display details for any
measured metric. Figure 4 shows the main parameters
describing the operations on an individual site.

The storage client and a Tomcat servlet engine are
started inside the same JVM to ensure that the real-time
charts display the most recent information, and to
minimize the repository memory usage.

Figure 4. Plots presenting the recent history for the major
parameters (jobs running, farm load, total traffic) at
UFlorida Grid2003 center.

The WSDL/SOAP interface is available in both the
services and the repositories so that clients can access
data from a specific Grid farm or, through a repository,
they can access information received from several Grid
farms. One example is the STAR Scheduler [9], which
will use global information provided by a repository to
schedule job execution.

We have developed agents able to provide an optimized
dynamic routing of the videoconferencing data streams
for the VRVS [10] system. These agents use information
about the quality of the alternative connections in the
system to produce, in real-time, a minimum spanning to
optimize the data flow at the global level.

Monitoring agents perform ping-style measurements
using UDP probes to measure the quality of the
connection with possible peer reflectors. These agents are
deployed on all MonALISA services that run on the
reflectors.

SUMMARY

Deploying these monitoring services on many sites and

interfacing it with other monitoring tools (SNMP,
Ganglia, LEMON, MRTG), batch queuing systems
(Condor, LSF, PBS) and a large number of applications
has provided very useful experience, and has enabled us

to begin building reliable and scalable distributed
services.

MonALISA is a robust monitoring system, providing a
flexible interface. It allows rapid development of
complex clients that can either display the status of the
whole system in real-time, or compute complex
algorithms based on monitored data in order to optimize
various aspects of the observed system.

It is currently being used to monitor large facilities for
data processing in High Energy Physics and it is deployed
on more than 50 HEP sites participating in different
experiments (CMS, ALICE, STAR, CDF, ATLAS). It is
also used to monitor several major WAN networks:
Abilene backbone [11], GLORIAD [12], CERN-US links,
CERN-IN2P3 link.

This experience also has been important in enabling us
to start building higher level services, to perform job
scheduling and data replication tasks effectively; service
that adapt themselves dynamically to respond to changing
load patterns in large Grids.

ACKNOWLEDGMENTS

The authors wish to thank to J. Bunn, P. Galvez, S.

Ravot, G. Denis, Y.Xia, X. Su, S. Singh and M. Thomas
form California Institute of Technology, R. Cavanaugh
from University of Florida, L. Bauerdick, I. Fisk, J.
Weigand and Y. Wu from FERMILAB, N. Tapus from
the Polytechnic University Bucharest, L. Cottrel from
Stanford Linear Accelerator Center, M. Mambelli from
University of Chicago, O. Martin, F. Carminati, P. Buncic
M. Lamanna and V. Innocente from European
Organization for Nuclear Research, W. Matthews from
Georgia Institute of Technology, E. Boyd from Internet2,
J.Laurent and E. Efstathiadis from Brookhaven National
Laboratory for their help in deploying and supporting
MonALISA.

REFERENCES

[1] MonALISA web page: http://monalisa.cacr.caltech.edu
[2] H.B. Newman, I.C. Legrand, J.J. Bunn, “A Distributed

Agent-based Architecture for Dynamic Services” CHEP
2001, Beijing, Sept 2001,

[3] Jini web page, http://www.jini.org
[4] The Net-Snmp Web Page, http://www.net-snmp.org/
[5] Ganglia Monitoring tool, http://ganglia.sourceforge.net/
[6] MRTG monitoring tool. http://www.mrtg.org
[7] Grid2003: http://www.ivdgl.org/
[8] MonALISA web repository, http://monalisa.cacr.

caltech.edu:8080/
[9] STAR Scheduler http://www.star.bnl.gov/STAR/

comp/Grid/scheduler/
[10] The VRVS system web page: http://www.vrvs.org
[11] Internet2: http://internet2.org
[12] Gloriad: http://www.gloriad.org

http://www.slac.stanford.edu/
http://monalisa.cacr.caltech.edu/
http://www.jini.org/
http://www.net-snmp.org/
http://ganglia.sourceforge.net/
http://www.ivdgl.org/
http://monalisa.cacr. caltech.edu:8080/
http://monalisa.cacr. caltech.edu:8080/
http://www.star.bnl.gov/STAR/ comp/Grid/scheduler/
http://www.star.bnl.gov/STAR/ comp/Grid/scheduler/
http://www.vrvs.org/
http://internet2.org/

	MONALISA: AN AGENT BASED, DYNAMIC SERVICE SYSTEM TO MONITOR,
	INTRODUCTION
	THE DISTRIBUTED SERVICES ARCHITECTURE
	THE MONITORING SERVICE
	CLIENTS AND DATA ACCESS
	GLOBAL REPOSITORIES
	SUMMARY
	ACKNOWLEDGMENTS
	REFERENCES

