
 1

 
 

MONITORING AND CONTROLLING  
VRVS REFLECTORS 

 
 
 

Catalin CIRSTOIU, catac@cs.pub.ro 
 

Computer Science Department, “POLITEHNICA” University of Bucharest 
313 Splaiul Independentei St., Sector 6, Bucharest, Romania 

 

- June 23, 2003 - 
 

Working in a collaborative environment, where people are dispersed across several countries 
and continents requires means of communication that are low-cost, bandwidth-efficient, 
extensible and robust. VRVS is a videoconferencing system based on a set of servers called 
reflectors that route the audio/video streams to the participating clients. This project 
proposes and explains a method to monitor and control the VRVS reflectors in order to 
enhance the quality of the service. 

 

 

 

1. Design 

 For each VRVS reflector, a MonALISA service is running using an embedded Database, for 
storing the results locally, and runs in a mode that aims to minimize the reflector resources it uses 
(typically less than 16MB of memory and practically without affecting the system load). Dedicated 
modules to interact with the VRVS reflectors are developed: to collect information about the topology 
of the system; to monitor and track the traffic among the reflectors and report communication errors 
with the peers; and to track the number of clients and active virtual rooms. In addition, overall system 
information is monitored and reported in real time for each reflector: such as the load, CPU usage, and 
total traffic in and out. 

 1.1. Monitoring Modules 

 The main component that gathers data, injecting it into the system is a monitoring module. A 
monitoring module is a Java class that can be dynamically loaded from any location specified by a 
URL. At the same time with importing, data is also translated (usually by parsing) to a format 
understood by the MonALISA. With numerical data received from the monitored device, information 
about monitored node, such as name, cluster and farm, is also added. 

 Usually, these modules are invoked at fixed time intervals, using a priority queue. They can 
extract SNMP data, run rsh and ssh scripts where this is possible, connect through a TCP socket and 
query a device etc. In order to maintain up-to-date large distributed systems, these modules are built to 
be dynamically instantiated from certain, possible fixed, URLs. 

 All modules implement a MonitoringModule interface that allows different implementation 
for each module. 



 2

When it is invoked, the module returns a vector of Results that are passed further to the 
MonaLISA core. 

1.1.1. Number of clients and virtual rooms – SyncVrvsClientsT 

 A reflector always keeps track of the current connected users. This information can be 
gathered by making a TCP connection to the reflector on a certain port and issuing a command. The 
reflector will return on the same connection the information requested and then it will close the link. 
The received text is parsed and we get: 

• number of audio clients; 

• number of video clients; 

• number of virtual rooms.  

 

1.1.2. Peer links for a Reflector – SyncVrvsConnT 

 Peer links represent the current active tunnels for a reflector. The reflector forwards packets to 
the other reflectors based on users and virtual rooms information (a packet from a user in a certain 
virtual room must reach all users in the same virtual room wherever they would be in the whole 
system). For each tunnel, we can query the reflector for the following data, which is forwarded to the 
listeners: 

• quality of the link, as computed by the reflector software; 

• lost packages 

 

1.1.3. Reflector querying modules diagram 

mgr_port: int
no_vrvsRoom: int
no_video: int
no_audio: int
no_mbone: int
no_h323: int

 SyncVrvsClientsT()
 init()
 doProcess()
 Parse()
 getInfo()
 ResTypes()
 getOsName()

SyncVrvsClientsT

Node: MNode
TaskName: String
info: MonModuleInfo
isRepetitive: boolean

 SyncVrvsTcpCmd()
 SyncVrvsTcpCmd()
 isRepetitive()
 init()
 getNode()
 getClusterName()
 getFarmName()
 getTaskName()
 procOutput()
 stop()

lia.Monitor.monitor.SyncVrvsTcpCmd

 init()
 ResTypes()
 getOsName()
 doProcess()
 getNode()
 getClusterName()
 getFarmName()
 isRepetitive()
 getTaskName()
 getInfo()

«interface»
lia.Monitor.monitor.MonitoringModule

lia.Monitor.monitor.MNode

lia.Monitor.monitor.MonModuleInfo
 set_exec_time()
 get_exec_time()
 set_repet_time()
 get_repet_time()
 set_max_time()
 get_max_time()
 getExeTime()
 set_last_time_done()
 doProcess()
 compareTo()
 stop()
 canSuspend()
 toString()

«interface»
lia.util.DynamicThreadPoll.SchJobInt

cmd: String
peers: Hashtable
port: int

 SyncVrvsConnT()
 init()
 doProcess()
 Parse()
 getInfo()
 ResTypes()
 getOsName()

SyncVrvsConnT

lia.Monitor.monitor.MFarm

lia.Monitor.monitor.MCluster

 



 3

 

1.1.4. Getting internet links’ qualities between reflectors – ABPing 

 In order to be able to supply a routing alternative for the current selected tunnels, we have to 
monitor links’ qualities between reflectors. For each reflector a set of possible peers is chosen and the 
module monitors the quality of each link. The module sends UDP packets to the other reflectors. The 
other reflectors respond sending back the received packet. This way we can determine simple, but 
important factors that influence the quality of each link. The quality is computed with the following 
formula: 

 

 RTimeQuality = OVERALL_COEF + RTT_COEF * rtt  

+ PKT_LOSS_COEF * loss% + JITTER_COEF * jitter 

 

 This formula is flexible enough to permit calculating any kind of quality, based on RTT, 
Packet Loss and Jitter. The values obtained by pinging peers are: 

• rtt – the round trip time for packets to travel to the peer and back; 

• loss – percent, ranging from 0 to 1 of lost packets sent to the peer; 

• jitter – sum of the variations of rtt for a set of samples, divided by the average rtt and number of 
samples.  

The list of available peers for each reflector and the *_COEF coefficients should be highly 
configurable to allow easy reconfiguration. To reach this goal, the configuration file is the same for all 
reflectors, each one knowing to extract only the information that is needed. The coefficients must be 
the same for all reflectors in order to obtain comparable RTime qualities. 

The configuration file is loaded at start, and then it is periodically checked, from a URL 
configured when starting MonALISA service on the reflector. If there is a new peer for a reflector, it is 
added to the list of peers in the monABPing module. Similarly, if a known peer isn’t found anymore in 
the configuration file, it is deleted from the peer list. If at least one of the coefficients modify, all 
measurements are reset and the new values are computed using the previous formula. 

Here is a sample configuration file: 

 
vrvs.co.pub.ro vrvs-eu.cern.ch vrvs-us.cern.ch 
vrvs-eu.cern.ch vrvs-us.cern.ch vrvs.co.pub.ro cinxia.tv.funet.fi 
vrvs-us.cern.ch vrvs-eu.cern.ch vrvs.co.pub.ro vrvs-starlight.cern.ch 
… 
OVERALL_COEF 0 
RTT_COEF 0.5 
PKT_LOSS_COEF 100 
JITTER_COEF 20 
 
# We keep last RTT_SAMPLES rtts (integer value) 
RTT_SAMPLES 10 
 
# The history of Lost Packages is PKT_LOSS_MEM long (integer value) 
PKT_LOSS_MEM 20 
 
# The size of the packet sent over the net (must be > 3 bytes) 
PACKET_SIZE 450 
 
# Time between pings (ms). Should be big enough to allow reasonable  
# time for packets to return to sender and not consider them lost 
PING_INTERVAL 4000 

 



 4

1.1.5. ABPing module diagram 

name: String
ResTypes[0..*]: String
error_count: int
lastMeasurement: long
type: int
state: int
id: int
errorDesc: Vector

 MonModuleInfo()
 addErrorCount()
 setErrorCount()
 getErrorCount()
 setName()
 getName()
 setResType()
 getResType()
 setLastMeasurement()
 getLastMeasurement()
 setState()
 getState()
 setErrorDesc()
 getErrorDesc()

lia.Monitor.monitor.MonModuleInfo

moduleName: String
pinger: ABPingFastReply
lastCfgLoadTime: long
cfgLoadDelta: long
peers: Vector

 monABPing()
 init()
 doProcess()
 getInfo()
 ResTypes()
 getOsName()

configURL: String
myHost: String
pinger: ABPingFastReply

 ConfigLoader()
 loadConfig()
 run()

ConfigLoader

monABPing

java.util.Timer

param_name[0..*]: String
time: long
param[0..*]: double
NodeName: String
ClusterName: String
FarmName: String
Module: String

 Result()
 Result()
 toString()
 getIndex()
 addSet()

lia.Monitor.monitor.Result

lia.Monitor.monitor.MNode

lia.Monitor.monitor.MFarm lia.Monitor.monitor.MCluster

PACKET_SIZE: int
PING_INTERVAL: int
OVERALL_COEF: double
RTT_COEF: double
PKT_LOSS_COEF: double
JITTER_COEF: double
RTT_SAMPLES: int
PKT_LOSS_MEM: int
active: boolean
myName: String
myPeers: Hashtable
results: Hashtable

 ABPingFastReply()
 setConfig()
 setPeers()
 fillResults()

addrCache: Hashtable

 Client()
 getInetAddr()
 run()

Client

 Server()
 run()

Server

lia.Monitor.Farm.ABPing.ABPingFastReply

java.net.URL

java.net.DatagramPacket

java.net.DatagramSocket

peerHost: String
pinger: ABPingFastReply
uid: Integer
sendTime: long
crtRTT: double
crtJitter: double
crtPacketLoss: double
crtRTime: double

 PeerInfo()
 setConfig()
 addRTT()
 computeRTT()
 computeJitter()
 sendPacket()
 receivePacket()
 computePacketLoss()
 computeRTime()
 toString()

lia.Monitor.Farm.ABPing.PeerInfo

 init()
 ResTypes()
 getOsName()
 doProcess()
 getNode()
 getClusterName()
 getFarmName()
 isRepetitive()
 getTaskName()
 getInfo()

«interface»
lia.Monitor.monitor.MonitoringModule

 

1.2. Filters 

 A filter is, generally speaking, both a client and a data producer for other clients of the 
MonALISA service. As a client, a filter receives all data from the monitor modules. It analyzes this 
data and performs an action according to the received data. As a data producer, it generates Results for 
other clients. 

 For monitoring Reflectors, the MonALISA service must be started using two filters that we 
are going to present in the next section. Starting these filters can be done activating some properties in 
the MonALISA service configuration files, as we will see in the User Guide. 

 

1.2.1. Filtering data – TriggerAgent 

 This filter has two functions. First, it computes time mediated values for reflector peer links 
quality. Three types of results are produced: 

• Qual2h – mediated peer links quality over last 2 hours; 

• Qual12h – the same, for last 12 hours; 

• Qual24h – as above, for last 24 hours. 

The second function of this filter is that it listens for all results coming from the reflector, i.e. 
results from vrvsClientsT and vrvsConnT. In this case, the results received are of no concern. It is 
important whether these results come or not. If there is no data for more than 2 minutes, a special type 
of result, “alarm”, is sent to the listening clients. These clients can interpret and announce the user in 
different ways that a certain reflector encounters problems. 

 



 5

1.2.2. Triggering Actions – vrvsRestartTrigger 

 As the first filter, this one also listens for data coming from the reflector (the two monitoring 
modules). The difference is that this time, no other results are produced. Instead, two actions are taken.  

First, if there is no data for one minute, it concludes that the reflector has a problem and the 
easiest way to solve it is by restarting the reflector. The reflector software is started/restarted/stopped 
with a shell script located in a certain directory in the current user home path. To restart it, a new 
process is created, launching the script.  

Second, if there is still no response for another minute, then it can be concluded that the 
reflector cannot be started. One last attempt is made, invoking for a second time the script. To help 
debugging, the output and/or exceptions generated by this action are captured by the filter and are 
packed into a mail that will be sent to the administrator. The e-mail address of the administrator can be 
configured in the ML service parameters. E-mail sending is just a form of administrator notification. 
Exactly the same principle would be applied to send SMSs instead of e-mails. 

1.2.3. VRVS Filters Diagram 

qualityHash: Hashtable
debug: boolean
active: boolean
store: dbStore
farm: MFarm
clients: Vector
errorCount: int

 TriggerAgent()
 getName()
 initdb()
 addClient()
 removeClient()
 addNewResult()
 isAlive()
 finishIt()
 run()

a1Notif: boolean
client: MonitorClient
errorCount: int

 wclient()

wclient

qualityTimes[0..*]: long
qualityValues[0..*]: double

 QualityResult()

QualityResult

TriggerAgent

debug: boolean
active: boolean
store: dbStore
farm: MFarm

 VrvsRestartTrigger()
 getName()
 initdb()
 addClient()
 removeClient()
 addNewResult()
 isAlive()
 finishIt()
 run()

VrvsRestartTrigger

lia.Monitor.monitor.MFarm

lia.Monitor.monitor.MClus...lia.Monitor.monitor.MNode

param_name[0..*]: String
time: long
param[0..*]: double
NodeName: String
ClusterName: String
FarmName: String
Module: String

 Result()
 Result()
 toString()
 getIndex()
 addSet()

lia.Monitor.monitor.Result

«interface»
java.io.Serializable

 notifyResult()
 newConfig()
 notifyResult()

«interface»
lia.Monitor.monitor.MonitorClient

«interface»
java.rmi.Remote

 getName()
 initdb()
 addClient()
 removeClient()
 addNewResult()
 isAlive()
 finishIt()

«interface»
lia.Monitor.monitor.MonitorFilter

 run()

«interface»
java.lang.Runnable

 

1.3. MonALISA Clients for VRVS 

 To achieve the goal of this project, two MonALISA clients were developed. There is a 
monitoring GUI client suitable for VRVS users that want to observe in real time the reflectors activity. 
The other client runs on an internet site as background process, monitors the reflectors statuses and if 
needed it issues commands. We present a short description of both, in the following sections. 



 6

1.3.1. MonALISA GUI Client 

 A dedicated GUI for the VRVS version of MonALISA client was developed as a java web-
start client.  This GUI provides real time information dynamically for all the reflectors which are 
monitored. If a new reflector is started it will automatically appear in the GUI and its connections to its 
peers will be shown. Filter agents to compute an exponentially mediated quality factor of each 
connection are dynamically deployed to every MonALISA service, and they report this information to 
all active clients who are subscribed to receive this information. 

 It provides real-time information about the way the VRVS system is used (number of 
conferences or clients) the topological connectivity of the reflectors and the quality of it and system 
related information (IO traffic CPU load).  Clients can also get historical data for any of these 
parameters. 

The subscription mechanism allows one to monitor in real time any measured parameter in the 
system as all the updates are dynamically displayed on the open windows. Examples of some of the 
services and information available, visualizing the number of clients and the active virtual rooms, the 
traffic in and out of all the reflectors, as well as problems such as lost packets between reflectors are 
presented in the User Guide chapter. 

 The simplified diagram of the GUI client follows: 

mst: MST
router: ReflRouter
reflNodes: Hashtable
rerouteTimer: Timer
newLinks: Hashtable
newLinksInit: long

 VrvsSerMonitor()
 addLinkAndComputeMaxFlow()
 addIPTunnel()
 addNode()
 init()
 getMST()
 evaluateGlobal()
 processResult()
 addWAN()

NewLinkInfo

VrvsSerMonitor

 SerMonitorBase()
 init()
 addGraph()
 new_global_param()
 checkServiceGroup()
 AddMonitorUnit()
 gupdate()
 addNode()
 ErrorNode()
 loadIcon()
 newResult()
 processResult()
 setGlobalVal()
 getMonaLisaEntry()
 verifyNodes()
 removeNode()

lia.Monitor.JiniClient.CommonGUI.SerMonitorBase

farm: MFarm
address: InetAddress
conn: tcpConn
localClients: Hashtable
filterClients: Hashtable
trcframe: tRCFrame
PRED_IDS: int
debug: boolean
error_count: int
localTime: String
active: boolean
buff: Vector
buff1: Vector
config: Hashtable
FarmName: String

 tClient()
 run()
 isVisible()
 setVisible()
 addLocalClient()
 addLocalClient()
 setLocalTime()
 deleteLocalClient()
 newConfig()
 informClients()
 process()
 connectionLost()

lia.Monitor.tcpClient.tClient

 addLocalClient()
 addLocalClient()
 deleteLocalClient()

«interface»
lia.Monitor.monitor.LocalDataProvider

client: tClient
out: ObjectOutputStream
in: ObjectInputStream
buff: Vector
connected: boolean
error_count: int
error_connect_count: int
debug: boolean
tot_sent: int
tot_received: int

 tcpConn()
 close_connection()
 sendMsg()
 run()
 isServerAlive()

lia.Monitor.tcpClient.tcpConn

java.io.ObjectOutputStream

 newResult()

«interface»
lia.Monitor.monitor.LocalDataClient

dSize: int
cbuff[0..*]: byte

 cmonMessage()
 cmonMessage()

lia.Monitor.monitor.cmonMessage

param_name[0..*]: String
time: long
param[0..*]: double
NodeName: String
ClusterName: String
FarmName: String
Module: String

 Result()
 Result()
 toString()
 getIndex()
 addSet()

lia.Monitor.monitor.Result

default_LUDs: String
lookupDiscoveryManager: unknown
sdm: unknown
refTemp: unknown
debug: boolean
sleepTime: long
SGroups: Hashtable

 init()
 verifyGroups()
 run()
 ErrorNode()
 removeNode()
 JiniClient()
 getLUDSs()
 verifyServices()
 addLUS()
 verifyNodes()
 AddMonitorUnit()

lia.Monitor.JiniClient.CommonJini.JiniCli...

«interface»
java.io.Serializable

config: Hashtable
dataprovider: LocalDataProvider
timeTF: JLabel
unl: JLabel
progress: JProgressBar
done: boolean
rcpanel: RCMonPanel
totul: JPanel
dateform: SimpleDateFormat
control: MonitorControl
controlLock: Object
jbAdmin: JButton
address: InetAddress

 tRCFrame()
 tRCFrame()
 run()
 addFarm()
 updateFarm()
 endIt()
 stopIt()
 setLocalTime()

lia.Monitor.tcpClient.tRCFramejavax.swing.JPanel

 
This client is also able to compute a minimum spanning tree, using the same code that 

ReflRouter client uses. The MST is displayed on the GUI to allow observing at any moment if the 
current selected tunnels provide the best performance. 



 7

1.3.2. MonALISA ReflRouter Client 

 We developed the ReflRouter client that is able to provide an optimized dynamic routing of 
the videoconferencing data streams. This client requires information about the quality of the alternative 
connections in the system and it solves, in real-time, a minimum spanning tree problem to optimize the 
data flow at the global level.  

To evaluate the connection quality with possible peer reflectors we developed monitoring 
agents performing ping like measurements using UDP packages, which are deployed on all the 
MonALISA services. These agents perform continuously (every 4s) such measurements and with a 
selected set of possible peers, which can be dynamically reconfigured, for each reflector.  We are using 
small UDP packages to evaluate the Round Trip Time (RTT), its jitter and the percentage of lost 
packages.  

The best routing path for reapplication of the multimedia streams is defined as a Minimum 
Spanning Tree (MST) [19]. This means that we need to find the tree that contains all the reflectors 
(vertices in the graph G) for which the total connection “cost” is minimized: 

))),((min(
),(
∑

∈

=
Guv

uvwMST  

The “cost” of the connection between two reflectors (w) is evaluated using the UDP 
measurements from both sides. This cost function is build with an exponentially mediated RTT and if 
lost packages are detected or the jitter of the RTT is high the cost function will increase rapidly.   Based 
on these values provided by the deployed agents, the MST is calculated nearly in real - time. We 
implemented the Barůvka‘s Algorithm, as it is well suited for a parallel/distributed implementation.  
Once a link is part of the MST a momentum factor is attached to that link. This is to avoid triggering 
reconnections for small fluctuations in the system. Such cases may occur when two possible peers have 
very similar parameters (or they may be at the same location). 

 The UML diagram of this client: 

crtState: int
from: ReflNode
nextState: int
to: ReflNode

 IPTunnel()
 checkAlive()
 getInetRTTime()
 getPeerQual()
 hasPeerQ()
 hasRTTime()
 setInetRTTime()
 setPeerQual()
 toDLink()
 toString()

IPTunnel

crtTree: Vector
debug: boolean
nextTree: Vector
nodes: Hashtable
oldTree: Vector
simulation: boolean
toActivate: Vector
toDeactivate: Vec...

 MST()
 computeMST()
 initOldTree()
 printMST()
 printTunnels()
 tunnelsCost()

MST

addrCache: Hashtable
ipnodes: Hashtable
local_filter_pred: Vector
mst: MST
nodes: Hashtable
snodes: Hashtable
sthreads: Hashtable

 AddMonitorUnit()
 ErrorNode()
 Main()
 addNode()
 checkServiceGroup()
 getIPAddr()
 getMonaLisaEntry()
 newResult()
 processResult()
 removeNode()
 setGlobalVal()
 verifyNodes()

Main

PRED_IDS: int
active: boolean
address: InetAddress
buff: Vector
buff1: Vector
config: Hashtable
conn: JtcpConn
debug: boolean
error_count: int
farm: MFarm
filterClients: Hashtable
localClients: Hashtable
localTime: String
reflNode: ReflNode

 JtClient()
 addLocalClient()
 addLocalClient()
 deleteLocalClient()
 informClients()
 newConfig()
 process()
 run()

JtClient

UnitName: String
client: JtClient
crtState: int
errorCount: int
ipad: String
lastResultTime: long
mlentry: MonaLisaEntry
prevState: int
router: ReflRouter
sid: unknown
tunnels: Hashtable

 ReflNode()
 addInet()
 addPeer()
 addReflInfo()
 checkChangedStatus()
 checkReflActive()
 equals()
 isReflActive()
 resetExpireTimer()
 toString()

ReflNode

appStartTime: long
debug: boolean
firstReRouteDelay: long
mst: MST

 ReflRouter()
 getMST()
 reRouteNow()
 run()
 sendConnect()
 sendConnectCmds()
 sendDisconnect()
 sendDisconnectCmds()
 shouldSendCommands()

ReflRouter

active: boolean
buff: Vector
client: JtClient
debug: boolean
error_connect_count: int
error_count: int
in: ObjectInputStream
out: ObjectOutputStream
tot_received: int
tot_sent: int

 JtcpConn()
 close_connection()
 run()
 sendMsg()

JtcpConn

 
 

 



 8

2. Implementation 

 We will present the most interesting parts of the implementation of various components of the 
whole project. 

2.1. Monitoring Modules 

 A monitoring module is a Java class that must implement the following interface: 
public interface MonitoringModule extends  

lia.util.DynamicThreadPoll.SchJobInt { 
 public MonModuleInfo init(MNode node, String args); 
 public String[] ResTypes(); 
 public String getOsName(); 
 public Object doProcess() throws Exception; 
 public MNode getNode(); 
 public String getClusterName(); 
 public String getFarmName(); 
 public boolean isRepetitive(); 
 public String getTaskName(); 
 public MonModuleInfo getInfo(); 
} 

 The SchJobInt is an interface that represents a job that can be scheduled for execution. A 
monitoring module is such a job that monitors the activity on a certain MNode (monitored node that is 
part of a Cluster, on a Farm). It is invoked at configurable time intervals – the doProcess() method. If 
the job fails, it throws an exception. If it succeeds, it returns an object: a Result, or a Vector of Results. 
These results are serialized and passed to the listening clients. 

2.1.1. Number of clients and virtual rooms – SyncVrvsClientsT 

 The SyncVrvsClientsT is a third generation class that gathers reflector specific information. 
The first version of this module launched command line program, designed by the VRVS team that 
retrieved the information from the reflectors. This was generating a big overhead – it meant creating a 
new process each 20 seconds. The next version connected to the reflector on a certain port and issued 
the following command: “passwd/check_host/params”. This would return a text containing the 
number of virtual rooms, audio and video clients. This approach was far better, but we discovered that 
the reflector was implemented as a single threaded server and there were problems if both modules 
tried to connect and query it at the same time. Third version corrected this problem by using the 
“synchronized” attribute for methods that could interfere. 

2.1.2. Peer links for a Reflector – SyncVrvsConnT 

 Both VRVS modules are implemented using a single class SyncVrvsTcpCmd that simply 
connects to the reflector, issues the given command and returns the output. This module checks 
reflector peers’ status for the last 30 seconds, using the following command: 
“passwd/check_peer_status/params”. The result contains a list of peers with the 
corresponding Quality and Lost Packages for each of them. This information is parsed in the 
doProcess() method and for each peer a result is created. It returns a vector with all results. 

2.1.3. Getting links’ qualities between reflectors – monABPing 

 When this module is initialized, the configuration must be read from a certain URL, passed as 
a parameter in the ml.properties configuration file. Then, at fixed intervals, the configuration is reread 
from the same URL. This can be easily achieved by defining an inner class to handle this problem: 
 class ConfigLoader extends TimerTask { 
  ConfigLoader(String myHost, ABPingFastReply pinger){ … } 
  void loadConfig(String host, String url){ … } 
 } 
        reloadCfgTimer.schedule(new ConfigLoader(Node.getName(), pinger),  



 9

0, cfgLoadDelta ); 

 In the doProcess() method we just call for each peer, the FillResults method of 
ABPingFastReply. This is the “worker” class for this module. It has two inner classes: Client and 
Server that implement the Runnable interface, working in separate threads. ABPingFastReply has a 
Hashtable with all its peers. A peer is represented by the PeerInfo class, holding all concerning data 
about it. When a peer is added, it receives a unique id (short integer value) that is used to identify very 
fast the peer when receiving a packet. 

 The Client thread sends a packet to each peer. The first byte contains the type of packet 
(ECHO or REPLY). The next two bytes hold the UID of the peer. The rest of the bytes in the packet 
are filled with random data to avoid compression of different network protocols. After sending an 
ECHO packet to all peers, the client sleeps for a period considered long enough to allow packets to 
return from peers. Then, the list of results (filled by the Server thread) is analyzed and PeerInfo classes 
information is updated. If a Peer doesn’t receive a result, its packet loss counter is increased. Either 
way, rtt, jitter, RTime information is recalculated. 

The Server listens on a port for UDP packets. When it receives a DatagramPacket, it checks 
the first byte. If it is ECHO, then it is changed to REPLY, the destination address is set to be the source 
address and the packet is sent. This operation is happening as fast as possible – this is why the module 
is called FastReply. If the first byte is REPLY, then this means that the packet is returning from a peer. 
The next 2 bytes are converted to an integer value using the fast bit shifting operators – the id of the 
peer. This id is the key used to add into the results hashtable the time when the packet was received.  

Immediately before sending the packet, the time is recorded in the corresponding PeerInfo 
class. Having these two times, both taken on the same machine we can easily compute the RTT. 

One can argue that computing this way the RTT we are prone to big errors, because this is 
done in application space, and not in kernel space, as it would have been if using a real ping utility. To 
avoid this kind of errors, we compute the mediated value for all variables for a period of time: 
 for(int i = 0; i < rttSamples.length; i++){ 
  sum += rttSamples[i]; 
  min = (min < rttSamples[i] ? min : rttSamples[i]); 
  max = (max > rttSamples[i] ? max : rttSamples[i]); 
 } 

crtRTT = (sum - min - max)/(rttSamples.length - 2); 
 medRTTSamples[crt] = crtRTT; 

 From the set of results, we eliminate first the biggest and the smallest time and only after that 
we compute the RTT for that period. Jitter is computed as the sum of RTT variations divided by the 
number of samples and mean value: 
 for(int i = 0; i < rttSamples.length; i++) 
  delta += Math.abs(medRTTSamples[i] - avg); 
 crtJitter = delta/((medRTTSamples.length - 1) * avg); 

 This formula is good for a bigger RTT, but for small values it may be unstable, the avg being 
too small. This could happen especially in LANs. But in this kind of networks, the jitter cannot 
influence the quality of the videoconference, and therefore it can be considered equal to 0, if RTT is 
below a reference value. 

 The quality of a link is finally computed as follows: 
 crtRTime = pinger.OVERALL_COEF + 
   pinger.RTT_COEF * crtRTT + 
   pinger.JITTER_COEF * crtJitter + 
   pinger.PKT_LOSS_COEF * crtPacketLoss; 

 The coefficients are those read from the configuration file. 

2.1.4. Monitoring Modules configuration file 

 All these modules reside in a jar file in the MonALISA service distribution. They are 
dynamically loaded only if their name is found in the configuration file. For VRVS reflectors, the 
configuration file is usually like this: 

 
*Reflector 



 10

>vrvs.co.pub.ro 
SyncVrvsClientsT%30 
monProcStat%30 
monProcIO%30 
monProcLoad%30 
*Peers{SyncVrvsConnT, vrvs.co.pub.ro, " "} 
*Internet{monABPing, vrvs.co.pub.ro, " "} 

 Each MonALISA service monitors a ‘Farm’ that is uniquely distinguished by a FarmName. 
This name is set in the configuration file of the ML service. A farm monitors multiple Clusters. In case 
of the VRVS, these clusters can be considered as fields of interest. In each cluster there are several 
Nodes – the final elements from where the data is coming.  

Words after a ‘*’ represent the cluster name. We have three clusters in the above configuration 
file: Reflector, Peers and Internet. 

Reflector cluster contains data about the machine and the reflector. Its name is given with a 
‘>’ in front of it. For this cluster, several modules are started: SyncVrvsClientsT, monProcStat, 
monProcIO and monProcLoad. After the module’s name, with ‘%30’ it is specified that the respective 
module should be invoked each 30 seconds. This value can be different for each module. monProcStat, 
monProcIO and monProcLoad modules retrieve information read from the /proc/ file system (network 
traffic, current load etc.). The information returned by these modules (i.e. the types of results) is fixed. 

The Peers and Internet clusters return information about the reflector peer links and the quality 
of network links to the other “neighboring” reflectors. Each peer is considered a Node in ML 
terminology. These can change while ML is running and therefore, these modules return variable types 
of results. These modules are configured with the parameters put between ‘{’ and ‘}’. For example, the 
monABPing module reads its configuration from the specified URL (in the ml.properties file), looking 
for the hostname specified as parameter (here it is “vrvs.co.pub.ro”). 

2.2. Filters 

 Filters are Java classes that implement the MonitorFilter interface: 
public interface MonitorFilter extends java.io.Serializable { 
 public String getName(); 
 public void initdb(dbStore datastore, MFarm farm); 
 public void addClient(MonitorClient client); 
 public void removeClient(MonitorClient client); 
 public void addNewResult(Result r); 
 public boolean isAlive(); 
 public void finishIt(); 
} 

 When a client wants to receive data from this filter, it must implement the MonitorClient 
interface and must call the addClient() method. This way more different type of clients can 
register to receive information from this filter. The filter, also is a Runnable object, which means that 
it runs in a separate thread. Every 10 seconds the thread informs all registered clients, sending results 
(Result or Vector of Results objects). 

 It is important to understand that all results coming from all modules reach all filters. A result 
is passed to the filter through the addNewResult() method. 

2.2.1. Filtering data – TriggerAgent 

 This filter has two functions. First, it receives Quality results from the SyncVrvsConnT 
modules. Then, it computes an exponentially mediated value for the last 2, 12 and 24 hours: 
 for (i = 0; i < QUALITY_NUMBER; i++) { 
  double oldQ = qr.qualityValues[i]; 
  double newQ = r.param[j]; 
  long t = qr.qualityTimes[i]; 
  long dt = now - t; 
  long diffdt = QUALITY_TIME[i] - dt; 
  qr.qualityValues[i] = 
   oldQ * ((double) diffdt / (double) QUALITY_TIME[i]) 



 11

   + newQ * ((double) dt / (double) QUALITY_TIME[i]); 
 } 

 The corresponding values for the 2, 12 and 24 hours are in milliseconds: 
 public static long[] QUALITY_TIME = 
 { 2 * 60 * 60 * 1000, 12 * 60 * 60 * 1000, 24 * 60 * 60 * 1000 }; 

 The second function for this filter is that after 2 minutes of silence from the reflector, an alarm 
is triggered. This is accomplished easily, given the flexible structure of the filter. Each time a result 
from the reflector (not from the monProc* modules) is received, the time is recorded in a variable. 
Each 10, when the filter is about to inform its clients, the time of last pertinent result is checked. If it is 
earlier than 2 minutes, the alarm is triggered, i.e. it is created a Result with a parameter called “alarm” 
and the value true. 

2.2.2. Triggering Actions – vrvsRestartTrigger 

 This is a different kind of filter. It just receives information from the modules but doesn’t send 
any results to the clients. It can be considered an agent that can take some simple decisions based on 
the monitored data. The decisions are much simpler than those that can be taken into a client (see the 
ReflRouter client) because here, only the information from a single reflector is available. Therefore it 
hasn’t any knowledge about the peers of the reflector, although this could be easily implemented by 
building a module that receives, and sends to peers information about its reflector. This information 
could be packed into results that could reach more intelligent filters (see future work section of this 
project). 

 Coming back to vrvsRestartTrigger, it has two functions, based on two alarm triggers. First 
alarm is triggered after one minute of silence from the reflector. The mechanism is the same as in the 
previous filter, but the action is different. Instead of informing clients, this alarm creates a process that 
launches a shell script to restart the reflector software. If after this operation the filter receives data, 
then it means that the restart was successful, but if after another minute there is no data, it means that 
there is a serious problem and an administrator must be notified. 

 The list of administrators is given as a property in the ml.properties configuration file: 
“lia.Monitor.vrvs.MAIL=user1@host1,user2@host2”. One last attempt to restart the reflector 
is made, but this time the output of the script trying to restart the reflector (or any exception that may 
occur) is copied into an email that is sent to the list of administrators. 

 The mail is sent with the “mail –s subject address” command. The output of the script that 
tries to restart the reflector is copied to the mailing process. The mail utility sends mail only when 
receives a single “.” after a new line. This way it can be controlled if the mail should be send or there 
was an error this time also. 

2.3. The ReflRouter client 

 Like other MonALISA clients, ReflRouter has a complex structure. We present a state 
diagram to ease the understanding of all processes and then, we will focus on the routing part. 

In order to be able to perform the rerouting of the multimedia packets, we have to know 
anytime the status of the Reflectors, their peer links and the quality of their links with a set of 
“neighboring” reflectors. All this information is kept in a set of classes. The reflectors (ReflNodes) are 
kept in 2 hashtables, one having the key as reflector name and one the reflector’s IP address. This is 
useful because the way data is received into the Results classes. A peer node (MNode) is distinguished 
by its full qualified domain name (such as “vrvs-eu.cern.ch”) when the result is received, for example, 
from the vrvs-pub (FramName or UnitName and a full name as “vrvs.co.pub.ro”). From this full name, 
the IP address is found. Having the IP address of the peer we can find the peer reflector in the 
hashtable. 

Currently, we do not monitor all Reflectors in the VRVS system, and therefore, Results 
containing peer links that are not found can be received. These links are ignored and no routing is 
performed with them. The condition to perform routing with just a part of the reflectors and not affect 
the functioning of all system (i.e. not make cycles) is that the monitored reflectors be the backbone of 
the VRVS. Cycles could be produced if, for example, we would monitor two reflectors that are leaves 



 12

in the VRVS tree (the system would issue commands to connect these two reflectors, being unaware 
that they are already connected through other reflectors). 

 

LUS Registration

Register as a listener at multiple LUSs

Receive notifications

Only if not under NAT

Check for services

Discover all registered Reflector
Sleep for a while

Reflector discovered

Check if already known

Start

Launch program

Reflector known

Check statu
If not active, trigger Rerouting

Reflector unknown

Create TCP connection to the Ref
Get name and locatio
Get IP addres
Register as a ReflNode in hashtables

Listen for Data

Data comes through the TCP link

New data received

Reflector aliv
if changed status trigger Reroutin
Update Reflector statu
Update tunnels statu
Update internet links status

Rerouting

Check reflectors statu
Select only active reflecto
Compute 2 lists of tunnels
- tunnels that MUST be deactivate
- tunnels that MUST be activate
Compute MST
Select the new set of tunnel
If needed, send the rerouting commands

Recheck in case client under NAT

 
 

 The peer links are in fact tunnels over the Internet. They are kept in a hashtable “tunnels” in 
each ReflNode, the key being the name of the peer Reflector. The available links with the other 
reflectors are also considered tunnels and are kept in the same class (IPTunnel). IPTunnels have a set of 
attributes. They have peerQual (if it is an active tunnel) and inetRTTime – the result from ABPing 
(if the peer is in the list of the nodes for the current reflector). These values have an associated time – 
the time when last information about that peer was received. This way, we can get an expiring time for 
each type of link and issue critical rerouting commands. 

 Each tunnel has two attributes referring to its state: crtState and nextState. The current 
state of a tunnel can be either ACTIVE or INACTIVE, if it currently is in the tree of selected tunnels or 
not. This attribute depends on the age of the peerQual attribute, and is checked (and possibly 
modified) each time the status of this tunnel is requested by the MST algorithm. The nextState 
attribute is set by the MST algorithm and can have multiple values: ACTIVE, INACTIVE, 
MUST_DEACTIVATE or MUST_ACTIVATE.  The MUST_* states can be set before running the MST 
algorithm to select the tunnels that either must or must not be active anymore, as we will se later. The 
first two states are set by the MST algorithm and they usually mean states that are recommended for 
optimizing the overall cost of the tree. 

 The ReflRouter is a class that extends TimerTask in order to be invoked from time to time to 
optimize the tree. But usually it is necessary to react to certain events, like a reflector become active or 
inactive. Each 20 seconds (by default, but this value can be changed editing the ml.properties file) all 
reflectors are checked. This includes checking all tunnels. If a reflector or tunnel isn’t active anymore, 
a rerouting is triggered.  This happens also when a reflector becomes active and it must be included 
into the MST. 

 The rerouting process is further analyzed in the next three sections. 

 



 13

2.3.1. Setting the Restrictions for the MST algorithm 

 There are some critical cases that must be analyzed before running the MST algorithm. For 
this, each ReflNode is checked. If a node isn’t active then it must not appear in the MST. Further, the 
tunnels that start from the inactive node must also not be present in the computed tree. Therefore, the 
next state will be set to MUST_DEACTIVATE. If the node is active, then each link to the other reflectors 
(either active peers or neighbor reflectors) is checked. If the peer reflector isn’t active the respective 
tunnel must not be active.  

 Another problem arises when between two reflectors there is no ABPing information, or there 
is only one ABPing link. In this case, the state of the both peer links depends on the current status of 
the peer link. If there is at least one peer link, then both must be activated. If none is active, then no 
peer link must be active. 

 For the other cases the next state of a tunnel is initialized as INACTIVE, and the MST 
algorithm will set it as needed. 

2.3.2. The MST algorithm 

The minimum spanning tree (MST) of a graph defines the cheapest subset of edges that keeps 
the graph in one connected component. The input is a graph G = (V,E) with weighted edges. The 
problem is to find the subset E’ of  E of minimum weight forming a tree on V. 

 
For implementation, we used the Boruvka’s algorithm, as it is also appropiate for a parallel 

implementation.  

The original Borvuka algorithm is: 
       Given G = (V,E) 
       T = graph consisting of V with no edges 
       while T has < n-1 edges do 
          for each connected component C of T do 
             e = min cost edge (v,u) s.t. v in C and u not in C 
             T := T union {e} 

But there can be a problem if the graph isn’t connex. In this case, there is no way to connect n-
1 edges, so that condition is modified such that the while cycle repeats as long as there is at least one 
union made into the for cycle. 

In our case, while joining subtrees, we also mark the next state of each tunnel that is used to 
perform the respective joint as ACTIVE.  

Another modification that must be done to this algorithm is that the process is going to be 
running interative, i.e. we compute the MST, issue commands to change the tree, then we compute the 
MST and change the tree again and so on. A problem that could appear is that of  active links 
oscillation. 

 



 14

 
 For example, as in the above figures: at moment t1, the link between B and C is worse and 
therefore, is inactive; at the next moment, the link between A and C is worse and the algorithm would 
issue the commands to deactivate link A-C and activate instead the B-C link; but at the third moment, 
link between A and C is better once more than B-C, ant the algorithm would send new commands. This 
would be very bad for a system where there are live conferences ongoing. Therefore, we must take care 
and issue the commands for changing the route only when the new route is much better than the current 
route.  

 This problem can be solved by setting an inertial factor for the links belonging to the MST. 
Links that are currently in the MST have an artificial cost lowered by, for example 20%. It is important 
to give this value relative, not absolute as the cost of the links can vary very much – for example links 
between the reflectors in the same LAN have very low cost, compared to those separated by oceans. 
Using this inertial factor we are sure that the oscillations cannot happen very often, and that when a 
new link is chosen, it will bring an semnificative improvement in quality. 

It’s worth saying that this algorithm runs in O(m log n), where m is the number of edges and n 
the number of vertexes. 

2.3.3. Generating commands sent to the Reflectors 

 Having the MST algorithm complete, we have to send the needed commands to the reflectors 
in order to change the current network topology to be as the one calculated. There are two types of 
commands: critical and optional commands. A command is considered critical when it must be sent to 
the reflectors; its next state is either MUST_ACTIVATE or MUST_DEACTIVATE. There is one more 
situation when the commands must be sent: the number of links to be deactivated differs from the 
number of links to be activated. In this case, it means that there are reflectors with only one peer link 
between them – the other must be activated, or the one that is active must be deactivated and one of the 
reflectors must be connected by some other path to the others. The optional type of commands refers to 
modifications that can be made in order to optimize the overall cost of the tree. It is only recommended 
to send these commands to the reflectors. 

 For each activation command, there is a tunnel that must be activated. Similarly, for each 
deactivation command, there is a tunnel to be deactivated. There is always a list of tunnels that are 
currently in the tree; the MST computes another list of tunnels to be in the next tree. Selecting the links 
that are in the current list of tunnels but not in the next, gives the list of tunnels to be deactivated; 
selecting tunnels that are in the next tree, but not in the current tree, gives the tunnels to be deactivated.  

3. Tests and evaluation 

 The project integrates several modules. We will present a short description of how each of 
them was tested and the results obtained. 

 The vrvsRestartTrigger, responsible to the restart of the reflector in case of not responding 
was tested on a test reflector, “vrvs-test”, located at Caltech. The ML service was started, having the 
filter activated. Then, the reflector software was stopped using the shell script. First, the TriggerAgent 
sent the “alarm” result to the GUI client, which displayed it in a different color; then, the 
vrvsRestartTrigger reacted by launching the vrvs shell script. The reflector started and responded to 
queries from the SyncVrvs*T modules. The results reached the GUI client which reverted the color of 
the reflector to normal state. Then, the reflector was stopped again and quickly after that, the script was 
renamed. After the first minute, the vrvsRestartTrigger filter tried to restart the reflector but failed; the 
color changed in the GUI client to indicate error state. Then, after one more minute, the filter tried to 

11

34

35

36 

12 

34 A 

B 

C 

A 

B 

C 

36 

12

34 A 

B 

C 

t1      t2 t3



 15

restart once again the reflector; this time it has built an e-mail containing a message that it couldn’t find 
the vrvs shell script. The mail was sent, reaching in less than 5 minutes from the failure of the reflector 
to the administrator.  

 The next module that was thoroughly tested is monABPing. In normal conditions, the values 
of the RTT returned were with 2 to 4 milliseconds bigger than those returned by the “ping” utility. 
These values were relatively constant in time, the mediation of the values succeeding to eliminate cases 
when the java garbage collector was run, or other threads were executing. The module was tested in 
different network environments, from UTP switched network, cable connection to the Internet and 
WAN links, performing as expected, showing a direct relation between the physical network quality 
and the value returned by the module. The only problem that could appear resides from the liberty 
given by allowing user to modify 8 parameters for this module. Therefore, in order to obtain pertinent 
results, a lot of tests must be performed. 

 The ReflRouter client was tested simulating that the commands were sent to the reflectors. For 
this, the previous tree was saved and when the algorithm was rerun, the current tree was initialized to 
that. The same algorithm (and classes) was used in the GUI client to perform the MST. Using the 
graphical interface and seeing the costs of the links the correctness of MST could be easily checked. 
More tests were performed running more instance of the ReflRouter on different machines, in different 
places. The algorithm issued the same commands no matter where it was run. We encountered 
problems with the links oscillations, but that were solved as explained in the implementation. 

 We discussed critical cases like reflector stopping to respond, one of two peer links 
disappearing, monABPing miss-configurations, but nothing about MonALISA service failure. This 
could happen for various motives, given it run in the Java Virtual Machine. This would be no problem 
if the monitored reflector were a leaf in the reflectors tree, but what if ML was running on a reflector 
belonging to the main trunk? It would mean that the ReflRouter would receive no more data from the 
respective reflector and it would consider it inactive. In that case the neighboring reflectors would 
receive commands to disconnect all links to this reflector and establish a new path. This could also be 
very bad for the system, so another solution is in development now: the status of the MonALISA 
service is permanently checked by a shell script ran from the crontab. When it doesn’t respond, the ML 
service is restarted and all goes to normal. This ML check is performed at periods much smaller than 
link and reflector’s expiring time, so this event would likely remain undetected at the ReflClient level. 

4. User Guide 
 The GUI client is started with the following command: 
 $ cd MSRC/MonaLisa/Clients/Gui 
 $ ./vrvsGlobal 

 This is a shell script with the following contents: 
java  -jar -Djava.security.policy=policy.all \ 
      -Dlia.Monitor.debug=true \ 
      -Dlia.Monitor.keep_history=1000 \ 
      -Dlia.Monitor.LUSs=monalisa.cern.ch,pccit6.cern.ch \ 
      -Dlia.Monitor.group=vrvst1 \ 
      ../lib/vrvsJMonitorClient.jar 

 



 16

User can select what information to be displayed. For the reflectors one can se the number of 
audio and video clients, number of virtual rooms and total traffic. For the connections, peer links 
qualities are available (Qual2h… 24h) and inetABPing qualities, displayed in the previous picture. 

 
 The above is the view of the currently monitored reflectors, as shown in the GMap tab. The 
green links with numbers represent the quality returned by the reflectors. The blue lines represent the 
MST computed by the algorithm. The bubbles can be dragged with the middle mouse button and if 
clicked with the left button, detailed info is shown about respective reflector: 

 

 
 

 In the above window is shown the information configured in the configuration file for the 
reflector. Selecting the Internet cluster, one can see a detailed graph of the RTime quality for the 
respective link: 

 



 17

 
 

 The ReflRouter client is started with the following command: 
 $ cd MSRC/MonaLisa/Clients/JReflRouter 
 $ ./jGlobal 

 The output corresponding to a rerouting event is something like: 

 
[ Fri Jun 06 22:01:00 EEST 2003 ] --> ReRouting process STARTED ... 
MST: Current tree's tunnels: 
  MUST -> IPTun:starlight->sinica pQ=100.0 iRTT=1.0E50 crtState=ACTIVE nextState=MUST_ACTIVATE 
  MUST -> IPTun:sinica->starlight pQ=100.0 iRTT=1.0E50 crtState=ACTIVE nextState=MUST_ACTIVATE 
  OPTN -> IPTun:vrvs-eu->vrvs-us pQ=100.0 iRTT=0.769 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-us->vrvs-eu pQ=100.0 iRTT=0.5800000000000001 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-caltech->vrvs-test pQ=-1.0E50 iRTT=1.5 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-test->vrvs-caltech pQ=-1.0E50 iRTT=1.02 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:sinica->nsysu pQ=100.0 iRTT=3.5171428571428573 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:nsysu->sinica pQ=100.0 iRTT=4.01 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs5->vrvs3 pQ=-1.0E50 iRTT=15.128305785123967 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs3->vrvs5 pQ=-1.0E50 iRTT=15.129628099173553 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs3->vrvs-caltech pQ=-1.0E50 iRTT=18.0 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-caltech->vrvs3 pQ=-1.0E50 iRTT=18.501081081081082 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-eu->vrvs-pub-ro pQ=100.0 iRTT=19.127614379084967 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-pub-ro->vrvs-eu pQ=100.0 iRTT=18.5 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-eu->funet pQ=100.0 iRTT=29.252051282051283 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:funet->vrvs-eu pQ=100.0 iRTT=29.252051282051283 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:nsysu->kek pQ=-1.0E50 iRTT=32.51538461538462 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:kek->nsysu pQ=-1.0E50 iRTT=37.231936026936026 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:starlight->vrvs3 pQ=100.0 iRTT=13.86923076923077 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs3->starlight pQ=100.0 iRTT=12.724 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-caltech->usp pQ=-1.0E50 iRTT=94.25742705570292 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:usp->vrvs-caltech pQ=-1.0E50 iRTT=93.8759587217044 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-test->vrvs-pub-ro pQ=-1.0E50 iRTT=100.25059850374065 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-pub-ro->vrvs-test pQ=-1.0E50 iRTT=100.25079800498753 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:starlight->cornell pQ=100.0 iRTT=9.851111111111111 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:cornell->starlight pQ=100.0 iRTT=9.256486486486487 crtState=ACTIVE nextState=ACTIVE 
Total cost = 678.3698060609934 
MST: Computed tree's tunnels: 
  MUST -> IPTun:starlight->sinica pQ=100.0 iRTT=1.0E50 crtState=ACTIVE nextState=MUST_ACTIVATE 
  MUST -> IPTun:sinica->starlight pQ=100.0 iRTT=1.0E50 crtState=ACTIVE nextState=MUST_ACTIVATE 
  OPTN -> IPTun:vrvs-eu->vrvs-us pQ=100.0 iRTT=0.769 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-us->vrvs-eu pQ=100.0 iRTT=0.5800000000000001 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-caltech->vrvs-test pQ=-1.0E50 iRTT=1.5 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-test->vrvs-caltech pQ=-1.0E50 iRTT=1.02 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:sinica->nsysu pQ=100.0 iRTT=3.5171428571428573 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:nsysu->sinica pQ=100.0 iRTT=4.01 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:starlight->cornell pQ=100.0 iRTT=9.851111111111111 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:cornell->starlight pQ=100.0 iRTT=9.256486486486487 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:starlight->vrvs3 pQ=100.0 iRTT=13.86923076923077 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs3->starlight pQ=100.0 iRTT=12.724 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs3->vrvs5 pQ=-1.0E50 iRTT=15.129628099173553 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs5->vrvs3 pQ=-1.0E50 iRTT=15.128305785123967 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs3->vrvs-caltech pQ=-1.0E50 iRTT=18.0 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-caltech->vrvs3 pQ=-1.0E50 iRTT=18.501081081081082 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-eu->vrvs-pub-ro pQ=100.0 iRTT=19.127614379084967 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-pub-ro->vrvs-eu pQ=100.0 iRTT=18.5 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-eu->funet pQ=100.0 iRTT=29.252051282051283 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:funet->vrvs-eu pQ=100.0 iRTT=29.252051282051283 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:nsysu->kek pQ=-1.0E50 iRTT=32.51538461538462 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:kek->nsysu pQ=-1.0E50 iRTT=37.231936026936026 crtState=INACTIVE nextState=ACTIVE 
  OPTN -> IPTun:starlight->vrvs-us pQ=100.0 iRTT=62.5 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-us->starlight pQ=100.0 iRTT=62.5 crtState=ACTIVE nextState=ACTIVE 



 18

  OPTN -> IPTun:starlight->usp pQ=100.0 iRTT=82.50048484848485 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:usp->starlight pQ=-1.0E50 iRTT=82.62657337367625 crtState=INACTIVE nextState=ACTIVE 
Total cost = 579.8620819970191 
Tunnels to deactivate: 
  OPTN -> IPTun:vrvs-caltech->usp pQ=-1.0E50 iRTT=94.25742705570292 crtState=INACTIVE nextState=INACTIVE 
  OPTN -> IPTun:usp->vrvs-caltech pQ=-1.0E50 iRTT=93.8759587217044 crtState=INACTIVE nextState=INACTIVE 
  OPTN -> IPTun:vrvs-test->vrvs-pub-ro pQ=-1.0E50 iRTT=100.25059850374065 crtState=INACTIVE nextState=INACTIVE 
  OPTN -> IPTun:vrvs-pub-ro->vrvs-test pQ=-1.0E50 iRTT=100.25079800498753 crtState=INACTIVE nextState=INACTIVE 
Total cost = 388.6347822861355 
Tunnels to activate: 
  OPTN -> IPTun:starlight->vrvs-us pQ=100.0 iRTT=62.5 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:vrvs-us->starlight pQ=100.0 iRTT=62.5 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:starlight->usp pQ=100.0 iRTT=82.50048484848485 crtState=ACTIVE nextState=ACTIVE 
  OPTN -> IPTun:usp->starlight pQ=-1.0E50 iRTT=82.62657337367625 crtState=INACTIVE nextState=ACTIVE 
Total cost = 290.1270582221611 
Commands SHOULD BE SENT to the Reflectors! (gain/tunnel=24.62693101599359); critical=false 
[ Fri Jun 06 22:01:00 EEST 2003 ] --> ReRouting process FINISHED ... 

  

 The above text shows the previous list of active tunnels, the next list of tunnels and both the 
list of tunnels to activate and to deactivate. Before each tunnel can be seen the status of the tunnel: 
whether it MUST be active or its activation/deactivation is optional. 

 The pQ represents the peerQuality value and iRTT is the internetRTTime value. For each 
tunnel is shown the current and the next state. 

5. Conclusions 

 VRVS is a highly evolved videoconferencing system providing its users a set of important 
features: ease of use, scalability, flexibility, efficiency and robustness. One of its major advantages 
over competitors is the ability of being a portal between different conferencing systems, allowing, for 
example, H.323 clients to communicate with MBone clients (using vic/rat). 

 MonALISA is a robust monitoring system, providing upper layers a flexible framework, 
allowing rapid development of complex clients, ranging from pseudo-clients that store results in a 
database, to GUI clients started from a web page. 

 Routing and monitoring clients presented in this project are an example of high level services, 
created to optimize a worldwide distributed application and to provide help in operating a complex 
system.  

 Further work includes developing a distributed routing client that could offer a faster and 
more accurate response to the critical events that can appear in such a large and intricate system. 

 

 


