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Preface 
 

Abstract 
My diploma thesis deals with measuring end-to-end capacity for network 

links. This project is part of the MonALISA framework – complex dynamic service 

monitoring system. This document will describe the mechanisms and methods 

implemented for capacity estimation as well as the module structure and 

integration in the MonALISA framework. 

Motivation 
The Internet is changing rapidly. One of the consequences of this change 

is a growing need for higher quality of service. A corollary of the need for higher 

quality of service is the need for accurate and extensive measurement, including 

the need to measure bandwidth. 

Currently the most accurate bandwidth measurement techniques are to 

directly measure the fastest rate that traffic can be sent through a network. Wide-

scale deployment of these “heavy-weight” bandwidth tests can overwhelm the 

network with test traffic. Accurate measurement of bandwidth is difficult if simple 

large data volume techniques are not used but there is some current research in 

this area. Existing techniques attempt to estimate the capacity and bandwidth of 

both links and paths while attempting to use as small a quantity of data as 

possible. These techniques must operate from only the end points of a 

connection, and must not require specialist software be deployed into the core of 
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the network. Therefore the need for estimation tools is growing in the landscape 

of twenty – first century. 

Overview of the Thesis 
This thesis is structured in eleven chapters. This an overview of the 

contents of each chapter. 

Chapter 1 - Introduction: In this chapter, we will discuss the importance of 

measuring network links. I will also provide a short historical of estimation tools 

categories. 

Chapter 2 - Basic notions for measuring network links: This chapter 

includes a brief description of the major network parameters. The definitions from 

this chapter will help the reader to further understand the algorithms presented.  

Chapter 3 – Existing techniques: In this chapter, I will clasify the existing 

techniques for measuring bandwidth and capacity. We will also provide an 

exhaustive list of the existing application with a few important traits. 

Chapter 4 – MonALISA. Monitoring Agents using Large Integrated 

Services Arhitecture: An overall description of the MonALISA framework is 

provided. I will concentrate more on the existing bandwidth measurement module 

ABPing. 

Chapter 5 – ADR. Measuring end-to-end capacity: This chapter covers all 

the aspects of the Average Dispersion Rate technique for capacity estimation. At 

the end of the chapter I will explain the methodology implemented in the ADR 

tool. 

Chapter 6 – Java NIO: This chapter presents the important characteristics 
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of the new Java 1.4 IO library. I will focus on the classes and methods used in 

the application and underline the choice of using them.  

Chapter 7 – Technical specification - the architecture of the application: In 

Chapter 7 it is given a full description of the implementation. I will go to the low 

level of application in the essential parts of the algorithms. 

Chapter 8 – The structure of the MonALISA module cap: In this chapter I 

will describe the incorporation process in the MonALISA framework. Also I will 

detaliate the structure of the cap module, the interaction of the user with my 

application. 

Chapter 9 – Performance: I will show the results obtained using this tool 

on Ethernet and GigaByte links. I will draw some concusions and define the 

future improvements. 

Chapter 10 – References: A complete  list of references. 

Chapter 11 – Code listing: A few pages of essential code listed for future 

reference. 

Credits 
This diploma thesis was developed with the help of my advisors: prof. 

PhD. Vice Dean Valentin Cristea, prof. PhD. Fiz Iosif Legrand and as. Catalin 

Carstoiu. I would like to thank also the people who worked beside me in the 

Caltech laboratory for their advices, patience and most of all friendliness. I hope I 

will work in this environment the following years. 
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Chapter 1 - Introduction 

 

1.1. The importance of measuring network links 

As long as Internet bandwidth has increased, the amount of traffic sent 

over the Internet has grown to consume it. This means that despite the 

increasing link bandwidth in network backbones and into homes and offices, 

optimizing the use and allocation of bandwidth continues to be an interesting 

problem. Although many applications are more interested in available bandwidth 

than link bandwidth, knowing the link bandwidth along a path enables more 

accurate measurement of available bandwidth. In addition, several applications 

can directly use link bandwidth, including planning networks to minimize 

bottlenecks and analyzing network performance as a whole. 

However, the Internet's current size, heterogeneity, and rate of change 

make determining link bandwidth a challenging research problem. This is true 

even though applications are usually only interested in the bandwidth along a 

particular path or even just the smallest bandwidth (the bottleneck bandwidth) 

along that path. A database to store bandwidth information would neither scale 

well nor cope with the rate at which routes change. Routers currently do not 

report link bandwidths. Since routers gain much of their speed by being as simple 

as possible, slowing them to answer link bandwidth queries is probably not 

acceptable. The easiest approach to deploy, and consequently the one in which 

we are most interested, is for end hosts to infer link bandwidth by actively probing 
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or passively listening to traffic. Hosts can share this information if the probing or 

listening is expensive. 

With the increase in use of the Internet, more people are finding 

themselves dependent on it. Just as happened with the telephone system early 

last century, business and  people are finding that the requirement of Internet for 

communication and gathering of information is something they cannot operate 

without. Increasingly more and more business models are based solely around 

the Internet. 

However with this growth of dependency and use of the Internet, more 

and more demands are being placed on the performance of the network. Users 

require that consistent monitoring of the performance is carried out, in order to 

both detect faults quickly and predict and provision for the growth of the network. 

Measuring the Internet is difficult some of the reasons for this are 

described below: 

• Not all ISP's are forthcoming about details of the loading and 

performance of their network.  

• Even with the support of the ISP, the complexity of the  network 

means that normally multiple providers are involved in the end-to-

end connection between hosts. This situation makes the 

monitoring of end-to-end performance by any one ISP nearly 

impossible. 

• The servers and ISP’s try to limit the traffic in the best way they 

can. A network administrator will not let ordinary people to flood a 

connection just to know the capacity of a particular path. 

• In general there are big variations in small time stamps of the 
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network parameters. This means that we should use a  twenty four 

hour day servers for monitoring network links. A plethora of 

problems need of expensive hardware. 

• Detecting invisible network nodes (intelligent hubs, updated 

routers). These nodes will drop packets suspected to make Denial 

of Service attacks or act different with some packets. 

One possible way to meet this need would be the deployment of special 

software or hardware on each router in the network. A solution such as this, 

however, is just not practical. The cost, time and security problems with this 

outweigh the gains from this type of instrumentation. The cost of this solution is 

involved in the man hours spent upgrading software on all of the routers in the 

network, the charges for this software by the vendor, and the price to upgrade 

older routers that are unable to run this software. This sort of upgrade is also not 

going to be instantaneous. The time required for upgrading the software on every 

router in the entire network would be huge. This would leave a substantial time 

where there are inconsistencies in the network when it may be possible to 

measure some of the paths, and not others. 

An alternative approach is to use end-to-end software run on the end 

hosts. This allows the measurement to be run at the user’s discretion and allows 

for simple deployment. However this approach requires the software to infer the 

characteristics of the links involved without being able to directly measure each 

link individually. 

This realm is heading into end-host programs for estimating capacity and 

bandwidth. The results obtained with these tools are of huge significance for 

scientific applications in nuclear physics, astronomy and biotechnology. In a few 
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years, the scientists from all around the world will be connected by Gigabyte 

links. We need research projects like Grid Physics Network (GriPhyN) or Particle 

Physics Data Grid (PPDG). Surely we will be forced to invest in very expensive 

switches to assure a terrabyte transfer rate  (for example a on a 622MBps link 

which is used in a data-intensive application we reach a troughput of several 

duzins of gigabytes, no matter the capacity of the network). 

The capacity, bandwidth and troughput cuantify the transfer in a network. 

At the Application and Network levels, the existing protocols lack the ability to 

anticipate the troughput of a network path, that is why Transport level protocols 

such as TCP/IP try to determine adaptively and dinamically the maximum 

transfer rate. TCP uses techniques like congestion avoidance or slow start. 

Unfortunately the TCP generates a large quantity of traffic. We can avoid this 

downpoints by shifting to UDP and ICMP packets. The last two protocols adapt 

very quickly to the instability of real networks and most of all do not need to keep 

open a conection between the sender and the receiver (thousands of open 

conncetions cause congestion). 

1.2. The history of measuring tools 

Estimation tools for network properties have changed substantially in the 

last twenty years. In this period, we can distinguish three genereations: 

1. First generation(the 80’s and the beggining of 90’s): We have seen the 

first attempts for network managements. Programs like ping, traceroute or ttcp 

are familiar to everyday users. To recognize their impact, some of them have 

been included in operating systems. They made a low level monitoring and 
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debugging, determining round trip times, packet loss rate, hop number or bulk 

TCP throughput. 

2. Second generation(the mid 90’s): In this decade several monitoring 

large scale activities have started such as PingER (SLAC), NMI (LBNL, PSC, 

ACIIR), Surveyor (Advanced Networks), AMP (NLANR) and so on. Numerous 

hosts have been used for testing these new frameworks. N probes can scan 

bidirectionally N*N network paths. The major disadvantage is that the results 

cannot correlate and cannot capture the network performance. Therefore 

decisive actions could not be taken starting from the obtained data. Moreover 

these data were available only to the user, other Session or Applecation level 

protocols could not use them. 

3. The third generation(late nineties and 21stcentury): The next 

generation of monitoring tools will inferr available bandwidth (maximum permitted 

troughput) or capacity (maximum possible troughput). We can get other 

interesting values like: jitter, cross traffic percents. The data can be used by 

middleware network applications and even high level applications in order to 

optimize the end- to-end transfer. 

 

 

 

 

 

 

 



 13 

Chapter 2 - Basic notions for 

measuring network links 

2.1. Definitions 

Like most specialist research areas, bandwidth measurement and 

estimation has many specific terms that need to be explained. Unfortunately 

many of these terms are used differently by different authors. This section 

clarifies the main terms, and defines how we will use them in this paper. 

We begin with the names for the components of a network. Hosts are the 

end points from which a packet either originates from or is destined to. A router is 

a machine with two or more network connections that forwards packets from one 

connection to another that will get the packet closer to its destination. A link 

refers to a single connection between routers or routers and hosts. A path is the 

collection of links, joined by routers, that carries the packets from the source to 

the destination host. Two paths are different if any intermediate router is different. 

Link latency is the time it takes from the time the first byte of a packet is 

placed on the medium until the time that the first byte is taken from the medium. 

This delay is caused by the rate at which signals are propagated in the link (e.g. 

electrons in a cable) and distance of the medium. 

The link bandwidth is the rate at which bits can be inserted into the 

medium. The faster the bandwidth the more bits can be placed on the medium in 

a given time frame. 

An important thing to note about computer network routers is that they are 
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normally store-and-forward routers. This means that every byte of the packet 

must be received from the link and placed into a buffer in the router before the 

router will start to send it out on the destination link. If packets arrive at a router 

faster than they can be sent out the appropriate output port a packet queue will 

form for this port. The queue discipline used is almost always a FIFO queue. 

In the next sections we go into more detail about the different variations of 

the terms latency and bandwidth. 

 2.1.1. Latencies 

There is much separate latency in a network system. Each of these values 

is used throughout this paper so we describe them all here. 

The transmission delay is the time it takes a packet to be placed on the 

medium. This time is proportional to the packet size and the bandwidth of a link. 

It is the time from the time the first byte is placed on the network until the time the 

last byte has been sent. 

The transmission time is considered to be the combination of link latency 

and transmission delay. The transmission time is the time between the first byte 

being placed on the medium and the last byte being taken off. This is the sum of 

the link latency and the transmission delay. 

The path latency is the sum of all of the individual transmission times as 

well as the queuing time inside the routers. This is the time that it takes from the 

sender issuing the packet until the destination receiving it. Path latency is often 

referred to as the one-way delay. 

Path latency is hard to measure as it requires a distributed synchronized 
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clock to timestamp the time the packet was sent and the time the packet was 

received. The clocks need to be synchronized as the sending time will be time 

stamped from the sender’s clock and the reception timestamp from the 

destination machines clock. 

A more common measurement is the round trip time (RTT) latency. This is 

the sum of the path latency in the forward and reverse directions, and can be 

measured easily by timing the sending of a packet, have the destination machine 

respond to the packet immediately and the original sender timestamp the return 

of this packet. 

Unfortunately as the forward and reverse paths and path latencies may 

differ, the RTT latency cannot differentiate between the forward and reverse 

delay. 

 2.1.2. Bandwidths 

As with latency, there are many variants of the term bandwidth. This 

section will discuss these. 

Unlike latencies, link bandwidths do not sum to result in the path 

bandwidth. The path bandwidth is defined by the minimum of the link bandwidths, 

as this is the fastest any traffic can make it through the path. The path bandwidth 

is also known as the path capacity. 

The bandwidth of a path is shared by the traffic under consideration and 

other traffic. This reduces the amount of bandwidth available to the hosts. This 

other traffic is referred to as cross traffic. 

Available bandwidth is the amount of bandwidth “left over'' after the cross 
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traffic. The link with the lowest available bandwidth will not necessary is the link 

with the lowest capacity.  

Dovrolis refers to the link that restricts the paths capacity as the narrow 

link and the link that restricts the available bandwidth the tight link.  

2.2 Assumptions 

A large amount of money and time is currently being spent implementing 

high speed, next generation networks. These networks are being constructed in-

order to support the large growth in the Internet, as well as enabling higher 

bandwidth services to run over the network to more people. There is an 

increasing demand to know if the performance obtained from these networks is 

what is expected from them. The performance of a network is a complicated 

issue with many variables effecting different traffic in different ways. While poor 

values for some performance metrics may only have a strong effect on the 

performance of a small number of applications, there are a few metrics which are 

almost universally significant for all types of traffic. Bandwidth and latency are the 

two most commonly quoted of these performance metrics. 

Most of the routers are store and forward and usually the transmission 

delay is proportional to the packet size. This means that they have to receive the 

whole packet before they can forward it to the next interface. The standard 

ordering mechanism is FIFO. The latency of the path is the sum of latencies of 

every link along the path, as opposed to bandwidth which is the minimum 

bandwidth for all links. This slow link determines the rate of transfer for packets 

because it dictates the maximum transfer capacity. 
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The bandwidth of a path is divided between the probing traffic and the 

cross-traffic. The cross-traffic reduces significantly the bandwidth of every path. 

We can derive the available bandwidth to be the bandwidth obtained after 

excluding the cross-traffic. The capacity of the path is determined by the link with 

the lowest transmission rate. This slow connection is a narrow link for capacity 

and a tight link for bandwidth estimation. 

The presence of layer-2 store-and-forward devices causes consistent 

errors in per-hop measurement tools such as pathchar and pchar. Also, not all 

routers along an end-to-end path are equal: internal switches, different buffer 

configurations, and the relegation of classes of messages typically employed by 

tools to a router’s “slow path” all add error into the measurements. Furthermore, 

tool accuracy tends to deteriorate on heavily loaded or high bandwidth paths 

where traffic characteristics differ from tool assumptions or network interface 

interrupts coalesce. Attempts to increase accuracy often require tools to saturate 

the path with measurement probes, a method that is inefficient and does not 

scale. 
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Chapter 3 - Existing techniques 

 

3.1. A classification of existing techniques 

There have been a number of techniques proposed in the area of 

bandwidth estimation. Most concentrate on measuring one of two values, either 

the individual link bandwidths of a path, or the capacity of a path. In general 

these techniques can be classified into two groups. Single packet and packet pair 

techniques. The names refer to the number of packets that are used in a single 

probe. A measurement of a link or path will consist of multiple probes, in the case 

of some implementations, this can be in the order of 10MB of data (14400 

individual probes) to measure a 10 hop path. The following sections will detail the 

theory of these techniques, improvements suggested and example 

implementations. 

 3.1.1. By the number of probe packets 

  3.1.1.1. „Single Packet” or „One packet” 

Single packet techniques concentrate on estimating the individual link 

bandwidths as opposed to end-to-end properties. These techniques are based 

on the observation that slower links will take longer to transmit a packet than 

faster links. If it is known how long a packet takes to cross each link, the 

bandwidth of that link can be calculated. 

Calculations must also take into account the latency, which varies for each 
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link. As discussed in, latency is not dependent on the packet size or the 

bandwidth of that link, but the time that the signal takes to travel down the path. 

The transmission time of a packet is determined by the packet size (P), the 

bandwidth of the link (b) plus a fixed latency value  (l). 

lb
P

t +=
 (1) 

If the time and packet size are known equation (1) can be rearranged to 

give the bandwidth. As latency is fixed for a particular link, latency can be 

considered as a fixed offset. When the  transmission time for multiple, varied 

sized probe packets are taken, a graph such as Figure (1) can be produced. 

 

Figure 1: Calculating the slope of this graph forms the basis of how single 

packet techniques estimate bandwidth. 

 

Each probe packet is plo tted using packet size versus transmission time. 

The bandwidth can be calculated from this graph by performing a linear 
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regression to find the slope of the points, and the inverse of this value is the 

estimated bandwidth. 

There are addition problems when conducting these measurements in the 

real world. The issue of measuring the time it takes a packet to cross each link in 

the network path separately is the first hurdle. 

To avoid the need for special router instrumentation, single packet 

implementations take advantage of the IP time to live (TTL) field. This field is 

decremented by one by each router the packet passes through. Once the TTL is 

decremented to zero, the packet is discarded and the router will send an ICMP 

TTL expired error message to the original packet source. By setting the TTL to 

expire at the router at the end of the link to be measured, the sender can record 

the RTT of the packet to the end of the link and back by recording the sent time 

of the packet and the return time of the ICMP error message. 

The TTL for the measurement packet is set to 2 as it leaves the machine. 

The TTL is decremented to 1 in the first router, and 0 in the second router. This 

router then generates an ICMP error message to be returned to host A. The error 

message may or may not follow the same path to return to host A for this reason 

is displayed as a dashed line. The effect of the return path differing from the 

forward path will be discussed later in this section. 

Although the use of the TTL field allows measurements to be made from 

the end points without special software deployed in each router in the path, it 

also causes a number of problems. First there is no way of considering any link 

(with the exception of the first link in the path) independently. The measurements 

reported for all but the first link must also include all the effects of the previous 

links. 
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This problem is solved by representing a link as a sum of all the results for 

the previous links, plus the component of this link. The latency for a single link 

was given in equation. 

Summing the links we derive: 

∑
=

++=
x

i
ix

x
x tl

b
P

t
0  (2) 

This means that the latency of the link being measured can be calculated 

by subtracting the latency measured on the previous links. The bandwidth of the 

link is calculated by subtracting the slope of the previous links from the slope of 

this link and taking the inverse of this value.  

This process has the disadvantage that errors accumulate over each links 

measurements. This problem results in a limit to the accuracy that can be 

expected for measurements of distant links in long hop count paths. 

However, this is only one of many more problems that single packet 

techniques encounter. Possibly the most significant of these problems is the 

effect of other traffic on the link (cross traffic). If a packet experiences delays, due 

to cross traffic on the link, then the estimation of time will be affected 

proportionally to the volume of this traffic. 

Jacobson addresses this issue by assuming that cross traffic can only 

ever increase a delay seen by a packet. If enough packets are sent eventually 

one should get at least one through in the minimum time. These packets are said 

to have the shortest observed round trip time (SORTT) and is discussed by 

Downey. The graph shown earlier in Figure 1 could now be considered to be just 

plotting the SORTT values, and ignoring the delayed packets that would appear 

above each measurement. 
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More packets are required to discover the SORTT for more distant links. 

As the results from links further away from the source are combined to the effects 

of all of the previous links a packet must experience no queuing delay through 

every node, not just the node being measured. 

While single packet techniques have many difficulties there are a number 

of common problems in the area of network measurement that do not strongly 

affect the bandwidth estimate results. Asymmetric routing is one such issue. 

The term asymmetric routing refers to when the path too and from a node 

is different and, because of this, the delay in each direction can be different. This 

can cause problems for many types of active and passive measurement analysis. 

In the case of single packet bandwidth estimation techniques asymmetric routing 

causes few problems. The reason for this is while the ICMP error packet that we 

need for timing may come back via a different path the error packet is of fixed 

size for all sized measurement packets. Assuming the route doesn't change, the 

time it takes through the return path will, therefore, be fixed for all packet sizes. 

However, we cannot distinguish between added packet delay due to congestion 

on the forward and reverse paths. This means that the packet must experience 

zero delay through all routers on both the forward and reverse paths. This means 

that we need to send more packets to discover the SORTT.  

Asymmetric routing will however cause problems with the latency 

estimation described earlier. As the return path may change speed for different 

hops, the subtraction of previous delay times will no longer hold true. This will 

result in an incorrect estimation of the latency added on by this link. An example 

of this is shown in Figure 2. In this measurement, packets returned from router 

three travels  over a low latency link when compared to the links that 
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measurement two has to travel over. Using the example latencies shown in the 

figure, the measurement for link two will be the combined latency of the paths, 

summing to 44ms in this case. The measurement for link three however will be 

carried out over three 10ms paths, and back over two 2 ms paths and one 10ms 

path. This gives a sum of 44ms RTT. The estimated RTT latency for this link will 

then be 44ms - 40ms, 4ms. This compared to the correct value of the 10ms link 

(20ms RTT) latency. 

 

 

Figure 2: Latency errors caused by Asymmetric routing . 

 

Bellovin and Jacobson use the one-packet delay model to develop a 

technique for measuring link bandwidths. Bellovin and Jacobson use the round-

trip delay to successive routers along a path. The round-trip delay can be 

modeled as the sum of the one-way delay for the initial packet and that of its 

acknowledgement. 
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Bellovin and Jacobson resolve the problematic assumption about no 

queuing by observing that queuing caused by additional traffic can only increase 

delays. Therefore, the minimum of several observed delays of a particular packet 

size fits the model. Their technique is to send several packets for each of several 

different packet sizes, plot the delays of these packets versus their sizes, and 

then use linear regression (Figure 1) to obtain the slope of the graph. The inverse 

of the slope is the bandwidth. 

In practice, the problems with this technique are that linear regression is 

expensive, routers are not built to send acknowledgments in a timely manner, 

some nodes are “invisible'', and the reverse path adds noise. 

The first problem is that the linear regression described above must be 

done for every link measured. Many packets may be required to filter out the 

effect of other traffic and calculate a regression with high confidence. Jacobson 

provides pathchar as an implementation of the algorithms just described. Using 

its default settings, it will send 10MB of data in the course of measuring a 10 hop 

Ethernet path. 

Downey uses statistical methods to reduce measurement traffic. Once he 

detects the convergence of a link bandwidth estimate, then he avoids sending 

further packets to measure this link. Methods such as this are complementary to 

our packet tailgating technique. 

The second problem is that the one-packet technique requires getting 

timely acknowledgements from routers. Bellovin uses Internet Control Message 

Protocol (ICMP) Echo and Echo Reply packets sent to the routers, while 

Jacobson and Downey use UDP packets, successively incrementing the IP 

Time-To-Live (TTL) field to receive ICMP time exceeded responses from the 
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routers. 

These approaches have the advantage that no special software needs to 

be deployed on routers to gather timing information, but unfortunately they may 

not work in all parts of the Internet. Because of malevolent use of ICMP packets, 

some routers and hosts either rate-limit them or filter them out, thus slowing 

down or precluding measurement. 

Another problem is that bridges, host operating systems (OS s), and 

network interface cards (NIC s) are usually store-and-forward nodes but do not 

decrement the IP TTL and are not individually addressable in IP. Consequently, 

the links corresponding to these “invisible'' nodes cannot be detected or 

measured using the IP TTL decrement method cited above. There is a node 

between the source application and the source operating system because the 

sending OS usually must copy packets from the application's address space to 

the kernels. In addition, the source OS s network card driver usually must copy 

the sent packet from kernel address space across the system bus to the NIC. 

Finally, if the destination is a PC, the packet usually must be copied from the 

destination's NIC to the destination's kernel address space. The application-

kernel, kernel-NIC, and NIC-kernel copies usually must be individually complete 

before the packet can be forwarded any further in the pipeline. These invisible 

nodes cause error in the measurement of the next link. 

The final problem is that relying on acknowledgements and round-trip 

delays means that there is twice the possibility that queuing could corrupt a 

sample when compared to a technique that relies only on one-way delay. This is 

because queuing in the reverse path can delay the acknowledgement, even if 

there is no queuing in the forward path. As a result, many packets may be 
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required to filter out the effect of other traffic and calculate a regression with high 

confidence. To use one-way delay, one-packet-based techniques to use one-way 

delay would need new software at every router on a path, which would not be 

practical. 

Another issue causing problems with the latency estimation is caused by 

the time taken by a router to generate the ICMP error message. ICMP can be 

used as a fo rm of denial of service attack on a router. To reduce this risk many 

routers place a very low priority on the creation of ICMP packets to avoid 

overloading the routers CPU. This means that the latency observed will include 

this extra time that would not be seen by a packet traveling through a router. This 

will not affect the bandwidth estimation, however, as long as the router is 

consistent on the time introduced for all packet sizes. If the router handles 

packets of different sizes differently this would introduce errors into the slope 

calculation used to calculate bandwidth. 

The combination of these problems means that this technique doesn't 

scale to higher hop counts. The amount of traffic required to accurately find the 

SORTT also reduces the usefulness of this method on busy paths. 

The noise introduced into the measurement by cross traffic, and the other 

problems discussed here, is often larger than the difference between the 

transmission of the smallest packet (40 bytes) and the largest packet (normally 

1500 bytes). 

  3.1.1.2. “Packet Pair” 

Packet Pair models attempt to estimate the path capacity not the link 

capacity discovered by single packet techniques. These techniques have been in 
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use since at least 1993, when Bolot used them to estimate the path capacity 

between France and the USA. He was able to quite accurately measure the 

transatlantic capacity, which at that time was 128kbps. 

Packet pair techniques are often referred to as packet dispersion 

techniques. This name is perhaps more descriptive. A packet experiences a 

serialization delay across each link due to the bandwidth of the link. Packet pair 

techniques send two identically sized packets back-to-back, and measure the 

difference in the time between the packets when they arrive at the destination. 

For simplicity, we will initially ignore cross traffic, and discuss the effects it 

has later in this section. Figure 3 shows packet pair measurements 

diagrammatically.  

 

Figure 3: Packet pair measuring trough the limiting link. 

Shown are 3 links of a path from source S to destination D, and two 

packets, shown once in each link. Link L1 and L3 have twice the capacity of L2; 

L2 is the capacity limiting link in the path. The first packet arrives at the router 

between L1 and L2 and is forwarded out on L2 without queuing delay as there is 

no other traffic present. L2 has a lower speed than L1 so the second packet 

arrives while the first packet is still being sent out and is queued. As soon as the 

first packet has been transmitted down L2 the second packet begins to be sent. 

As soon as the first packet is received by the router between L2 and L3 the 

router can forward it out on L3. The first packet will have finished being sent 
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before the second packet is fully received by the second router as L3 is faster 

than L2. As soon as the router does finish receiving the second packet it will 

forward it on. As the spacing can only be changed by a slower link, and we have 

defined L2 to be the capacity limiting (slowest) link, the spacing will remain the 

same through to the destination machine. 

The spacing is equal to the time that the router at the end of the limiting 

link spent receiving the second packet after the first one was received. This 

because the first packet was sent as soon as it was fully received and then the  

router must wait until the second packet has fully arrived before it can be sent on. 

This value is actually equal to the transmission delay. The transmission delay ( t ) 

is proportional to the packet size (P) and the capacity of the link (b). 

b
P

=t
(3) 

Note the difference between equation 1 and 3. Single packet techniques 

have to take into account the latency of the link in the calculations. Packet pair 

techniques do not need to estimate the latency of the link as it will be the same 

for both packets (in the absence of cross traffic), canceling it out. 

Cross traffic effects are the most obvious and serious problem to affect 

packet pair measurements. If cross traffic delays the first packet it will compress 

the spacing between the packets and the bandwidth estimation will be high. This 

is referred to as time or probe compression. If cross traffic arrives in the queue 

between the first and second packet the spacing will be expanded resulting in 

underestimation of the bandwidth. 

All recent research into packet pair techniques has focused on filtering out 
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the compressed or extended measurements to provide the closest estimation to 

the capacity of the path. 

Lai and Carter both propose statistical methods to filtering the results to 

estimate the bandwidth. Both of these approaches assume that as the 

compression or extension values will be random, then the actual bandwidth 

should appear as the most common measurement. 

However current research suggests that this may not be the case, and 

that there may be other, more common values than the actual bandwidth. This 

result is the focus of current research into packet pair techniques. 

3.1.2 By the method applied 

Considering this criterium, we have two big categories: Variable Packet 

Size (VPS) and Packet Train Dispersion (PTD). Steve Bellovin and Van 

Jacobson have proposed VPS for measuring metrics of each hop. In this 

technique, different size UDP and IP packets are generated and put in the 

medium in order to examine the round trip  time, delay. From this we can extract 

the bandwidth and loss rate. 

The VPS tools use variations of round trip time to estimate the 

characteristics of a path. An agent will send packets with specific dimmensions 

and it will use the round trip time to filter the effects of queuing on intermediar 

routers. By modulating the distance between packets, the VPS techniques can 

determine the distribution of round trip times. 

PTD focuses on measuring the capacity on a path. The PTD methodology 

is based on the Packet Pair model in the context of congestion control. An 
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important side of PTD is the statistical aproximation. Paxsons has discovered 

that the distribution of bandwidth is multimodal and if we extract the global mode 

this value will provide us with a clue about the path capacity. 

We can apply the PTD technique for measuring bandiwdth. We can 

assume that the dispersion of packet trains is invers proportional to the available 

bandwidth. By lengthning the packet train we can deduce that the values 

converge to Asymptotic Dispersion Rate (ADR), a value a little lower than the 

real capacity. 

3.2. Existing applications 

There are a plethora of host to host applications that measure network 

characteristics and their number grows everyday. It is very hard to cuantify and 

characterize each application, but some basic traits worth mentioning. We will 

browse fast trough the most representative applications and then we will present 

Table 1. which contains a complete list. 

Allen Downey has implemented the PTD technique to create clink, and in 

a similar mode Bruce Mah has written pchar(Network Characterization Service). 

Kevin Lai and Mary Baker have developed the tailgating technique and 

implemented in nettimer. 

Clink and pathchar are updates of the original pathchar. Clink implements 

adaptiive testing techniques to vary the number of probes for each hop. We need 

only a few packets for links with low noise rate, but on busy links the number of 

probe packets increases exponentially, 

Pchar focuses on poratbility for platforms and protocols such as Ipv6 or 
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linear regression methods. 

Constantin Dovrolis has defined a method for measuring capacity 

implemented in many applications. It is based on the Paxsons observation about 

the multimodal distribution of the bandwidth. This method will be detaliate in the 

dedicated Chapter 5. In table 1 we mention and clasify the majority of existing 

applications.  

Application Author Technique Measuring Short description 

Abing  Single 

Packet 

Point-to-

Point 

- pretty rudimentary; 

- the results vary a lot from an 

execution to another; 

Bing Pierre 

Beyssac 

VPS Point-to-

Point 

-it relies on the simpler ping module;

- it determines the raw throughput of 

a link by using ICMP echo request 

for packets of different sizes; 
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Bprobe, 

Cprobe 

Bob Carter Packet Pair Point-to-

Point 

- bprobe makes an estimation for 

the maximum path bandwidth; 

- cprobe makes an estimation of the 

congestion for a given path; 

 - they rely on 2 characteristics of 

the IRIX OS: 

• a high precision timer which 

offers a great granularity for 

measuring the time between 

packets; 

• the ability to change the 

priority of a running process 

to avoid context switching; 

Clink Allen B. 

Downey 

VPS/even-

odd 

Every link - it is a reimplementation of 

pathchar; 

- it uses the even-odd technique; 

- when it reaches a routing 

instability, it gathers the data from all 

paths and makes an estimation; 

- many probe packets, it can be 

considered as a DoS attack; 
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Iperf NLANR 

group 

Path 

flooding 

Point-to-

Point 

- it relies on ttcp and nettest; 

- it can use UDP and TCP packets; 

- it computes the bandwidth jitter, 

bandwidth and loss rate; 

- it shows MSS/MTU; 

- setting of the TCP window size by 

socket buffers; 

- multi-threaded application; 

- multicasting ability; 

DummyNet Luigi Rizzo   - flexbile tool for testing network 

protocols as well as for measuring 

bandwidth; 

- simulates the limitations of 

bandwidth, delay and multi-path 

effects; 

Netperf Rick Jones Path 

flooding 

Point-to-

Point 

- a benchmark for unidirectional 

throughput end-to-end latency; 

Nettimer Kevin Lai Tailgating Every link - pasive (listen for other traffic in the 

network) or active; 

- uses a simple tailgating technique; 

- it can measure the bottleneck 

bandwidth and link bandwidth; 
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Pathchar Van 

Jacobson 

VPS/even-

odd 

Every link - estimates performance fo r every 

link; 

- it uses the TTL field from IP packet 

and different sizes of UDP packets; 

- sums up incrementally values in 

the network; 

Pipechar Jin Guojon Packet train Every link - measures maximum bandwidth 

and available bandwidth; 

- large number of packets required; 

Pchar Bruce A. 

Mah 

VPS Every link - similar to patchar, on IPv6 

protocol; 

- many SNMP facilities; 

Pathchirp  Single 

Packet 

Point-to- 

Point 

- self induced congestion; 

- extracts mant possible bandwidth 

values; 

- it needs at least two congestioned 

queues from source to destination; 
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Sprobe Saroiu, 

Savage 

Packet Pair Point-to-

Point 

- bidirectional bottleneck bandwidth 

estimation in a an uncooperative 

medium; 

- it requires three 3  RTT to make a 

bandwidth estimation; 

- 6 TCP SYN packets are send to an 

inactive port and 6 pachete TCP 

RST are received; 

- Application level protocols; 

Treno Matt Mathis, 

Jamshid 

Mahdavi 

TCP 

simulation 

 - throughput estimation from TCP 

packets; 

- independent estimation for every 

host; 

Ttcp, Nttcp Elmer 

Bartel 

Path 

flooding 

 - benchmark for throughput and 

loading generator; 

- initially implemented for file 

transfer; 

- many versions, the most recent 

include suport for UDP, generating 

data patterns, page alignment or 

offset control; 

Viznet NLANR 

group 

  - a standalone java application; 

 

Table 1:  Tools for measuring the parameters of networks 
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There are are a lot of large-scale projects that target extracting network 

characteristics using supervising tools. The most important are: 

- AMP (Active Measurement Program): the NLANR group (National 

Laboratory for Applied Network Research) develops this project for monitoring 

and diagnosticating high bandwidth and performance networks. 

- NIMI: a project financed by NSF to gather data from all over the Internet. 

The NMI probes cand be used for configuration and coordination. 

- PingER: a DOE/MICS project for monitoring end-to-end links and to 

gather data for Esnet, HENP (High Energy&Nuclear Phsycs). 

- RIPE: a project for monitoring conectivity parameters such as delays or 

routing vectors. 

- Skitter: used for forwarding IP paths from source till the destination. It is 

developed and maintaned by CAIDA (Cooperative Association for Internet Data 

Analysis). 

- Skping: a hig precision tool for debugging. Uniform engine uniform for 

many operating systems. 

- Surveyor: uses active delay testing and loss rate  along a path between 

CSG servers (educational comunities in the U.S.). 
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Chapter 4 – MonALISA. Monitoring 

Agents using Large Integrated 

Services Arhitecture 

4.1. General architecture 

The MonALISA (Monitoring Agents in A Large Integrated Services 

Architecture) system provides a distributed ser-vice for monitoring, control and 

global optimization of complex systems. MonALISA is based on a scalable 

Dynamic Distributed Services Architecture (DDSA) implemented using Java / 

JINI and Web Services technologies. The scalability of the system derives from 

the use of a multithreaded execution engine to host a variety of loosely-coupled 

self-describing dynamic services or agents, and the ability of each service to 

register itself and then to be discovered and used by other services, or clients 

that require such information.  

A service in the DDSA framework is a component that interacts 

autonomously with other services either through dynamic proxies or via agents 

that use self-describing protocols. By using dedicated lookup services, a 

distributed services registry, and the discovery and notification mechanisms, the 

services are able to access each other seamlessly. The use of dynamic remote 

event subscription allows a service to register an interest in a selected set of 

event types, even in the absence of a notification provider at registration time. 

The lookup discovery service will then automatically notify all the subscribed 

services, when a new service, or a new service attribute, becomes available.  
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The code mobility paradigm (mobile agents or dynamic proxies) used in 

the DDSA extends the approaches of re-mote procedure call and client- server. 

Both the code and the appropriate parameters are downloaded dynamically into 

the system. Several advantages of this paradigm are: optimized asynchronous 

communication and disconnected operation, remote interaction and adaptability, 

dynamic parallel execution and autonomous mobility. The combination of the 

service architecture and code mobility makes it possible to build an extensible 

hierarchy of services that is capable of managing very large systems.  

4.2. Monitoring Service 

An essential part of managing a global system, like the Grids, is a 

monitoring system that is able to monitor and track the many site facilities, 

networks, and the many task in progress, in real time. The monitoring information 

gathered also is essential for developing the required higher level services, and 

components of the Grid system that provide decision support, and eventually 

some degree of automated decisions, to help maintain and optimize workflow 

through the Grid. MonALISA is an ensemble of autonomous multi-threaded, 

agent-based subsystems which are registered as dynamic services and are able 

to collaborate and cooperate in performing a wide range of monitoring tasks in 

large scale distributed applications, and to be discovered and used by other 

services or clients that require such information. MonALISA is designed to easily 

integrate existing monitoring tools and procedures and to provide this information 

in a dynamic, self describing way to any other services or clients. MonALISA 

services are organized in groups and this attribute is used for registration and 
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discovery. 

4.3. Data Collection Engine 

The system monitors and tracks site computing farms and network links, 

routers and switches using SNMP, and it dynamically loads modules that make it 

capable of interfacing existing monitoring applications and tools (e.g. Ganglia, 

MRTG, LSF, PBS, Hawkeye ?.). The core of the monitoring service is based on a 

multithreaded system used to perform the many data collection tasks in parallel, 

independently. The modules used for collecting different sets of information, or 

interfacing with other monitoring tools, are dynamically loaded and executed in 

independent threads. In order to reduce the load on systems running MonALISA, 

a dynamic pool of threads is created once, and the threads are then reused when 

a task assigned to a thread is completed. This allows one to run concurrently and 

independently a large number of monitoring modules, and to dynamically adapt 

to the load and the response time of the components in the system. If a 

monitoring task fails or hangs due to I/O errors, the other tasks are not delayed 

or disrupted, since they are executing in other, independent threads. A dedicated 

control thread is used to stop properly the threads in case of I/O errors, and to 

reschedule those tasks that have not been successfully completed. A priority 

queue is used for the tasks that need to be performed periodically. A schematic 

view of this mechanism of collecting data is shown in Figure 1. 
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Figure 4: The Data Collection engine . 

This approach makes it relatively easy to monitor a large number of 

heterogeneous nodes with different response times, and at the same time to 

handle monitored units which are down or not responding, without affecting the 

other measurements.  

A Monitoring Module is a dynamic loadable unit which executes a 

procedure (or runs a scrip / program or performs SNMP request) to collect a set 

of parameters (monitored values) by properly parsing the output of the 

procedure. In general a monitoring module is a simple class, which is using a 

certain procedure to obtain a set of parameters and report them in a simple, 

standard format.  

Monitoring Modules can be used for pulling data and in this case it is 
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necessary to execute them with a predefined frequency or to "install" (has to run 

only once) pushing scripts (programs) which are sending the monitoring results 

(via SNMP, UDP or TCP/IP) periodically back to the Monitoring Service. Allowing 

to dynamically load these modules from a (few) centralized sites when they are 

needed makes much easier to keep large monitoring systems updated and to 

provide new functionalities dynamically. Users can implement easily any new 

dedicated modules and use it the MonALISA framework.  

4.4. Register and discover services 

Each MonALISA service registers with a set of JINI Lookup Discovery 

Services (LUS) as part of a group, and having a set of attributes. The LUSs are 

also JINI services and each one may be registered with the other LUSs (Figure 

2) If two LUSs have common groups any information related with a change of 

state detected for a service in the common group by one is replicated to the other 

one. In this way it is possible to build a distributed and reliable network for 

registration of services and this technology allows dynamically adding or 

removing LUSs from the system. Any service should also provide for registration 

the code base for the proxies that other services or clients need to instantiate for 

using it. This approach is used to make sure that the right proxies are used for 

each service while different versions may be used in a distributed organization at 

the same time. The registration is based on a lease mechanism that is 

responsible to verify periodically that each service is alive. In case a service fails 

to renew its lease, it is removed from the LUSs and a notification is sent to all the 

services or clients that subscribed for such events. Any monitor client services is 
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using the Lookup Discovery Services to find all the active MonALISA services 

running as part of one or several group ?communities?. It is possible to select the 

services based on a set of matching attributes. The discovery mechanism is used 

for notification when new services are started or when services are no longer 

available. The communication between interested services or clients is based on 

a remote event notification mechanism which also supports subscription. The 

client application connects directly with each service it is interested in for 

receiving monitoring information. To perform this operation, it first downloads the 

proxies for the service it is interested in from a list of possible URLs specified as 

an attribute of each service, and than it instantiate the necessary classes to 

communicate with the service. This procedure allows each service to correctly 

interact with other services or clients. 

4.5. Predicates, filters and alarm agents 

The clients can get any real-time or historical data by using a predicate 

mechanism for requesting or subscribing to selected measured values. These 

predicates are based on regular expressions to match the attribute description of 

the measured values a client is interested in. They may also be used to impose 

additional conditions or constrains for selecting the values. In case of requests 

for historical data, the predicates are used to generate SQL queries into the local 

database. The subscription requests will create a dedicated thread, to serve each 

client. This thread will perform the matching test for all the predicates submitted 

by a client with the measured values in the data flow. The same thread is 

responsible to send the selected results back to the client as compressed 
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serialized objects. Having an independent thread per client allows sending the 

information they need, fast, in a reliable way and it is not affected by 

communication errors which may occur with other clients. In case of 

communication problems these threads will try to reestablish the connection or to 

clean-up the subscriptions for a client or a service which is not anymore active.  

Monitoring data requests with the predicate mechanism is also possible 

using the WSDL/SOAP binding from clients or services written in other 

languages. The class description for predicates and the methods to be used are 

described in WSDL and any client can create dynamically and instantiate the 

objects it needs for communication.  

4.6. Client proxy  

The architecture provides a proxy service which is used by clients to 

connect to different services. The proxy service is also a JINI service. In our 

service design we use the mutual discovery between services and proxies to 

detect when a certain service runs run behind a firewall or NAT. In this case the 

service initiates a connection to all the available proxies for a community and 

registers itself with the LUSs. Any client can interact now with such services via 

the proxy services. At the same time the proxy service does an "intelligent" 

multiplexing of subscribed data for multiple clients. We run multiple proxy 

services for redundancy and also for a dynamic load balancing of clients. 
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4.7. Pseudo-clients and repositories 

A generic framework for building "pseudo-clients" for the MonALISA 

services was developed. This has been used for creating dedicated Web service 

repositories with selected information from specific groups of monitoring services. 

The pseudo-clients use the same LUSs approach to find all the active MonALISA 

services from a specified set of groups and subscribes to these services with a 

list of predicates and filters. 

These predicates or filters specify the information the pseudo client wants 

to collect from all the services. A pseudo client stores all the values received from 

the running services in a local MySQL database, and is using procedures written 

as Java threads to compress old data. A Tomcat based servlet engine is used to 

provide a flexible way to present global data and to construct on the fly graphical 

charts for current or customized historical values, on demand. Dedicated servlets 

are used to generate Wireless Access Protocol (WAP) pages containing the 

same information for mobile phone users. Multiple Web Repositories can easily 

be created to globally describe the services running in a distributed environment. 

4.8 The ABPing module 

An important part of the MonALISA architecture are the VRVS reflectors, 

which enable setting video conferences. For every reflector we have modules to 

collect information, to monitor the traffic, to detect clients and active rooms, or to 

detect communication break-downs. All these data are available real-time. The 

modules are implemented in the Monitoring Module described above.  

Every reflector must choose from a list of possible peers and possible 
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paths for the packets. The ABPing (Available Bandwidth Ping) module is used for 

these tasks. In ABPing we use UDP packets and a "Single Packet” system with 

acknowldgements. The quality of every link is computed using the formula: 

RTimeQuality = OVERALL_COEF + RTT_COEF*rtt + 

 PKT_LOSS_COEF*loss% + JITTER_COEF*jitter        (4) 

This is a flexible formula, based on RTT(Round Trip Time) we can draw 

the packet loss percent, the jitter. The obtained va lues represent: 

RTT – the time from the reflector to the peer and back; 

LOSS – the percent of packets lost until the packet reaches the peer; 

JITTER – the sum of probe train variations divided by an average RTT 

mediu and by the number of probes; 

The list of peer coefficients is easily configurable. Every reflector extracts 

from these configuration files the needed information. The configuration files are 

checked periodically from a configurable URL and the peer list is kept in the 

ABPing module.  
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Chapter 5 – ADR. Measuring end-to-

end capacity 

5.1. Preliminary considerations 

Let us define two important bandwidth metrics for a netwrok path. 

Consider a path P as a sequence of First-Come First Served (FCFS) store and 

forward links that transfer packets from the sender S to the receiver R. Assume 

thet the path is fixed and unique for the duration od the measurements, i.e. no 

routing changes or multipath forwarding occur. Each link i transmits data with a 

constant rate of C i bits per second, referred to as link capacity or transmission 

rate. Two bandwidth metrics that are comonly associated with path P are the 

capacity C ad the available bandwidth A. The capacity is the minimum 

transmission rate among all links in P. Note that the capacity does not depend on 

the traffic load of the path. Available bandwidth, on the other hand, is the 

minimum spare link capacity, i.e., capacity not used by other traffic among all 

links in P. 

More formally, if H is the number of hops (links) in P, C i is the capacity of 

link i, and C0 is the transmission rate of the sender, the the path capacity is: 

 (5) 

Additionally, if ui is the utilization of link i 0 < ui < 1 over a certain time 

interval, the average spare capacity of link I is Ci (1 -ui). Thus the available 

bandwidth of P in the same interval can be defined as: 
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 (6) 

The link with the minimum transmission rate determines the capacity, 

while the link with the minimum spare bandwidth determines the available 

bandwidth. To avoid the term bottleneck link, that has been widely used for both 

metrics, we refer to the capacity limiting as narrow link, and to the available 

bandwidth limiting as tight link. These two may be different. 

The packet pair technique presented before will be used for measuring the 

capacity of a path. When a packet is transmitted by a store-and-forward link it 

encounters a transmission (serialization) delay, related to the clock rate of the 

underlying transmission hardware. In a link of capacity C i, the transmission delay 

for a packet of size L is t = L/C i. For now, let us ignore the fact that a packet can 

carry different encapsulation headers in different links, and assume that the 

packet size L remains constant as the packet traverses the path. A packet pair 

measurement consists of two packets of the same size L sent back-to-back from 

S to R. Without any cross traffic in the path, the packet pair will reach R with a 

dispersion d equal to tn = L/C. Note that tn is the transmission delay at the narrow 

link. The receiver can then estimate the capacity C from the measured dispersion 

d as C = L/ d. 

5.2. “Packet Pair Dispersion” 

5.2.1. Short historical notes 

The concept of packet dispersion, as a burst of packets traverses the 

narrow link of a path, was originally described by Jacobson and it is closely 
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related to the TCP self-clocking mechanism. Jacobson did not consider however 

the effects of cross traffic, and so he did not distinguish between capacity and 

available bandwidth. Keshav explored the same concept in the context of 

congestion control, recognized that the dispersion of packet pairs is not related to 

the available bandwidth when router queues use the FCFS discipline, and so he 

focused on fair-queuing instead. Bolot used packet dispersion measurements to 

estimate the capacity of a transatlantic link and to characterize the traffic inter-

arrivals. Early work on packet pair dispersion was followed by more sophisticated 

variations, focusing on statistical techniques that can extract an accurate 

capacity estimate from noisy bandwidth measurements. 

Paxson was the first to observe that the bandwidth distribution is multi-

modal and he elaborated on the identification and final selection of a capacity 

estimate from these modes. He used both the packet pair and packet trains to 

estimate the underlying bandwidth distribution. The complete methodology is 

called PBM (“Packet Bunch Modes”). 

More recently the packet pair technique has been largely revised, 

explaining the multiple modes that Paxson observed based on queuing and cross 

traffic. Additionally, Pasztor and Veitch revealed the negative effect of lower layer 

headers and it argued for peak detection as superior to mode detection for 

capacity estimation. Along a different research thread Harfoush, Bestavros and 

Byers showed that it is possible to measure the capacity of targeted path 

segments using packet dispersion techniques. 

More recently, significant progress has been made in the estimation of 

available bandwidth trough end-to-end measurements. The TOPP and SLoPS 

techniques use packet streams of variable rates. When the stream rate exceeds 
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the available bandwidth, the stream arrives at the receiver with a lower rate than 

its rate at the sender. TOPP has the additional advantage that, together with 

available bandwidth, it can also estimate the capacity of the tight link in the path, 

and in some cases the capacity and available bandwidth of other links in the 

path. SLoPS, on the other hand, give more emphasis on the variability of 

available bandwidth, and on the resulting measurement uncertainty (“grey 

region”).  

5.2.2. The basic traits of the method 

Consider an H-hop path defined by the sequence of capacities P = {C0, 

C1, …, CH}. Two packets of size L are sent back-to-back from the source to the 

sink; these packets are the packet pair or probing packets. The dispersion of the 

packet pair is the interval from the instant the last bit of the first packet is 

received at a certain path point to the instant the last bit of the second packet is 

received at that point. The dispersion is ? 0 = to = L/C0 after the source, and let it 

be ? i after link i. When the packet pair reaches the sink, the dispersion is ? H and 

the receiver computes a bandwidth estimate b = L/ ? H. Since ? H varies in 

general, if we repeat the experiment many times the b values will form a certain 

distribution ß. Our goal, then, is to infer a final path capacity estimate C from the 

distribution ß. 

First, suppose that there is no cross traffic in the path . It is easy to see that 

the dispersion ? i cannot be lower than the dispersion at the previous hop ? i - 1 

and the transmission delay t i = L/Ci at hop i, i.e., ? i = max{ ? i – 1, t i }. Applying this 
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Model recursively from the sink back to the source, we find that the dispersion at 

the receiver is: 

 (7) 

, where Cn and tn are the capacity and the transmission delay of the narrow link, 

respectively. Consequently, when there is no cross traffic, all the bandwidth 

estimates are equal to the capacity (b = Cn = C).  

When there is cross traffic in the path, the probing packets can experience 

additional queuing delays due to cross traffic. Let d i
1 be the queuing delay of the 

first probing packet at hop i, and d i
2 be the queuing delay of the second probing 

packet at hop i after the first packet has been transmitted at that link. The 

dispersion after hop i is: 

 (8) 

Note that when t i + di
1 < ? i – 1 and d i

2 < d i
1 the dispersion decreases from 

hop i - 1 to hop I (? i < ? i – 1). This effect can cause a dispersion at the receiver 

that is lower than the dispersion at the narrow link, i.e., ? H < tn < L/C if there are 

additional hops after the narrow link; we refer to such links as post-narrow links3. 

This observation means that the capacity of the path cannot be estimated simply 

from the minimum measured dispersion, as that value could have resulted from a 

Post - narrow link. 
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Figure 5: The Data two extremes of cross traffic routing. 

An important issue is the routing of the CT packets relative to the packet 

pairs. The two extreme cases are shown in Figure 5; in Figure 5 - the CT packets 

follow the same path as the packet pairs (path persistent CT), while in Figure 5-b 

the CT packets always exit one hop after they enter the path (one-hop persistent 

CT). We simulate the one-hop persistent CT case. In the following experiments, 

the bandwidth distribution ß is formed from 1000 packet pair experiments. 

Figure 6 shows the histogram of ß, with a bin width of 2 Mbps, for a path P 

= {100, 75, 55, 40, 60, 80} (all capacities in Mbps). Note that the path capacity is 

C = 40Mbps, while the post - narrow links have capacities of 60 and 80 Mbps, 

respectively.  
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Figure 6: The ß distribution in two different path loads. 

In Figure 6-a, each link is 20% utilized, whereas in Figure 6-b, all links are 

80% utilized. When the path is lightly loaded (u=20%) the capacity value of 40 

Mbps is prevalent in ß, forming the Capacity Mode (CM), which in this case is the 

global mode of the distribution. Bandwidth estimates that are lower than the CM 

are caused by CT packets that interfere with the packet pair, and they define the 

Sub-Capacity Dispersion Range (SCDR). For instance, the SCDR in Figure 6-a 

is between 10 and 40 Mbps; the cause of the local modes in the SCDR is 

discussed in the next paragraph. Bandwidth estimates that are higher than the 

CM are caused in the post-narrow links when the first probing packet is delayed 

more than the second; these estimates are referred to as Post-Narrow Capacity 

Modes (PNCMs). Note a PNCM at 60 Mbps, which is the capacity of the link just 

after the narrow link; this local mode is created when the first probing packet is 

delayed long enough for the packet pair to be serviced back-to-back in that link. 

In heavy load conditions (u=80%), the probability of CT packets interfering 

with the probing packets is large, and the CM is not the global mode of B. 

Instead, the global mode is in the SCDR, which now dominates the bandwidth 
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measurements. A key point here is that the path capacity cannot be always 

correctly estimated by statistical techniques that extract the most common 

bandwidth value or range. Instead, we must examine the resulting bandwidth 

distribution in queuing terms; analyze what causes each of the local modes, and 

what differentiates the CM from the rest of the local modes. 

 

 

Figure 7: Fixed versus variable CT packet size Lc. 

Figure 7 shows for the same path when the CT packet size  LC is fixed 

(1500 bytes) and when it varies uniformly in the range [40, 1500] bytes (u=50%). 

In the first case, the probing packet size L is also 1500 bytes, while in the second 

case it is 770 bytes, i.e., the average of the [40, 1500] range5. When all packets 

have the same size (LC = L = 1500B), it is simpler to explain the local modes in 

the SCDR. For instance, consider the  path P = {100, 60, 40}, and assume that all 

packets have the same size. A local mode at 30 Mbps can be caused by a 

packet interfering with the packet pair at the 60 Mbps link, since in that case the 

dispersion after the narrow link is 30
)

4060
*2(

40
LLLL

n =−+=∆
. Similarly, a mode 

at 20 Mbps is caused by a packet interfering with the packet pair at the 40 Mbps 
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link or by two packets interfering at the 60 Mbps link, and so on. 

When the CT packet size varies uniformly in the range [40,1500]B though 

(Figure 7-b), the resulting dispersion is less predictable, since a single packet 

interfering with the packet pair can produce a range of dispersion values, 

depending on its size. However, the CM and one or more of the PNCMs are still 

distinct in the distribution, as they are caused by the probing packets being 

serviced back-to-back from the narrow or from post – narrow links, respectively. 

Several measurement studies have shown that the packet size distribution in the 

Internet is centered on three or four values. Specifically, about 50% of the 

packets are 40 bytes, 20% are 552 or 576 bytes, and 15% are 1500 bytes. These 

Common packet sizes would cause a packet pair bandwidth distribution that is 

more similar to the ‘discrete dispersion’ effects of Figure 7-a, rather than the 

‘continuous dispersion’ effects of Figure 7-b. 

5.3. “Packet Train Dispersion” 

Extending the packet pair technique, the source can send N > 2 back-to-

back packets of size L to the sink; we refer to these packets as a packet train of 

length N. The sink measures the total dispersion ?(N) of the packet train, from 

the first to the last packet, and computes a bandwidth estimate 

as

)(
)1(

)(
N

LN
Nb

∆
−

=
. Many such experiments form the bandwidth distribution ß (N). 

If there is no cross traffic in the path, the bandwidth estimates will be equal 

to the capacity C, as in the packet pair case. Measuring  the capacity of a path 

using packet trains is required when the narrow link is multi-channeled. In a k-

channel link of total capacity C, the individual channels forward packets in 
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parallel at a rate of C/k and the link capacity can be measured from the 

dispersion of packet trains with N = k+1. Packet trains are also required to 

measure the sustainable rate of a traffic shaper. 

It may appear at first that using packet trains, instead of packet pairs, 

makes the capacity estimation more robust to random noise caused by cross 

traffic. One can argue that this is true because packet trains lead to larger 

dispersion values, which are more robust to measurement noise. However, this is 

not the case due to the following reason. Although the dispersion ? (N) becomes 

larger as N increases, so does the ‘noise’ in the measured values of ?(N), since 

it becomes more likely that CT packets will interfere in the packet train. Packet 

trains should be less prone to noise, since individual packet variations are 

smoothed over a single large interval rather than N - 1 small intervals, but 

with a larger N the greater the likelihood that a packet trains will be dispersed by 

cross traffic, leading to bandwidth underestimation. 

In this section, we present simulation and experimental results illustrating 

the effect of N in the bandwidth distribution ß (N) and make some general 

observations about this relation. Figure 8 shows the histograms of ß (N), for four 

increasing values of N, from simulations of the path P = {100,75,55,40,60,80} 

with u=80% in all links. Figure 9 shows the histograms of ß (N), for four 

increasing values of N. 
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Figure 8, 9: The effect of packet train length (simulation and 

measurements). 

A first observation is that, as N increases, the CM and PCNMs 

become weaker, until they disappear, and the SCDR prevails in the bandwidth 

distribution ß (N). The reason is that, as N increases, almost all packet trains 

encounter additional dispersion due to CT packets. This also means that the best 

value of N for generating a strong capacity mode is N=2, i.e., to use packet pairs; 

anything longer than packet pairs is more likely to get additional dispersion due 

to cross traffic. 

A second observation is that, as N increases, ß (N) becomes uni-modal. 

This implies that, when N is large, the dispersion of packet trains by CT packets 

is not determined by distinct interference cases, forming local modes, but it is 

determined by the  aggregate amount of CT interfering with the packet train. 

A third observation is that the range of the distribution, which is related to 

the measurement variance, decreases as N increases. This means that the 
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variance in the amount of cross traffic interfering with the packet train decreases, 

as the length of the packet train increases. 

A fourth observation is that, when N is sufficiently large and ß (N) is uni-

modal, the center of the (unique) mode is independent on N. We refer to the 

center of this unique mode as the Asymptotic Dispersion Rate (ADR) R. The fact 

that ADR does not depend on the packet train length means that, for sufficiently 

large N, the dispersion of the packet train ? (N) becomes proportional to N - 1, 

and thus the packet train length cancels out from the bandwidth estimate 
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=
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5.4 Average Dispersion Rate (ADR) 

In this section, we present a model for the dispersion of packet trains, 

taking into account the cross traffic in the path. First, consider a single hop path 

P = {C0, C1} with C0 < C1, i.e., the C1 link (‘link-1’) is the narrow link. A packet 

train of length N is sent from the source to the sink with initial dispersion ? 0 = L 

(N – 1) C0. Let r1 be the average incoming rate of cross traffic in link-1. The 

average amount of cross traffic that arrives in link-1 during X1 = ? 0r1. Assuming 

that the link-1 queue is serviced in a FCFS basis, the X1 cross traffic interferes 

with the packet train packets, and so the average dispersion at the exit of the 

narrow link is: 

 (9) 

, where u1 = r1/C1 is the load (utilization) of the narrow link due to cross 

traffic. 
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Consequently, the average bandwidth estimate at the receiver that we 

refer to as the Asymptotic Dispersion Rate R, is: 

(10) 

, which is lower than the path capacity. Note that the ADR is independent 

of N, since the amount of interfering cross traffic X1, and thus the overall 

dispersion ? 1, is proportional to N - 1. 

Some comments on Equation 10 follow. First, if the capacities C0 and C1 

are known, we can measure R from the dispersion of long packet trains, compute 

the cross traffic utilization u1 from Equation 10, and then compute the available 

bandwidth as A = C1(1 – u1). So, the available bandwidth of single hop paths can 

be estimated, using the dispersion of packet trains that are sufficiently long to 

produce a narrow estimate of R. This also implies that the available bandwidth is 

not inversely proportional to the dispersion of long packet trains, even for single 

hop paths. 

These results can be generalized to an H-hop path with C0 > C1 > … > CH, 

for the case of path persistent cross traffic. Let ri be the average rate of cross-

traffic that enters the path in link i. The average dispersion at the exit of link i, 

then, is: 

, and the ADR becomes  

 (11) 

For instance, for the path P  = {C0, C1, C2} with C0 > C1 > C2: 
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 (12) 

When the capacities do not decrease along the path, the analysis is more 

complicated. In the single-hop case P = {C0, C1} with C0 < C1, there would be an 

idle spacing of duration L/C0 – L/C1 at the exit of link-1 between any two probing  

packets, if there was no cross traffic. The cross traffic can fill in the idle space in 

the packet train, or cause additional dispersion without filling in all the idle space. 

A lower bound on the  dispersion ? 1 can be derived if we assume that the cross 

traffic increases the packet train dispersion beyond  ? 0 only after it fills in all the 

idle spacing. When this is the case, the dispersion at the receiver is 

 (12) 

If the cross traffic load is sufficiently low (r1 < C1 – C0), the dispersion is 

not increased at link -1 (i.e., ? 1 = ? 0), and so R = C0. Otherwise, the final 

dispersion becomes ? 1 = ((N - 1) L/C0) (u1 + C0/C1), which gives the same ADR 

value as Equation 10. These results can be extended for the case of H hops, 

when the cross traffic is path persistent. Specifically, a lower bound  on the 

dispersion ? H can be derived if we assume that the cross traffic increases the 

packet train dispersion only after it fills in all the idle spacing between probing 

packets. Then,  

 (13) 

Given the capacities and cross traffic rates in each hop, and since ? 0 = L 

(N – 1)/C0, we can solve recursively for ? H, and thus for R. When the cross traffic 
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is not path persistent, i.e., CT packets exit the path before the last hop, the 

dispersion of packet trains is hard to analyze for the same reason: CT packets an 

interfere in the packet train increasing its dispersion, and then exit the  path 

leaving idle space, or ‘bubbles’, between probing packets. These bubbles can be 

filled in by CT packets in subsequent hops, or they can persist until the packet 

train reaches the sink. For the case of one-hop persistent cross traffic, an upper 

and a lower bound can be derived for R. Note that since the cross traffic is 

assumed to be one-hop persistent in this case, the utilization of link i is ui = ri/Ci. 

For an H-hop path in which all links have the same capacity C, it can be shown 

that the ADR is: 

 (14) 

The lower bound corresponds to the case that bubbles are never filled in, 

while the upper bound corresponds to the case that the bubbles created at the 

link with the maximum utilization are the only ones that reach the receiver, and 

that the rest of the path links just fill in (partially) those bubbles. 

5.5. A capacity estimation methodology 

In this section, we present a capacity estimation methodology based on 

the insight developed so far in the paper. This methodology has been 

implemented in a tool called ADR. The ADR methodology requires the 

cooperation of both the source and the sink, i.e., it is a two end-point 

methodology. I prefer the two end-point methodology, even though it is less 

flexible, because it is more accurate. 
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 5.5.1. Phase I: Packet pair probing.  

One is more likely to observe the capacity mode using packet pairs than 

using packet trains. Consequently, in this phase we use a large number of packet 

pair experiments to ‘uncover’ all the local modes of the bandwidth distribution ß, 

expecting that one of them are the CM. There is a trade-off in the selection of the 

probing packet size L: smaller packets lead to stronger PNCMs, while larger 

packets lead to a more prevalent SCDR. A probing packet size of L=800 bytes 

usually leads to the strongest CM in the resulting bandwidth distribution. In ADR, 

Phase I consists of K1=2000 packet pair experiments using a packet size of 

L=800 bytes.  

From the resulting distribution of bandwidth measurements ß, we obtain all 

the local modes. The numerical procedure for the identification of the local 

modes is similar to the algorithm described before, but the user has to specify the 

histogram bin width ? , which is also the resolution of the final capacity estimate. 

If, for example, the resolution is ?  = 2 Mbps, ADR will produce a final estimate 

that is a 2 Mbps interval. The resolution is a critical parameter for the accuracy of 

the final result. 

The sequence of local modes, in increasing order, is denoted as M = {m1, 

m2, …, mM}. We expect that one of these local modes, say mk, is the CM (i.e., C 

= mk), with the larger modes being PCNMs, and the smaller modes being in the 

SCDR of ß. If the distribution ß is uni-modal, which happens in very lightly loaded 

paths, the measurement process terminates and the capacity estimate C is the 

unique mode m1. Otherwise, Phase-II selects mk from M. 
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5.5.2. Phase II: Packet train probing. 

 

As N increases, the CM and the PNCMs are eliminated from the 

bandwidth distribution ß (N), and the SCDR accumulates all measurements. 

Gradually, ß (N) becomes uni-modal, centered at The Asymptotic Dispersion 

Rate R and the width of this unique mode is reduced as N increases. Let N’ be 

the minimum value of N for which ß (N) is uni-modal. Also, let [?-, ?+] be the range 

of the unique mode, i.e., the bandwidth interval that includes all the significant 

values in the ‘bell’ around R. The heuristic rule  with which the capacity estimate 

C is selected is that the capacity mode is the minimum mode mi in M which is 

higher than ?+, i.e.,  

 (15). 

The heuristic is based on the following reasoning. First, when N is 

sufficiently large for ß (N) to be uni-modal, almost all packet trains have 

encountered dispersion due to cross traffic, and so ?+ < C. Second, because N is 

the minimum packet train length that generates a unimodal ß (N), the range of 

the unique mode is still sufficiently wide to cover all the local modes in the SCDR 

of B between R and C. This heuristic resulted from long  experimentation, and is 

evaluated later in this section.  

In ADR, Phase II consists of a K2=400 packet train experiments with 

L=1500B for each length N. If the resulting  distribution ß (N) is not uni-modal, N 

is increased by two, and the process repeats. Note that K2 is significantly lower 

than K1, because in Phase II we only check whether the distribution is uni-modal, 

instead of estimating the local modes. When the length N = N’ is reached, the 
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upper threshold ?+ is measured, and the capacity estimate mk is determined from 

Equation 15. 
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Chapter 6 - Java NIO 

6.1. Selectors 

 
In this chapter, we’ll explore selectors. Selectors provide the ability to do 

readiness selection, which enables multiplexed I/O. Readiness selection and 

multiplexing make it possible for a single thread to efficiently manage many I/O 

channels simultaneously. C/C++ coders have had the POSIX select( ) and/or 

poll( ) system calls in their toolbox for many years. Most other operating systems 

provide similar functionality. But readiness selection was never available to Java 

programmers until JDK 1.4. Programmers whose primary body of experience is 

in the Java environment may not have encountered this I/O model before. 

The paradigm of quickly checking to see if attention is required by any of a 

set of resources, without being forced to wait if something isn’t ready to go. This 

ability to check and continue is a key to scalability. A single thread can monitor 

large numbers of channels with readiness selection. The Selector and related 

classes provide the APIs to do readiness selection on channels. 

 

 6.1.1. Selector basics 

You register one or more previously created selectable channels with a 

selector object. A key that represents the relationship between one channel and 

one selector is returned. Selection keys remember what you are interested in for 

each channel. They also track the  operations of interest that their channel is 
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currently ready to perform. When you invoke select( ) on a selector object, the 

associated keys are updated by checking all the channels registered with that 

selector. You can obtain a set of the keys whose channels were found to be 

ready at that point. By iterating over these keys, you can service each channel 

that has become ready since the last time you invoked select( ). 

At the most fundamental level, selectors provide the capability to ask a 

channel if it’s ready to perform an I/O operation of interest to you. For example, a 

SocketChannel object could be asked if it has any bytes ready to read, or we 

may want to know if a ServerSocketChannel has any incoming connections 

ready to accept. Selectors provide this service when used in conjunction with 

SelectableChannel objects, but there’s more to the story than that. The real 

power of readiness selection is that a potentially large number of channels can 

be checked for readiness simultaneously. The caller can easily determine which 

of several channels are ready to go. Optionally, the invoking thread can ask to be 

put to sleep until one or more of the channels registered with the Selector is 

ready, or it can periodically poll the selector to see if anything has become ready 

since the last check. If you think of a  web server, which must manage large 

numbers of concurrent connections, it’s easy to imagine how these capabilities 

can be put to good use. 

At first blush, it may seem possible to emulate readiness selection with 

non-blocking mode alone, but it really isn’t. Non-blocking mode will either do 

what you request or indicate that it can’t. This is semantically different from 

determining if it’s possible to do a certain type of operation. For example, if you 

attempt a non-blocking read and it succeeds, you not only discovered that a 

read( ) is possible, you also read some data. 
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This effectively prevents you from separating the code that checks for 

readiness from the code that processes the data, at least without significant 

complexity. And even if it was possible simply to ask each channel if it’s ready, 

this would still be problematic because your code, or some code in a library 

package, would need to iterate through all the candidate channels and check 

each in turn. This would result in at least one system call per channel to test its 

readiness, which could be expensive, but the main problem is that the check 

would not be atomic. A channel early in the list could become ready after it’s 

been checked, but you wouldn’t know it until the next time you poll. Worst of all, 

you’d have no choice but to continually poll the list. You wouldn’t have a way of 

being notified when a channel you’re interested in becomes ready. 

This is why the traditional Java solution to monitoring multiple sockets has 

been to create a thread for each and allow the thread to block in a read( ) until 

data is available. 

This effectively makes each blocked thread a socket monitor and the 

JVM’s thread scheduler becomes the notification mechanism. Neither was 

designed for these purposes. The complexity and performance cost of managing 

all these threads, for the programmer and for the JVM, quickly get out of hand as 

the number of threads grows. 

True readiness selection must be done by the operating system. One of 

the most important functions performed by an operating system is to handle I/O 

requests and notify processes when their data is ready. So it only makes sense 

to delegate this function down to the operating system. The Selector class 

provides the abstraction by which Java code can request readiness selection 

service from the underlying operating  system in a portable way. 
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 6.1.2. Selection keys 

Selector: The Selector class manages information about a set of 

registered channels and their readiness states. Channels are registered with 

selectors, and a selector can be asked to update the readiness states of the 

channels currently registered with it. When doing so, the invoking thread can 

optionally indicate that it would prefer to be suspended until one of the registered 

channels is ready. 

Selectable Channel: This abstract class provides the common methods 

needed to implement channel select ability. It’s the super class of all channel 

classes that support readiness selection. FileChannel objects are not selectable 

because they don’t extend from SelectableChannel. All the socket channel 

classes are selectable, as well as the channels obtained from a Pipe object. 

SelectableChannel objects can be registered with Selector objects, along with an 

indication of which operations on that channel are of interest for that selector. A 

channel can be registered with multiple selectors, but only once per selector.  

SelectionKey: A SelectionKey encapsulates the registration relationship 

between a specific channel and a specific selector. A SelectionKey object is 

returned from SelectableChannel.register( ) and serves as a token representing 

the registration. SelectionKey objects contain two bit sets (encoded as integers) 

indicating which channel operations the registrant has an interest in and which 

operations the channel is ready to perform. 
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 6.1.3. Asynchronous closability 

It’s possible to close a channel or cancel a selection key at any time. 

Unless you take steps to synchronize, the states of the keys and associated 

channels could change unexpectedly. The presence of a key in a particular key 

set does not guarantee that the key is still valid or that its associated channel is 

still open.  

Closing channels should not be a time-consuming operation. The 

designers of NIO specifically wanted to prevent the possibility of a thread closing 

a channel being blocked in an indefinite wait if the channel is involved in a select 

operation. When a channel is closed, its associated keys are cancelled. This 

does not directly affect an in-process select( ), but it does mean that a selection 

key that was valid when you called select( ) could be invalid upon return. You 

should always use the selected key set returned by the selector’s selectedKeys( ) 

method; do not maintain your own set of keys. 

If you attempt to use a key that’s been invalidated, a 

CancelledKeyException will be thrown by most methods. You can, however, 

safely retrieve the channel handle from a cancelled key. If the channel has also 

been closed, attempting to use it will yield a ClosedChannelException in most 

cases. 

 6.1.4. Selection scaling 

Selectors make it easy for a single thread to multiplex large numbers of 

selectable channels. Using one thread to service all the channels  reduces 

complexity and can potentially boost performance by eliminating the overhead of 
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managing many threads. But is it a good idea to use just one thread to service all 

selectable channels? As always, it depends. 

It could be argued that on a single CPU system it’s a good idea because 

only one thread can be running at a time anyway. By eliminating the overhead of 

context switching between threads, total throughput could be higher. But what 

about a multi-CPU system? On a system with n CPUs, n–1 could be idling while 

the single thread trundles along servicing each channel sequentially. 

Or what about the case in which different channels require different 

classes of service? Suppose an application logs information from a large number 

of distributed sensors. Any given sensor could wait several seconds while the 

servicing thread iterates through each ready channel. This is OK if response time 

is not critical. But higher-priority connections (such as operator commands) 

would have to wait in the queue as well if only one thread services all channels. 

Every application’s requirements are different. The solutions you apply are 

affected by what you’re trying to accomplish. 

For the first scenario, in which you want to bring more threads into play to 

service channels, resist the urge to use multiple selectors. Performing readiness 

selection on large numbers of channels is not expensive; most of the work is 

done by the underlying operating system. Maintaining multiple selectors and 

randomly assigning channels  to one of them is not a satisfactory solution to this 

problem. It simply makes smaller versions of the same scenario. 

A better approach is to use one selector for all selectable channels and 

delegate the servicing of ready channels to other threads. You have a single 

point to monitor channel readiness and a decoupled pool of worker threads to 

handle the incoming data. The thread pool size can be tuned (or tune itself, 
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dynamically) according to deployment conditions. Management of selectable 

channels remains simple and  simple is good. 

The second scenario, in which some channels demand greater 

responsiveness than others, can be addressed by using two selectors: one for 

the command connections and another for the normal connections. But this 

scenario can be easily addressed in much the same way as the first. Rather than 

dispatching all ready channels to the same thread pool, channels can be handed 

off to different classes of worker threads according to function. There may be a 

logging thread pool, a command/control pool, a status request pool, etc. 
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Chapter 7 - Technical specification - 

the architecture of the application 

7.1. General architecture 

The application for measuring capacity along a network path was 

developed using Java 1.4. classes and methods. The structure of ADR is 

adapted to the new possibilities enabled by Java NIO library. It is fairly easy to 

use this structure for developing similar monitoring tools. Madalin Mihailescu 

used a similar structure for developing an available bandwidth estimation tool. All 

the classes are in the same package and there are three classes (Common, 

Globals and GlobalsRcv) which contain definitions for certain constants needed 

in the algorithm. 

In the same package we have three libraries libudprcv, libudpsnd and 

libtime along with UDPRecv and UDPSend C implementations. In the next 

section we will explain the motivation for using C code. For integrating the C 

sources I used jini method and the headers are generated with the javah 

application. 

The core of the application is the PathRateSnd and PathrateRcv classes. 

These two classes implement the server and the client needed for path 

estimation. All the other classes are used to enable  the communication between 

the server and the client or to provide the client (receiver) with the appropriate 

methods for applying the ADR algorithm on obtained data. 

The communication sender-receiver uses UDP packets of different sizes 
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and a TCP control connection. The TCP connection is the medium for forwarding 

control messages back and forth. The control message tell the receiver or the 

sender which action should it take (send packets, receive packets, compute time, 

change the value of global variables, suspend the algorithm and so on). The 

UDP packets are used for arrival time estimation. Generally the receiver receives 

a train of packets and time stamps the arrival time for each packet. All these data 

are then averaged, statistically modified in order to extract the Paxson bandwidth 

modes. In the next section I will describe in detail the class structure and the role 

of each class. 

7.2. Class structure 

We will provide a full package class description. The capacity tool 

estimation is layered implemented and we will go through succinctly trough each 

layer. 

The first layer would be the sender and the receiver (PathRateSnd and 

PathRateRcv)or the server and the client. This is the only layer visible to a user 

launching the application. Meaning that if he chooses to test the tool he needs to 

start the execution of the sender (server) and then to start as many clients 

(receivers) as he wants. 

The sender and receiver are not symmetrical like many socket programs. 

Instead the sender has very few lines which set up the future communication. 

The receiver is the largest class in the package (almost 1000 lines) and it 

implements the ADR algorithm. The sender has a general structure and may be 

used for measuring other network parameters. 
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The second layer is responsible of managing the client threads. The 

server can accept multiple requests from receivers. Therefore he needs an 

executing thread for each of these. This thread is implemented in the 

WorkerThread class. The WorkerThread waits for something to happen (a 

control message on a TCP connection checked by a Java NIO selector) and the 

objects of this class are managed by the ServiceThreadPool class. The 

ServiceThreadPool class uses a load balancing strategy implemented in the 

LoadBalancing class. This middleware layer leaves a lot of place to be 

improved. The classes are abstractly implemented and can be easily extended to 

enable further functionality. 

The third layer is responsible with the high level communication between 

the clients. This level includes the classes ConnectionHandler, 

ConnectionMethodsRcv and ControlListenThread. The ConectionHandler 

class sets up the java socket communication and most importantly receives and 

decodes the control messages from the TCP connection. This class also calls the 

lower layer of communication for sending UDP packets. The 

ConnectionMethodsRcv is responsible for setting the UDP connection and for 

calling the lower layer of communication for receiving UDP packets. Finally the 

ControlListenThread listens on the TCP connection for a particular ending train 

control message. 

The fourth and final level of the application is the lowest level of 

application. This level contains the UDPSend and UDPRecv. These classes 

contain numerous C native code methods for setting low level communication. In 

the next section we will look closer at the need for C native code. The UDPSnd 

and UDPRecv call udpsend and udprecv libraries for compiling the C code. 
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Except this four levels which encapsulate layers of communication it is 

worth mentioning the rest o f the classes and their use: 

Common – a class for defining control code messages, communication 

ports and other important constants 

GetTime – a class which uses a native C method for computing the 

current time in microseconds 

Globals – a class which contains definitions of several constants 

GlobalsRcv  – a class with constant definitions needed by the receiver 

UtilMethods – a sum of mathematical methods 

UtilMethodsRcv – contains important methods related to the ADR 

algorithm implemented 

7.3. The need for native C code 

In this section we will attack the need for native C code implementation. At 

first when I tried to implement the algorithm I have chosen Java for many 

reasons. Java is more robust, platform independent, robust, flexible and a lo t 

more. I have implemented all the application in this programming language. 

Unfortunately the results were very bad especially for links over 100Mbps. I 

studied this matter and discovered that the weak point was the rate at which Java 

can send UDP packets. More explicitly Java cannot send UDP packets lower 

than 40 microseconds and for Gigabyte links I needed 10 microseconds. This 

sounds like a secondary issue but if we think that I need to register the arrival 

times and put them in the algorithm, the issue becomes the core of the problem. 

The C socket implementation provides the sending time needed for this 
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application. It is not easily configurable or provides methods for selection, but it 

does the low-level job. I implemented this part of communication in C and the 

results were conforming to what I expected. Therefore the communication uses 

the strong-points of these two influential programming languages. 

7.4. Method summary 

I will provide a list of the essential methods from every class and their 

point in the whole architecture. The classes are listed alphabetically and the 

methods are presented as they appear in the source code. 

Common: 
 - public static void print(int ctr_code) – prints a control message 
 
ConnectionHandler: 
 - public ConnectionHandler(SocketChannel sc, DatagramSocket 

socketUdp, WorkerThread wt) – constructor which sets the ConnectionHandler object on 
the SocketChannel sc, communicating trough the DatagramSocket socketUDP and 
managed by the WorkerThread wt 

 - public int readDataFromSocket() – reads and decodes a control 
message 

 - private int send_train() – calls the C code UDPSend procedure 
 - public int recv_ctr_msg() – returns the received control message 
 - public void send_ctr_msg(int ctr_code) – send the ctr_code message 
 
ConnectionMethodsRcv: 
 - public ConnectionMethodsRcv(SocketChannel sc) – constructor which 

sets the ConnectionMethodsRcv object on SocketChannel sc 
 - public int getRecvLatency() – returns the receiver latency by calling the 

C procedure recvfromLatency 
 - public int getDelta() – returns a useful time difference for the sender 
 - public int recv_train( int exp_train_id, int[] timesec, int[] timeusec, int 

train_len) – calls the UDP correspondent C procedure and registers the arrival times in 
timesec and timeusec 

 
ControlListenThread: 
 - public void run () – reads a control message and if the message is 

FINISHED_TRAIN than it sets the global variable finised_train 
 
Gettime: 
 - public native void getTimeOfDay() – native C code method for extracting 

the current system time 
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LoadbalancingStrategy: 
 - public LoadBalancingStrategy(int unitsNo) – sets a load balancing vector 

of unitsNo objects 
 - public void addNewUnit(Object unit) – adds a new object to the vector 
 - public boolean ready() – returns the status for the usability of the objects 
 - public synchronized Object selectUnitForNewTask() – selects an object 

for a particular task 
 - public synchronized void taskFinished(Object o) – sets the flag for 

finished task and frees up the object 
 - private int findInsertPosition(int low, int high) – inserts a unit at the 

middle of the vector of objects 
 
PathrateRcv: 
 - public PathrateRcv(String address) – constructs a receiver object which 

communicates with the server given by address 
 - public void init() – initialization for global receiver variables 
 - protected void registerForOperations(SocketChannel sc, int ops) – 

registers a socket channel for the operations coded in ops 
 - public void service () – executes the whole receiver part of the algorithm 
 
PathrateSnd: 
 - public PathrateSnd(int unitsNo) – defines a new sender and initializes 

the service thread pool vector 
 - public void openChannel() – opens the TCP channel 
 - public void service() – waits for something to happen using the NIO 

selector. If something is received than it adds a new task to handle the request. 
 - protected void registerChannel (Selector selector, SelectableChannel 

channel, int ops) – registers the channel with the given selector for given operations 
 
ServiceThreadPool: 
 - public ServiceThreadPool(int unitsNo) – initializes a new service thread 

pool 
 - public void addNewTask(SocketChannel sc) – selects a worker thread to 

handle the socket channel sc and adds the task to this worker 
 
UDPRcv 
 - public native int getUDPSocket(int UDPRCV_PORT,int 

UDP_BUFFER_SZ) – sets up the UDP linked to the UDPRCV_PORT and with 
maximum buffer size UDP_BUFFER_SZ and returns it 

 - public native void closeUDPSocket(int sock_udp) – closes the UDP 
socket 

 - public native int recvTrain(int max_pkt_sz, int exp_train_id, int train_len, 
int sock_udp) – receives the train exp_train with the length of train_len packets and the 
maximum packet size of max_pkt_sz. Also it sets up the arrival time arrays attributes of 
this class 

 - native int delta(int max_pkt_sz, int sock_udp, int UDPRCV_PORT) – 
returns the average time between sending and receiving a UDP packet needed in the 
receiver 

 - public native int recvfromLatency(int sock_udp, int UDPRCV_PORT, int 
max_pkt_sz) – returns the receiver latency of the medium by sending 50 packets back 
and forth and returning the average latency time 
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UDPSnd: 
- public native int getUDPSocket(int UDP_BUFFER_SZ) - sets up the 

UDP linked with maximum buffer size UDP_BUFFER_SZ and returns it 
- public native void closeUDPSocket(int sock_udp) – closes the UDP 

socket 
- public native int sendLatency(int max_pkt_sz) - returns the sender 

latency of the medium by sending 50 packets back and forth and returning the average 
latency time 

- public native int sendTrain(int max_pkt_sz, int train_len, int train_id, int 
sock_udp, String address, int UDPRCV_PORT) – sends the train train_id with a length 
of train_len packets and maximum packet size max_pkt_sz 

 
UtilMethods: 
 - public static int timeToUsdelta(int sec1, int usec1, int sec2, int usec2) – 

returns the time difference between (sec1, usec1) and (sec2, usec2) 
 - public static void orderInt(int unord_arr[], int ord_arr[], int num_elems) – 

order an integer vector using the bubble sort algorithm 
 - public static void minSleepTime() – returns the minimum sleep time for 

system calls 
 
UtilMethodRcv: 
 - public static int check_intr_coalescence(int[] timesec,int[] timeusec, int 

len, int burst) – returns the coalescence for time stamps given in timesec and timeusec 
with a certain burst 

 - public static double getKurtosis(double bell_array[], int size) – returns 
the Kurtosis value from the bell array 

 - public int termint(int exit_code) – ends the measurements 
 - public static void happyEnd(double cap_lo, double cap_hi) – the 

algorithms finishes normally and this method prints the results 
 - public static double getAvg(double data[], long no_values) – returns the 

average of data array 
 - public static double getStd(double data[], long no_values) – returns the 

standard deviation of data array 
 - public double getMode(double ord_data[], int vld_data[], double bin_wd, 

int no_values) – returns the local mode for the data array with the bin bin_wd. It also sets 
up the attributes mode_cnt, bell_cnt, bell_lo, bell_hi and bell_kurtosis 

 - public int gig_path(int pack_sz, int round, double k_to_u_latency) – 
procedure called for GigaByte heavy-loaded paths with interrupt colescence 

 
WorkerThread: 
 - public WorkerThread(LoadBalancingStrategy lbs) – initiates the worker 

thread with the specified load balancing strategy 
 - public void run() – waits for some action and when there are multiple 

active selector it iterates and reads data from the corresponding socket channels 
- public void addNewTask(SocketChannel sc) – wakes up the selector 

and adds the task related to the socket channel sc 
- protected void registerForOperations(SocketChannel sc, int ops) – 

register the channel with the specified operations 
- protected void unregisterForOperations(SocketChannel sc, int ops) – 

unregisters the specified operations 
- public void eraseChannel(SelectionKey key) – erases the channel 
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Chapter 8 - The structure of the 

MonALISA module cap 

8.1. Incorporation in MonALISA 

The tool for measuring capacity is useful as a standalone application, but 

its use increases considerably when integrated in a complex monitoring 

framework like MonALISA. Any user who accesses the site cacr.caltech.edu and 

launches the MonALISA client can check out the data from the cap module. 

Furthermore the team of programmers who maintain this complex project can 

use this tool in any moment to provide an estimate for the capacity of a path. 

There are thousands of network paths between farms supervised by MonALISA 

and each has a fixed capacity. On every network change the cap module can 

detect dropped nodes or the new upgraded path capacities. 

8.2. Configuration parameters 

For integrating the tool in the MonALISA I have done several configuration 

steps. At first I had to include my files in the package lia.Monitor.Farm.Pathrate. 

Then I have changed the headers of the C implementation files and recompiled 

them. At this point the sources were ready to be used in this framework. 

I have implemented two sources: 

- lia.Monitor.modules - the monPathrate class which handles the 

configuration, the connection settings and gets the results; 

- lia.App.Pathrate – the AppPathrate class which handles the logic of 
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server farm for my module. 

Further we need a configuration file on an URL containing the names of 

hosts that need to be supervised. We will take a close look at the two classes, 

the core of the integration issue. 

 8.2.1. The monPathrate class 

This class extends the cmdExec and implements the MonitoringModule 

interface. The attributes of this class initialize basic variables for MonALISA 

integration: the logger file, the name of the module, the resource type string, the 

operating system, the configuration URL, the configuration reload interval, the 

reload interval of the module. The class uses three vectors which contain lists of 

hostnames, peers and removed peers. Naturally we have to instantiate a 

PathrateRcv (receiver - client) object for result extraction. 

The configuration is loaded using the TimerTask class and the reload 

intervals are set. The PathrateReceiver class extends the TimerTask and it starts 

all the clients in the vector of peers for the server. The class ConfigLoader parses 

the configuration URL file and adds every receiver to the peer Vector. The most 

important method for this class is doProcess. This method iterates through the 

list of peers and gets the results from every measurement from the receivers. 

The result is added to the result vector that is fetched by AppPathrate for output. 

 
 

8.2.1. The AppPathrate class 

The AppPathrate implements the lia.app.AppInt Interface. It has attributes 

for the file name, the properties object, the configuration options, the execution 
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parameters the path to MonALISA. It uses the sender object of the sender. This 

is the server that needs to be started, stopped and restarted and get information 

about the server. This class extracts the needed execution information from 

configuration files or updates the files.  
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Chapter 9 - Performance 

9.1. The accuracy of ADR, results 

We have tested this tool and compared it to previous tests with other 
capacity estimation applications. Due to the consistency o f the results and the 
precision of the estimation we can say that it performs admirably in various 
environments. It generates traffic of 1.56GB with an occupied bandwidth of 
4MBps. 

The average execution time is 400 seconds, but it can provide the result 
even in 350s, a good time for capacity estimation. We have tested the following 
100MB paths: 

– rogrid.pub.ro -> monalisa.cern.ch   96MB 
– monalisa.cern.ch -> rogrid.pub.ro   88MB 
– rogrid.pub.ro -> monalisa-starlight.cern.ch  80MB 
– monalisa-starlight.cern.ch -> rogrid.pub.ro  88 MB 
– monalisa.cern.ch -> monalisa-starlight.cern.ch  80 MB 
– monalisa-starlight.cern.ch -> monalisa.cern.ch  93 MB 

 
After testing on Gigabyte links we have obtained 900-930MBps. Next we 

will provide a history chart the output of the cap module during two hours of cyclic 
execution: 

 

 
Figure 10: The capacity estimation monalisa.cern.ch -> rogrid.pub.ro 
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9.2. Generated traffic 

We will present an estimation of the generated traffic. The traffic is 

computed starting from the receiver’s code. The sender has the role of a server, 

for instance it sends a train of packets when he receives the Common.SEND 

control message on the message control TCP connection. So we examine 

closely the receiver. 

The receiver main code is in the service method. The receiver initiates the 

sockets and then it computes the latency.  

GlobalsRcv.recvLatency = cmrcv.getRecvLatency(); 

It calls the getRecvLatency method from ConnectionsMethodRcv and then 

the code is forwarded to the C implementation. Here 50 packets of maximum 

size are changed. The maximum packet size is 1472 bytes, so we change 50M 

packets (M = 1472 bytes). 

Next in the receiver we compute the minimum possible delta. The UDP 

receiver calls the delta method which sends and receives 400 packets of 

maximum packet size. So we add 400M bytes 

The receiver needs to discover the maximum feasible train length in the 

path. For that task it sends trains of packets with increased length and maximum 

size. The number of packets is: 

(2 + 3 + 4 + 5 + 6 + 8 + 10 + 12 + 16 + 20 + 24 + 28 + 32 + 36 + 40 + 44 + 

48)M = 338M bytes 

The receiver checks for possible channel links and traffic shapers by 

increasing packet train lengths  with 7 trains: 
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bytesMM 823211767
2

4849
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For detecting possible capacity modes the client receives 1000/40 = 25 = 

no_trains_per_size . The pack_incr_step = 23, m = 572bytes. This adds to: 

bytes
MmMmMmmm

15166315003033263050
)15318436(50)66623436(50]4233636..23[252

=•=
++=•++=+•+++++•

 For detecting local modes we do not send or receive packets. The receiver 

calls the getMode method which uses the receiving time array to detect the local 

modes. 

Next we estimate the asymptotic dispersion rate by receiving 500 trains of 

maximum train length. The standard maximum train length is 48, and the number 

of packets adds to M•• 48500 . 

For detecting the local modes in phase I, we do not change any packets. 

Now we add all the data obtained in these paragraphs before. We call MPC 

(maximum packet changed) the resulting value: 

GBMBKBbytes

MPC

565.115651565236940,236,565,1
353280015166315001211750449753658880073600

353280015166315001472823214723381472400147250

===
=+++++

=++•+•+•+•=

 

The generated traffic is considerable, but if we think that the algorithm is 

launched at very long periods of times (days or even weeks) the result is not so 

discouraging. Furthermore for slow links (under 100Mbps) we can configure the 

tool to generate traffic ten times smaller. The algorithm occupies: 

bandwidth = 1565MB/400s = 3.91MBps (400s the estimated execution 

time). This bandwidth for measurement is significant for 10MBps link, but if we 

think that the tool is conceived for Gigabyte links the percentage is negligible. 
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9.3. Conclusions 

To sum up, we need to take a more objective look at this tool. It has 

advantages and disadvantages, but as I will show it is very useful overall. Let’s 

start with the disadvantages: 

- for slow links the traffic is considerable; 

- the obtained results can vary in a 3-4 Mbps capacity; 

 The first disadvantage has been detailed in the previous chapter in 

conclusion the traffic is small for links faster than 10MBps. Furthermore from all 

the tools tested that measure the path capacity this generates the smallest traffic. 

Generally for measuring the capacity we need to change a lot of packets 

between the server and the client. 

The second and last disadvantage is negligible because the purpose of 

the tool is to guess the path capacity.  If we obtain an 83MBps capacity it is 

clearly that the capacity is 100MBps or for 900MPps. 

Now the main characteristics of the applications are: 

- Robust – the tool is adaptable to many environments; 

- Easy configurable – the application can be configured. There are three 

classes (Common, Global, GlobalsRcv) that contain all the used constants; 

- C core packet transfer – the optimum packet UDP communication is 

assured by the C programming language; 

- Extendable – the structure of the application is easily expandable. A 

programmer can extend the sender or receiver to add further functionalities; 

- Layered structured – as I discussed earlier the application has a four 

layered structure; 
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- Logs – it generates exhaustive, comprehensive logs. The Common class 

contains the Verbose variable that controls the level of complexity for the log file; 

- Platform independent – the application is implemented in Java so it is 

independent of the machine used; 

- Friendly interface – it has a friendly interface and prints results easy to 

understand for any user, even if it is not in the Computer Science field; 

There are numerous advantages of this tool as compared to other similar 

applications. I strongly believe that it will be a landmark in the field of network 

monitoring host tools and it will prove very useful to the MonALISA framework. 

9.4. Future improvements 

The most important improvement of this technique is to measure the 

capacity of every link along the path. I will propose another algorithm similar to 

the K. Lai nettimer. I believe that by using the tailgating algorithm we can improve 

dramatically the use of the cap module. 

We describe a new deterministic model of packet delays that unifies 

previous models. Using this model, we derive a novel technique, called packet 

tailgating, for measuring link bandwidths along a path through the Internet. 

Packet tailgating captures link-specific characteristics by causing queuing of 

packets at particular links. For each link, the technique sends a large packet with 

a time-to-live (TTL) set to expire at that link followed by a very small packet that 

will queue continuously behind the large packet until where the large packet 

expires. 

The advantages of the tailgating technique are its speed, unobtrusiveness 
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and robustness compared to the other link bandwidth techniques. Packet 

tailgating is potentially faster and less obtrusive than the previously discussed 

techniques because it performs the expensive linear regression step only once 

for the entire path instead of once for every link. The tailgating step has to be 

done for every link, but this only requires finding the minimum delay for a pair of 

packets compared to finding the minimum delay of 16 to 64 different packet 

sizes. We test this hypothesis using nettimer in the next section.  

Packet tailgating is potentially more robust because it can detect multi-

channel links, does not rely on timely delivery of ICMP packets, and can be run 

without acknowledgements.  

Packet tailgating can measure multi-channel links because, like the packet 

bunch extension to packet pair, it can send multiple packets to fill the channels. 

To do this, we send the tailgated packet followed by any number of tailgaters. We 

can use this queuing to measure the bandwidth of one of the channels (we 

assume that all the channels have the same bandwidth). 

Packet tailgating does not use ICMP time-exceeded packets from 

intermediate nodes for measurement. In fact, packet tailgating can work without 

acknowledgments at all from the destination. The tailgating source can continue 

to send later tailgater packets without knowing the delay of earlier tailgater 

packets. If the earlier delays can be occasionally transmitted back to the source, 

then the source can adaptively decide when to finish the two stages, but this is 

an optimization. Otherwise, the tailgater source can just send a fixed number of 

packets in each stage. Eventually the source and destination must communicate 

so that the source can specify which tailgated packets were prematurely 

dropped.  



 87 

Measuring without acknowledgements avoids queuing in the return path, 

enabling packet tailgating to be twice as accurate as single-packet techniques. In 

addition, measuring without acknowledgements avoids ack-implosion on 

multicast trees, enabling packet tailgating to measure the bandwidth of several 

links simultaneously on a multicast tree. Single packet techniques used on a 

multicast tree would cause a flood of acknowledgements to flow back to the 

source. The queuing of these acks would likely destroy their usefulness for round 

trip delay measurements. 
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Chapter 11 - Code listing 

UtilMethodsRcv.java 
 
public class UtilMethodsRcv{ 

 long mode_cnt;long bell_cnt; double bell_lo; double bell_hi; double bell_kurtosis;  
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 ByteBuffer buffer;  

 CharBuffer charBuffer; 

 UDPRecv udpr = new UDPRecv(); 

 PathrateRcv pr; 

 public UtilMethodsRcv(PathrateRcv pr){ 

     buffer = ByteBuffer.allocateDirect(11); 

     charBuffer = CharBuffer.allocate(11); 

 this.mode_cnt = 0;this.bell_cnt = 0;this.bell_lo = 0;this.bell_hi = 0;this.bell_kurtosis = 0;this.pr = pr; 

 } 

 public static int check_intr_coalescence(int[] timesec,int[] timeusec, int len, int burst){ 

  double[] delta = new double[Common.MAX_STREAM_LEN]; 

  int b2b=0, tmp=0;int i;int min_gap; 

 

min_gap = GlobalsRcv.MIN_TIME_INTERVAL > 3 * GlobalsRcv.recvLatency?GlobalsRcv.MIN_TIME_INTERVAL : 
3 * GlobalsRcv.recvLatency ; 

  for (i = 2; i < len; i ++){ 

   delta[i] = (timesec[i] - timesec[i-1])*1000000 + timeusec[i] - timeusec[i-1]; 

   if ( delta[i] <= min_gap ){ 

    b2b++ ; tmp++; 

   } 

   else{ 

    if ( tmp >=3 ){ 

     burst++;tmp=0; 

    } 

   } 

  } 

  if ( b2b > .6*len ){ 

   return 1;} 

  else return 0; 

 } 

 //Extracts the last part of the vector v starting at pos with max elements 

 public static double[] extractLast(double v[], int pos, int max){ 

  double[] newv = new double[max]; 

  for (int i = pos;i < max; i++){ 

   newv[i - pos] = v[i]; 

  } 

  return newv; 

 } 

 // Order an array of int using bubblesort 

 public static double[] orderInt(double unord_arr[], int num_elems){ 

  int i,j ;double temp; double[] ord_arr = new double[num_elems]; 

  for (i=0;i<num_elems;i++) 

   ord_arr[i]=unord_arr[i]; 

  for (i=1;i<num_elems;i++) { 
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   for (j=i-1;j>=0;j--) 

    if (ord_arr[j+1] < ord_arr[j]){ 

    temp=ord_arr[j];ord_arr[j]=ord_arr[j+1];ord_arr[j +1]=temp; 

    } 

    else break; 

  } 

  return ord_arr; 

 } 

 public static double getKurtosis(double bell_array[], int size){ 

  double kurtosis, var, mean, temp, diff;int i; 

  if (size < 3) return -99999; 

 

  temp = 0;  

  for(i = 0; i < size; i++)temp += bell_array[i]; 

  mean = temp / size;temp = 0; 

  for(i = 0; i < size; i++){ 

   diff = bell_array[i] - mean; 

   temp += diff * diff; 

  } 

  var = temp / size; 

  if(var == 0)return -99999; 

  temp = 0; 

  for(i = 0; i < size; i++){ 

        diff = bell_array[i] - mean; 

        temp += diff * diff * diff * diff; 

     } 

  kurtosis = temp / (var * var); 

  return kurtosis; 

 } 

 //Terminate measurements 

 public int termint(int exit_code){ 

  int ctr_code; 

  ConnectionMethodsRcv cmrcv = new ConnectionMethodsRcv(GlobalsRcv.sc); 

  ctr_code = Common.GAME_OVER; 

  cmrcv.send_ctr_msg(ctr_code); 

  try{ GlobalsRcv.sc.close();} catch (Exception ignored){} 

  udpr.closeUDPSocket(GlobalsRcv.sock_udp); 

  return exit_code; 

 } 

 /* Successful termination. Print result.  */ 

 public void happyEnd(double cap_lo, double cap_hi){ 

  System.out.println("-------------------------------------------------"); 

  System.out.println("Capacity estimate : " + (int)cap_lo + " to " + (int)cap_hi); 

  System.out.println("Final capacity estimate : " + (int)((cap_lo + cap_hi)/2) ); 
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  System.out.println("-------------------------------------------------"); 

  //good measurement --> add it to the vector 

  synchronized(pr.myPeers) { 

   Double cap = new Double(((cap_lo + cap_hi)/2)); 

   System.out.println("[happy end]"); 

   if (pr.myPeers.containsKey(pr.address)) { 

    Vector values = (Vector)pr.myPeers.get(pr.address); 

    values.add(cap); 

   }  

   else { 

    Vector values = new Vector(); 

    values.add(cap); 

    pr.myPeers.put(pr.address, values); 

   } 

  } 

  UDPRecv udpr = new UDPRecv(); 

  udpr.closeUDPSocket(GlobalsRcv.sock_udp); 

  try { GlobalsRcv.sc.close();} catch (Exception e) {} 

     GlobalsRcv.po.close(); 

 } 

 //Compute the average of the set of measurements <data>. 

 public static double getAvg(double data[], long no_values){ 

  int i;double sum;sum_ = 0; 

  for (i=0; i<no_values; i++) sum_ += data[i]; 

  return (sum_ / (double)no_values); 

 } 

 //Compute the standard deviation of the set of measurements <data>. 

 public static double getStd(double data[], long no_values){ 

  int i;double sum_, mean; mean = getAvg(data, no_values); 

  sum_ = 0; 

  for (i=0; i<no_values; i++) sum_ += Math.pow(data[i] - mean, 2.); 

  return Math.sqrt(sum_ / (double)(no_values-1)); 

 } 

 /* 

 Detect a local mode in the set of measurements <ord_data>.  

 Take into account only the valid (unmarked) measurements (vld_data[i]=1). 

 The bin width of the local mode detection process is <bin_wd>. 

 The set has <no_values> elements, and it is ordered in increasing sequence. 

 The function returns the center value of the modal bin. 

 Also, the following call-by-ref arguments return: 

 mode_cnt:    # of measurements in modal bin  

 bell_cnt:    # of measurements in entire mode 

 (modal bin+surrounding bins of the same `bell') 
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 bell_lo:     low bandwidth threshold of modal `bell' 

 bell_hi:     high bandwidth threshold of modal `bell' 

 */ 

 public double getMode(double ord_data[], int vld_data[], double bin_wd, int no_values){ 

  int i, j, done, tmp_cnt, mode_lo_ind, mode_hi_ind, bell_lo_ind, bell_hi_ind, bin_cnt,  
bin_lo_ind,  bin_hi_ind, lbin_cnt, lbin_lo_ind=0, lbin_hi_ind=0,  /* left bin */ rbin_cnt, rbin_lo_ind=0, rbin_hi_ind=0;  /* 
right bin */ 

  double mode_lo, mode_hi, bin_lo,  bin_hi; 

  /*Weiling: bin_toler, used as */ 

  double bin_cnt_toler; 

 

  j=0; 

  for (i=0; i<no_values; i++) j+=vld_data[i]; 

  if (j==0)  return Common.LAST_MODE; /* no more modes */ 

 

  //Find the bin of the primary mode from non-marked values 

  /* Find window of length bin_wd with maximum number of consecutive values */ 

  mode_hi=0; mode_hi_ind=0; mode_lo=0; mode_lo_ind=0;tmp_cnt=0; 

  for (i=0;i<no_values;i++) { 

   if (vld_data[i] == 1) { j=i; 

    while (j<no_values && (vld_data[j] == 1) && 
ord_data[j]<=ord_data[i]+bin_wd) 

     j++; 

    if (tmp_cnt<j-i){ 

            tmp_cnt = j-i; 

            mode_lo_ind = i; 

            mode_hi_ind = j-1; 

    } 

} 

} 

  this.mode_cnt = tmp_cnt; 

  mode_lo = ord_data[mode_lo_ind]; 

  mode_hi = ord_data[mode_hi_ind]; 

  if (Common.Verbose) 

   System.out.println("Central mode bin from " + mode_lo +" to " + mode_hi + 
this.mode_cnt); 

  this.bell_cnt = tmp_cnt;this.bell_lo = mode_lo;this.bell_hi = mode_hi; 

  bell_lo_ind = mode_lo_ind;bell_hi_ind = mode_hi_ind; 

 

    /*Find all the bins at the *left* of the central bin that are part of the same mode's bell. Stop when 
another local mode is detected*/ 

  bin_cnt = (int)this.mode_cnt;bin_lo_ind = mode_lo_ind; 

  bin_hi_ind = mode_hi_ind;bin_lo = mode_lo;bin_hi = mode_hi; 

  /* Weiling:  noise tolerance is determined by bin_cnt_toler, and it's 

  * proportional to previous bin_cnt instead of constant BIN_NOISE_TOLER . 

  */ 
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  done=0; 

  bin_cnt_toler = GlobalsRcv.BIN_CNT_TOLER_kernel_percent * (bin_cnt); 

  do{ 

   /* find window of measurements left of the leftmost modal bin with  

   (at most) bin_wd width and with the maximum number of measurements */ 

   lbin_cnt=0; 

   if (bin_lo_ind>0){ 

    for (i=bin_hi_ind-1; i>=bin_lo_ind-1; i--) { 

            tmp_cnt=0; 

            for (j=i; j>=0; j--){ 

             if (ord_data[j]>=ord_data[i]-bin_wd) 

       tmp_cnt++; 

             else break; 

            } 

     if (tmp_cnt >= lbin_cnt){ 

      lbin_cnt = tmp_cnt; 

      lbin_lo_ind = j+1; 

      lbin_hi_ind = i; 

     } 

    } 

   } 

   if (Common.Verbose) 

    System.out.println("Left bin from " + ord_data[lbin_lo_ind] +" to " + 
ord_data[lbin_hi_ind]); 

   if (lbin_cnt>0){ 

    if (lbin_cnt < bin_cnt+bin_cnt_toler){ 

     this.bell_cnt += bin_lo_ind-lbin_lo_ind; 

     this.bell_ lo   = ord_data[lbin_lo_ind]; 

     bell_lo_ind = lbin_lo_ind; 

     /* reset bin counters for next iteration */ 

     bin_cnt = lbin_cnt;bin_lo_ind = lbin_lo_ind; 

     bin_hi_ind = lbin_hi_ind;bin_lo = ord_data[lbin_lo_ind]; 

     bin_hi = ord_data[lbin_hi_ind]; 

     bin_cnt_toler = GlobalsRcv.BIN_CNT_TOLER_kernel_percent 
* (bin_cnt); 

    } 

    else{ 

     /* the bin is outside the modal bell */ 

     done=1; 

    } 

    if (bin_lo_ind <= 1) 

     done=1; 

   } 

   else done=1; 
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  } while (done == 0); 

  /*Find all the bins at the *right* of the central bin that are part of the same mode's bell. Stop 
when another local mode is detected.*/ 

  bin_cnt = (int)this.mode_cnt;bin_lo_ind = mode_lo_ind; 

  bin_hi_ind = mode_hi_ind;bin_lo = mode_lo;bin_hi = mode_hi; 

  done=0; 

  do{ 

   /* find window of measurements right of the rightmost modal bin with 

   (at most) bin_wd width and with the maximum number of measurements*/ 

   rbin_cnt=0; 

   if (bin_hi_ind<no_values-1){ 

    for (i=bin_lo_ind+1; i<=bin_hi_ind+1; i++){ 

            tmp_cnt=0; 

     for (j=i; j<no_values; j++){ 

      if (ord_data[j]<=ord_data[i]+bin_wd) tmp_cnt++; 

             else break; 

            } 

            if (tmp_cnt >= rbin_cnt){ 

     rbin_cnt = tmp_cnt;rbin_lo_ind = i;rbin_hi_ind = j-1; 

             } 

    } 

   } 

   if (Common.Verbose) 

    System.out.println("Left bin from " + ord_data[lbin_lo_ind] +" to " + 
ord_data[lbin_hi_ind]); 

   if (rbin_cnt>0){ 

    if (rbin_cnt < bin_cnt+bin_cnt_toler){ 

           /* the bin is inside the modal bell */ 

      /* update bell counters */ 

            this.bell_cnt += rbin_hi_ind-bin_hi_ind; 

            this.bell_hi = ord_data[rbin_hi_ind]; 

            bell_hi_ind = rbin_hi_ind; 

            /* reset bin counters for next iteration */ 

     bin_cnt = rbin_cnt; 

            bin_lo_ind  = rbin_lo_ind; 

             bin_hi_ind  = rbin_hi_ind; 

             bin_lo = ord_data[rbin_lo_ind]; 

             bin_hi = ord_data[rbin_hi_ind]; 

             bin_cnt_toler = GlobalsRcv.BIN_CNT_TOLER_kernel_percent 
* (bin_cnt); 

    } 

    else{ 

            /* the bin is outside the modal bell */ 

            done=1;} 

    if (rbin_hi_ind >= no_values-2) done=1; 
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   } 

   else done=1; 

  } while (done == 0); 

  /* Mark the values that make up this modal bell as invalid */ 

  for (i=bell_lo_ind; i<=bell_hi_ind; i++) vld_data[i]=0; 

  /* Report mode characteristics */ 

  if (this.mode_cnt > GlobalsRcv.BIN_NOISE){ 

   if (Common.Verbose) { 

    System.out.println(mode_lo + mode_hi); 

    System.out.println(this.mode_cnt + "measurements"); 

    System.out.println("Modal bell: " + this.bell_cnt + "measurements - low :" 
+ this.bell_lo + "high:" + this.bell_hi);     

   } 

   /* Weiling: calculate bell_kurtosis*/ 

   this.bell_kurtosis = getKurtosis(ord_data , bell_hi_ind - bell_lo_ind + 1); 

   if(this.bell_kurtosis == -99999){ 

         System.out.println("\nWarning!!! bell_kurtosis == -99999\n"); 

    return Common.UNIMPORTANT_MODE; 

       } 

   /* Return the center of the mode, as the average between the high and low 

   ends of the corresponding bin */ 

   return (mode_lo + mode_hi)/2.; 

    } 

    else return Common.UNIMPORTANT_MODE; 

 } 

 //Trying long trains to detect capacity in case interrupt coalescing detected. 

 public int gig_path(int pack_sz, int round, double k_to_u_latency){ 

  int i, j, est = 0, ctr_code; 

  int[] id = new int[Common.MAX_STREAM_LEN]; 

  int[] disps = new int[Common.MAX_STREAM_LEN]; 

  double[] cap = new double[Common.MAX_STREAM_LEN]; 

  double[] ord_cap = new double[Common.MAX_STREAM_LEN]; 

  int[] time_s = new int[Common.MAX_STREAM_LEN]; 

  int[] time_us = new int[Common.MAX_STREAM_LEN]; 

  int train_len=200, bad_train; 

  System.out.println("  Testing for Gigabit paths\n  20 Trains of length: " +  train_len); 

  for (j=0; j<10; j++){ 

   int num_b2b = 1;int k=0; 

   ConnectionMethodsRcv cmrcv = new ConnectionMethodsRcv(GlobalsRcv.sc); 

   if (Common.Verbose) System.out.println("  Train id: " + j); 

   ctr_code = Common.TRAIN_LEN | (train_len<<16); 

   cmrcv.send_ctr_msg(ctr_code); 

   ctr_code= Common.PCK_LEN | (pack_sz<<16); 

   cmrcv.send_ctr_msg(ctr_code); 
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   round++; ctr_code = Common.SEND | Common.CTR_CODE; 

   cmrcv.send_ctr_msg(ctr_code); 

   int train_id = 0; 

   bad_train = cmrcv.recv_train(train_id, time_s, time_us, train_len); 

   if (bad_train == 2) 

    {/* train too big try smaller */ 

    train_len-=20; 

    if (train_len < 100 && est < 5) { 

   System.out.println("Insufficient number of packet dispersion estimates.\n"); 

            System.out.println("Insufficient number of packet dispersion estimates.\n"); 

            System.out.println("Probably a 1000Mbps path.\n"); 

    System.out.println("Probably a 1000Mbps path.\n"); 

            termint(-1); 

    } 

   } 

   else{ 

    for (i=1; i<train_len; i++){ 

     disps[i] = UtilMethods.timeToUsdelta(time_s[i], time_us[i], 
time_s[i + 1], time_us[i + 1]); 

    } 

    for (i=1; i<train _len; i++){ 

            if ( (num_b2b<5) ||(disps[i] < num_b2b*1.5*k_to_u_latency) ){ 

             num_b2b++; 

            } 

            else{ 

               id[k++]=i; 

             num_b2b = 1; 

            } 

   } 

   for (i=0; i<k-1; i++) { 

            cap[est] = 12000.0*(id[i+1]-id[i]-1)/            
UtilMethods.timeToUsdelta(time_s[i], time_us[i], time_s[i + 1], time_us[i + 1]); 

            if (Common.Verbose)  System.out.println(cap[est]); 

    } 

   } 

  } 

  if ( est > 3 ){ 

   ord_cap = orderInt(cap,est--); 

   happyEnd(ord_cap[est/2-1], ord_cap[est/2+1]); 

  } 

  else{ 

          System.out.println("Insufficient number of packet dispersion estimates.\n"); 

           System.out.println("Insufficient number of packet dispersion estimates.\n"); 

           System.out.println("Probably a 1000Mbps path.\n"); 
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   System.out.println("Probably a 1000Mbps path.\n"); 

           termint(-1); 

  } 

  termint(0); 

    return(1); 

 } 

} 

PathrateRcv.java 
 

public class PathrateRcv{ 

 int tcpSndPort = Common.TCPSND_PORT; 

 static Selector selector;String address;InetSocketAddress socketAddress;  

 Charset charset;CharsetDecoder decoder;CharsetEncoder encoder; 

 ByteBuffer buffer;CharBuffer charBuffer;  

 UtilMethodsRcv urcv = new UtilMethodsRcv(this); 

public Hashtable myPeers; 

    UDPRecv udpr = new UDPRecv(); 

     public PathrateRcv() { 

  System.out.println("Initializing receiver"); 

  myPeers = new Hashtable();} 

 public void startClient (String addr) { 

  address = addr;System.out.println("[PathrateRcv] : " + address); 

  init();service();} 

 public void fillResults(Result result) { 

synchronized (myPeers) { 

Vector savb = (Vector) myPeers.get(result.NodeName); 

           result.param[0] = ((Double)savb.get(savb.size()-1)).doubleValue(); 

          System.out.println("We have added " + result.param[0]);} 

} 

     public void init() { 

  socketAddress = new InetSocketAddress(address, tcpSndPort); 

charset = Charset.forName("ISO-8859-1"); decoder = charset.newDecoder(); 

 encoder = charset.newEncoder(); buffer = ByteBuffer.allocateDirect(1024); 

 charBuffer = CharBuffer.allocate(1024); GlobalsRcv.po = new PrintOutput("client_cap.log"); 

  GlobalsRcv.interrupt_coalescence=0;GlobalsRcv.min_time_interval = 0;  

  GlobalsRcv.sendLatency = 0; GlobalsRcv.recvLatency = 0; 

  GlobalsRcv.max_rate = 0; GlobalsRcv.min_rate = 0; 

  GlobalsRcv.cur_pkt_sz = 0; GlobalsRcv.transmission_rate = 0; 

  GlobalsRcv.time_interval = 0; 

UDPRecv udpr = new UDPRecv();} 

  public void service (){ 

  int opt_len = 4, rcv_buff_sz, outlier_lim, pack_incr_step; 

  boolean quick_term = false;int i, j, c, sum_rtt, ctr_code, round, train_len, prev_train_len = 2; 

  int train_len_P1, max_train_len, no_pack_sizes, no_trains, no_trains_P1; 
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  int no_trains_per_size, trains_msrd = 0, trains_rcvd = 0, train_no;   
 int trains_per_size, no_modes_P1 = 0, no_modes_P2 = 0; 

  int cap_mode_ind=0, bad_tstamps; 

  double train_spacing, min_train_spacing, max_train_spacing; 

  int max_pack_sz, min_pack_sz_P1, pack_sz; 

  int fsec, fusec, csec, cusec; 

  int exp_train_id = 0; 

  int adr_narrow, bad_train, bad_trains; 

  boolean enough_data, path_overflow, abort_phase1=false; 

  int[] measurs_vld_P1 = new int[GlobalsRcv.NO_TRAINS_P1]; 

  int[] measurs_vld_P2 = new int[GlobalsRcv.NO_TRAINS_P2]; 

  char[] random_data = new char[Common.MAX_PACK_SZ]; 

  char[] pack_buf = new char[Common.MAX_PACK_SZ]; 

  double bw_msr, bin_wd, bw_range, avg_bw, rtt, adr, std_dev, delta; 

  double[] min_OSdelta = new double[500]; 

  double[] ord_min_OSdelta = new double[500]; 

  double min_possible_delta, mode_value, merit, max_merit; 

  double[] measurs_P1 = new double[GlobalsRcv.NO_TRAINS_P1]; 

  double[] measurs_P2= new double[GlobalsRcv.NO_TRAINS_P2]; 

  double[] ord_measurs_P1 = new double[GlobalsRcv.NO_TRAINS_P1]; 

  double[] ord_measurs_P2 = new double[GlobalsRcv.NO_TRAINS_P2]; 

  double[] modes_P1_mode_value = new double[GlobalsRcv.MAX_NO_MODES]; 

  long[] modes_P1_mode_cnt = new long[GlobalsRcv.MAX_NO_MODES]; 

  long[] modes_P1_bell_cnt = new long[GlobalsRcv.MAX_NO_MODES]; 

  double[] modes_P1_bell_lo = new double[GlobalsRcv.MAX_NO_MODES]; 

  double[] modes_P1_bell_hi = new double[GlobalsRcv.MAX_NO_MODES]; 

  double[] modes_P1_bell_kurtosis = new double[GlobalsRcv.MAX_NO_MODES]; 

  double[] modes_P2_mode_value = new double[GlobalsRcv.MAX_NO_MODES]; 

  long[] modes_P2_mode_cnt = new long[GlobalsRcv.MAX_NO_MODES]; 

  long[] modes_P2_bell_cnt = new long[GlobalsRcv.MAX_NO_MODES]; 

  double[] modes_P2_bell_lo = new double[GlobalsRcv.MAX_NO_MODES]; 

  double[] modes_P2_bell_hi = new double[GlobalsRcv.MAX_NO_MODES]; 

  double[] modes_P2_bell_kurtosis = new double[GlobalsRcv.MAX_NO_MODES]; 

  int[] arrv_tvsec = new int[Common.MAX_STREAM_LEN]; 

  int[] arrv_tvusec = new int[Common.MAX_STREAM_LEN]; 

  long starts, startus, stops, stopus, timeUS; 

  no_pack_sizes = GlobalsRcv.NO_PACK_SIZES; 

  for(i = 0; i < Common.MAX_STREAM_LEN; i++){ 

   arrv_tvsec[i] = 0; arrv_tvusec[i] = 0;} 

  GetTime getTime = new GetTime(); 

  getTime.getTimeOfDay(); 

  starts = getTime.seconds;startus = getTime.useconds; 

  System.out.println("Starting the receiver"); 

  try{ 
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   GlobalsRcv.sc = SocketChannel.open(); 

   Socket socket = GlobalsRcv.sc.socket( ); 

   socket.setReuseAddress(true); 

   GlobalsRcv.sc.configureBlocking(true); 

   GlobalsRcv.sc.connect(socketAddress); 

   ConnectionMethodsRcv cmrcv = new ConnectionMethodsRcv(GlobalsRcv.sc); 

 GlobalsRcv.sock_udp = udpr.getUDPSocket(Common.UDPRCV_PORT, Common.UDP_BUFFER_SZ); 

   GlobalsRcv.recvLatency = cmrcv.getRecvLatency(); 

   GlobalsRcv.sendLatency = cmrcv.recv_ctr_msg(); 

   GlobalsRcv.min_time_interval = 
GlobalsRcv.SCALE_FACTOR*((GlobalsRcv.recvLatency > GlobalsRcv.sendLatency) ? GlobalsRcv.recvLatency : 
GlobalsRcv.sendLatency) ; 

   GlobalsRcv.min_time_interval = GlobalsRcv.min_time_interval > 
GlobalsRcv.MIN_TIME_INTERVAL?GlobalsRcv.min_time_interval : GlobalsRcv.MIN_TIME_INTERVAL; 

   // Estimate round-trip time 

   sum _rtt=0; 

   ctr_code = Common.BOUNCE | Common.CTR_CODE; 

   for(i=0; i<10; i++){ 

    getTime.getTimeOfDay(); 

    fsec = GetTime.seconds;fusec = GetTime.useconds;  

    cmrcv.send_ctr_msg(ctr_code); 

    ctr_code = cmrcv.recv_ctr_msg(); 

    getTime.getTimeOfDay(); 

    csec = GetTime.seconds;cusec = GetTime.useconds; 

    if (i>0) sum_rtt += UtilMethods.timeToUsdelta(fsec, fusec, csec, cusec); 

   } 

   rtt = (double) (sum_rtt/9000.); 

   System.out.println("Average round-trip time:" + rtt); 

   // Determine minimum train spacing based on rtt 

   min_train_spacing = Common.MIN_TRAIN_SPACING/1000; /* make msec */ 

   if (min_train_spacing < rtt*1.25){ 

   /* if the rtt is not much smaller than the specified train spacing, 

   * increase minimum train spacing based on rtt */ 

    min_train_spacing = rtt*1.25;} 

   max_train_spacing = min_train_spacing;train_spacing = min_train_spacing; 

   ctr_code = Common.TRAIN_SPACING | ((int)train_spacing<<16); 

   cmrcv.send_ctr_msg(ctr_code);//send minimum train spacing 

   max_pack_sz = Common.MAX_PACK_SZ; 

   ctr_code = Common.MAX_PCK_LEN | (max_pack_sz<<16); 

   cmrcv.send_ctr_msg(ctr_code);//send the maximum packet size 

   pack_sz = Common.MAX_PACK_SZ; 

   ctr_code = Common.PCK_LEN | (pack_sz<<16); 

   cmrcv.send_ctr_msg(ctr_code);//send the the packet size 

   /* Also set the minimum packet size for Phase I */ 

   min_pack_sz_P1 = GlobalsRcv.MIN_PACK_SZ_P1; 
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   if (min_pack_sz_P1 > max_pack_sz)  min_pack_sz_P1 = max_pack_sz;  

   // Measure minimum latency for kernel-to-user transfer of packet. 

   int count = 0; 

 

   /* Send train length to sender */ 

   train_len = 0; exp_train_id = 0; 

   ctr_code = Common.TRAIN_LEN | (train_len<<16); 

   cmrcv.send_ctr_msg(ctr_code); 

   min_possible_delta = cmrcv.getDelta(); 

   min_possible_delta *= GlobalsRcv.MULTIPLICATIVE_FACTOR; 

   System.out.println("Minimum acceptable packet pair dispersion: " + 
min_possible_delta + " usec (min_possible_delta)"); 

   /* The default initial train-length in Phase I is 2 packets (packet pairs) */ 

   train_len_P1 = 2; 

   /* Keep a  unique identifier for each round in pathrate's execution. 

   This id is used to ignore between trains of previous rounds.*/ 

   round = 1; 

   /* Discover maximum feasible train length in the path 

       (stop at a length that causes 3 lossy trains) */ 

   System.out.println("Maximum train length discovery"); 

   /* Send number of trains to sender -> only one train at this phase */ 

   no_trains = 1; 

   ctr_code = Common.NO_TRAINS | (no_trains<<16); 

   cmrcv.send_ctr_msg(ctr_code); 

   /* Send packet size  to sender -> maximum at this phase */ 

   pack_sz = max_pack_sz;//maximum packet size at this phase phase = 0 

   ctr_code = Common.PCK_LEN | (pack_sz<<16); 

   cmrcv.send_ctr_msg(ctr_code); 

   /* Initial train length */ 

   train_len = train_len_P1;path_overflow = fa lse; 

   bad_trains = 0; trains_msrd = 0; 

   /* Repeat for each train length */ 

   while (train_len <= GlobalsRcv.MAX_TRAIN_LEN && !path_overflow){ 

    /* Send train length to sender */ 

    ctr_code = Common.TRAIN_LEN | (train_len<<16); 

    cmrcv.send_ctr_m sg(ctr_code); 

    /* Tell sender to start sending packet trains */ 

    round++; 

    ctr_code = Common.SEND | Common.CTR_CODE; 

    cmrcv.send_ctr_msg(ctr_code); 

   bad_train = cmrcv.recv_train(exp_train_id, arrv_tvsec, arrv_tvusec, train_len); 

    /* Compute dispersion and bandwidth measurement */ 

    if (bad_train == 2) path_overflow = true; 

    else if (bad_train != 1) { 
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delta = UtilMethods.timeToUsdelta(arrv_tvsec[1], arrv_tvusec[1], arrv_tvsec[train_len], arrv_tvusec[train_len]); 

bw_msr = ((28 + pack_sz) << 3) * (train_len-1) / delta; 

/* Very slow link; the packet trains take more than their spacing to be transmitted */ 

      if (delta > train_spacing*1000){ 

       path_overflow=true; 

   /* Send control message to increase train spacing by one second */ 

    ctr_code = Common.PATH_OVERFLOW | Common.CTR_CODE; 

       cmrcv.send_ctr_msg(ctr_code); 

       max_train_spacing = train_spacing; 

    ctr_code = Common.TRAIN_SPACING | ((int)train_spacing<<16); 

       cmrcv.send_ctr_msg(ctr_code); 

      } 

      /* Increase train length */ 

      prev_train_len = train_len; 

      if (train_len<6) train_len ++; 

      else if (train_len<12) train_len += 2; 

       else train_len += 4; 

     } 

   } 

   if (path_overflow || train_len > GlobalsRcv.MAX_TRAIN_LEN)  max_train_len = 
prev_train_len; 

   else max_train_len = train_len; 

   System.out.println("Maximum train length " + max_train_len + "packets"); 

   /* Tell sender to continue with  next phase phase 1*/ 

   ctr_code = Common.CONTINUE | Common.CTR_CODE; 

   cmrcv.send_ctr_msg(ctr_code); 

   /*Check for possible multichannel links and traffic shapers*/ 

   System.out.println("Preliminary measurements with increasing packet train lengths"); 

   /* Send number of trains to sender (fiarrv_tvsecve of them is good enough..) */ 

   no_trains = 7; 

   ctr_code = Common.NO_TRAINS | (no_trains<<16); 

   cmrcv.send_ctr_msg(ctr_code); 

   /* Send packet size to sender -> maximum at this phase */ 

   pack_sz = max_pack_sz; 

   ctr_code = Common.PCK_LEN | (pack_sz<<16); 

   cmrcv.send_ctr_msg(ctr_code); 

  for (train_len = train_len_P1; train_len <= Common.MIN_V(max_train_len,10); train_len++){ 

    /* Send train length to sender */ 

    if (Common.Verbose) System.out.println("Train length: " + train_len); 

    ctr_code = Common.TRAIN_LEN | (train_len<<16); 

    cmrcv.send_ctr_msg(ctr_code); 

    /* Tell sender to start sending packet trains */ 

    round++; 

    trains_rcvd=0; 
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    do{ 

     /* Wait for a complete packet train */ 

     ctr_code = Common.SEND | Common.CTR_CODE; 

     cmrcv.send_ctr_msg(ctr_code); 

   bad_train = cmrcv.recv_train(exp_train_id, arrv_tvsec, arrv_tvusec, train_len); 

     /* Compute dispersion and bandwidth measurement */ 

     if (bad_train !=1){ 

delta = UtilMethods.timeToUsdelta(arrv_tvsec[1], arrv_tvusec[1], arrv_tvsec[train_len], arrv_tvusec[train_len]); 

bw_msr = ((28+pack_sz) << 3) * (train_len-1) / delta; 

   if (Common.Verbose) System.out.println("Bandwidth " + bw_msr + "Mbps"); 

      /* Acceptable measurement */ 

      if (delta > min_possible_delta * (train_len - 1)){ 

      measurs_P1[trains_msrd++] = bw_msr;} 

      trains_rcvd++; 

     } 

    }while(trains_rcvd<no_trains); 

    /* Tell sender to continue with next phase */ 

    ctr_code = Common.CONTINUE | Common.CTR_CODE; 

    cmrcv.send_ctr_msg(ctr_code); 

   } 

   trains_msrd--; 

   if (train s_msrd < GlobalsRcv.MAX_MEASUR_GIGA)  

    /* Possible interrupt coalescing, try different test */ 

    urcv.gig_path(max_pack_sz, round++, min_possible_delta/3); 

   /*Estimate bandwidth resolution (bin width) and check for "quick estimate"*/ 

/* Calculate average and standard deviation of last measurements ,ignoring the five largest and the five smallest values  */ 

   ord_measurs_P1 =  UtilMethodsRcv.orderInt(measurs_P1, trains_msrd); 

   enough_data=true; 

   if (trains_msrd > 30){ 

avg_bw = UtilMethodsRcv.getAvg(UtilMethodsRcv.extractLast(ord_measurs_P1,5,trains_msrd), trains_msrd -10); 

std_dev = UtilMethodsRcv.getStd(UtilMethodsRcv.extractLast(ord_measurs_P1,5,trains_msrd), trains_msrd-10); 

    outlier_lim=(int) (trains_msrd/10); 

  bw_range=ord_measurs_P1[trains_msrd-outlier_lim-1]-ord_measurs_P1[outlier_lim]; 

   } 

   else{ 

    avg_bw = UtilMethodsRcv.getAvg(ord_measurs_P1, trains_msrd); 

    std_dev = UtilMethodsRcv.getStd(ord_measurs_P1, trains_msrd); 

    bw_range=ord_measurs_P1[trains_msrd-1]-ord_measurs_P1[0]; 

   } 

   /* Estimate bin width based on previous measurements */ 

   /* Weiling: bin_wd is increased to be twice of earlier value */ 

   if (bw_range < 1.0) bin_wd = bw_range*0.25; 

   else bin_wd = bw_range*0.125; 

   if (bin_wd == 0) bin_wd = 20.0; 
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   if (Common.Verbose) System.out.println("Capacity Resolution: " + bin_wd); 

   /* Check for quick estimate (when measurements are not very spread) */ 

   if( (std_dev/avg_bw < GlobalsRcv.COEF_VAR_THR) || quick_term){ 

    if (Common.Verbose) if (quick_term) 

      System.out.println("Requested Quick Termination"); 

   else System.out.println("Quick Termination' - Sufficiently low measurement noise"); 

  if (Common.Verbose) System.out.println("Coefficient of variation:" + std_dev/avg_bw); 

    urcv.happyEnd(avg_bw-bin_wd/2., avg_bw+bin_wd/2.); 

    urcv.termint(0); 

     } 

   ctr_code = Common.CONTINUE | Common.CTR_CODE; 

   cmrcv.send_ctr_msg(ctr_code); 

   /*Phase I: Discover local modes with packet pair experiments*/ 

   System.out.println("Phase I: Detect possible capacity modes"); 

  // Phase I uses packet pairs, i.e., 2 packets (the default; it may be larger) 

   train_len = train_len_P1; 

   if (train_len > max_train_len) train_len = max_train_len; 

   /* Compute number of different packet sizes  in Phase I */ 

   pack_incr_step = (max_pack_sz - min_pack_sz_P1) / no_pack_sizes + 1; 

   pack_sz = min_pack_sz_P1; 

   /* Compute number of trains  per packet size */ 

   no_trains_per_size = GlobalsRcv.NO_TRAINS_P1 / no_pack_sizes; 

   /* Number of trains in Phase I */ 

   no_trains = GlobalsRcv.NO_TRAINS_P1; 

   /* Send train spacing to sender */ 

   train_spacing = min_train_spacing; 

   ctr_code = Common.TRAIN_SPACING | ((int)train_spacing<<16); 

   cmrcv.send_ctr_msg(ctr_code); 

   trains_msrd = 0; 

   /* Compute new packet size (and repeat for several packet sizes) */ 

   for (i = 0; i < no_pack_sizes; i++){ 

    ctr_code = Common.PCK_LEN | (pack_sz<<16); 

    cmrcv.send_ctr_msg(ctr_code); 

    ctr_code = Common.NO_TRAINS | (no_trains_per_size<<16); 

    cmrcv.send_ctr_msg(ctr_code); 

    ctr_code = Common.TRAIN_LEN | (train_len<<16); 

    cmrcv.send_ctr_msg(ctr_code); 

    /* Tell sender to start sending */ 

    round++; 

if (Common.Verbose) System.out.println("Train length: " + train_len + "/ Packet size: " + (pack_sz+28) + "/ " + 
i*100/no_pack_sizes + "% completed"); 

    bad_tstamps = 0; // reset bad time stamps counter 

    trains_per_size = 0; 

    do{ 
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     ctr_code = Common.SEND | Common.CTR_CODE; 

     cmrcv.send_ctr_msg(ctr_code); 

  bad_train = cmrcv.recv_train(exp_train_id, arrv_tvsec, arrv_tvusec, train_len); 

     /* Compute dispersion and bandwidth measurement */ 

     if (bad_train != 1) { 

delta = UtilMethods.timeToUsdelta(arrv_tvsec[1], arrv_tvusec[1], arrv_tvsec[train_len], arrv_tvusec[train_len]); 

bw_msr = ((28+pack_sz) << 3) * (train_len-1) / delta; 

      if (Common.Verbose) { 

    System.out.println("Measurement " + trains_per_size+1); 

    System.out.println("Bandwidth " + bw_msr + "Mbps");} 

      /* Acceptable measurement */ 

      if (delta > min_possible_delta*(train_len-1)) { 

       measu rs_P1[trains_msrd++] = bw_msr; 

       else{bad_tstamps++;} 

      /* # of trains received in this packet size iteration */ 

      trains_per_size++; 

     } 

    } while(trains_per_size < no_trains_per_size); 

    /* Tell sender to continue with next phase */ 

    pack_sz += pack_incr_step; 

    if (pack_sz > max_pack_sz) 

     pack_sz = max_pack_sz; 

    /***** dealing with ignored measurements *****/ 

   if (bad_tstamps > no_trains_per_size/GlobalsRcv.IGNORE_LIM_FACTOR) 

    { 

     train_len+=1; 

     if (train_len > Common.MAX_V(max_train_len/4,2)){ 

      abort_phase1=true;} 

     pack_sz+=275; 

     if (pack_sz > max_pack_sz) pack_sz = max_pack_sz;  

     if (!abort_phase1) { 

if (Common.verbose) System.out.println("Too many ignored measurements " + train_len + " packets. Adjust packet 
size: " + (Common.MIN_V(pack_sz,max_pack_sz)+28));} 

     else break; 

    } 

    ctr_code = Common.CONTINUE | Common.CTR_CODE; 

    cmrcv.send_ctr_msg(ctr_code); 

   } 

   /* Compute number of valid (non-ignored) measurements */ 

   no_trains = trains_msrd -1; 

   /*Detect all local modes in Phase I*/ 

   if (!abort_phase1){ 

    /* Order measurements */ 

    ord_measurs_P1 = UtilMethodsRcv.orderInt(measurs_P1, no_trains); 
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    /* Detect and store all local modes */ 

    System.out.println("Local modes : In Phase I --"); 

    /* Mark all measurements as valid (needed for local mode detection) */ 

  for (train_no = 0; train_no < no_trains; train_no++)  measurs_vld_P1[train_no] = 1; 

    no_modes_P1 = 0; 

    while (true){ 

   mode_value = urcv.getMode(ord_measu rs_P1, measurs_vld_P1, bin_wd, no_trains); 

     if (mode_value == Common.LAST_MODE) break; 

  /*the modes are ordered based on the number of measurements in the modal bin (strongest mode 
first) */ 

    if (mode_value != Common.UNIMPORTANT_MODE) { 

    modes_P1_mode_value[no_modes_P1] = mode_value; 

    modes_P1_mode_cnt[no_modes_P1] = urcv.getMode_cnt(); 

    modes_P1_bell_cnt[no_modes_P1] = urcv.getBell_cnt(); 

    modes_P1_bell_lo[no_modes_P1] = urcv.getBell_lo(); 

    modes_P1_bell_hi[no_modes_P1] = urcv.getBell_hi(); 

    modes_P1_bell_kurtosis[no_modes_P1] = urcv.getBell_kurtosis(); 

    no_modes_P1++; 

    if (no_modes_P1 >= GlobalsRcv.MAX_NO_MODES) { 

     System.out.println("Increase MAX_NO_MODES constant"); 

     urcv.termint(-1);} 

    } 

   } 

  } 

  else { 

   System.out.println("Aborting Phase I measurements.."); 

   System.out.println("Too many ignored measurements"); 

   System.out.println("Phase II will report lower bound on path capacity."); 

   getTime.getTimeOfDay(); 

   stops = getTime.seconds; stopus = getTim e.useconds; 

   timeUS= (stops - starts)*1000000 + (stopus - startus); 

   System.out.println("Execution time " + (int)(timeUS/1000) + " miliseconds"); 

  } 

  no_trains_P1 = no_trains; 

  /* Tell sender to continue with next phase */ 

  ctr_code = Common.CONTINUE | Common.CTR_CODE; 

  cmrcv.send_ctr_msg(ctr_code); 

  /* Phase II: Packet trains with maximum train length*/ 

  System.out.println("Phase II: Estimate Asymptotic Dispersion Rate (ADR) -- "); 

  /* Train spacing in Phase II */ 

  train_spacing = max_train_spacing; 

  ctr_code = Common.TRAIN_SPACING | ((int)train_spacing<<16); 

  cmrcv.send_ctr_msg(ctr_code); 

  /* Determine train length for Phase II. Tell sender about it. */ 
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/*The following constraint is only used in very low capacity paths.*/ 

  train_len = max_train_len; 

  train_len = (int)(((avg_bw*0.5) * (max_train_spacing*1000)) / (max_pack_sz*8)); 

  if (train_len > max_train_len) train_len = max_train_len; 

  if (train_len < train_len_P1) train_len = train_len_P1; 

  ctr_code = Common.TRAIN_LEN | (train_len<<16); 

  cmrcv.send_ctr_msg(ctr_code); 

  /* Packet size in Phase II. Tell sender about it. */ 

  pack_sz = max_pack_sz; 

  ctr_code = Common.PCK_LEN | (pack_sz<<16); 

  cmrcv.send_ctr_msg(ctr_code); 

  /* Number of trains in Phase II. Tell sender about it. */ 

  no_trains = GlobalsRcv.NO_TRAINS_P2; 

  ctr_code = Common.NO_TRAINS | (no_trains<<16); 

  cmrcv.send_ctr_msg(ctr_code); 

  if (Common.Verbose) System.out.println("Number of trains: " + no_trains + " - Train length: " + 
train_len + " - Packet size: " + (pack_sz+28)); 

  /* Tell sender to start sending */ 

  round++; trains_msrd=0;trains_rcvd=0;bad_tstamps=0; 

  do{ 

   ctr_code = Common.SEND | Common.CTR_CODE; 

   cmrcv.send_ctr_msg(ctr_code); 

   /* Wait for a complete packet train */ 

   bad_train = cmrcv.recv_train(exp_train_id, arrv_tvsec, arrv_tvusec, train_len); 

   /* Compute dispersion and bandwidth measurement */ 

   if (bad_train != 1){ 

delta = UtilMethods.timeToUsdelta(arrv_tvsec[1], arrv_tvusec[1], arrv_tvsec[train_len], arrv_tvusec[train_len]); 

bw_msr = ((28+pack_sz) << 3) * (train_len-1) / delta; 

   if (Common.Verbose) { 

   System.out.println("Measurement " + (trains_rcvd + 1) + "  out of " + no_trains); 

   System.out.println("Bandwidth " + bw_msr + "Mbps");} 

   /* Acceptable measurement */ 

   if (delta > min_possible_delta*(train_len-1)){ 

    measurs_P2[trains_msrd++] = bw_msr;} 

    else bad_tstamps++; 

   trains_rcvd++; 

   } 

  }while(trains_rcvd<no_trains); 

  /* Tell sender to continue with next phase */ 

  ctr_code = Common.CONTINUE | Common.CTR_CODE; 

  cmrcv.send_ctr_msg(ctr_code); 

  /* Compute number of valid (non-ignored measurements) */ 

  no_trains = trains_msrd - 1; 

  /* Detect all local modes in Phase II */ 
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  /* Order measurements */ 

  ord_measurs_P2 = UtilMethodsRcv.orderInt(measurs_P2, no_trains); 

  /* Detect and store all local modes in Phase II */ 

   System.out.println("Local modes : In Phase II"); 

   /* Mark all measurements as valid (needed for local mode detection) */ 

   for (train_no = 0; train_no < no_trains; train_no++)  measurs_vld_P2[train_no]=1; 

   no_modes_P2=0; 

   while (true) { 

   mode_value = urcv.getMode(ord_measurs_P2, measurs_vld_P2, bin_wd, no_trains); 

   if ( mode_value == Common.LAST_MODE) break; 

    /* the modes are ordered based on the number of measurements 

    in the modal bin (strongest mode first) */ 

    if (mode_value != Common.UNIMPORTANT_MODE) { 

     modes_P2_mode_value[no_modes_P1] = mode_value; 

     modes_P2_mode_cnt[no_modes_P1] = urcv.getMode_cnt(); 

     modes_P2_bell_cnt[no_modes_P1] = urcv.getBell_cnt(); 

     modes_P2_bell_lo[no_modes_P1] = urcv.getBell_lo(); 

     modes_P2_bell_hi[no_modes_P1] = urcv.getBell_hi(); 

    modes_P2_bell_kurtosis[no_modes_P1] = urcv.getBell_kurtosis(); 

     no_modes_P2++; 

     if (no_modes_P2 >= GlobalsRcv.MAX_NO_MODES) { 

     System.out.println("Increase MAX_NO_MODES constant"); 

     urcv.termint(-1); 

     } 

        } 

   } 

   /* 

   If the Phase II measurements are distributed in a very narrow fashion 

   (i.e., low coefficient of variation, and std_dev less than bin width), 

   and the ADR is not much lower than the earlier avg bandwidth estimate, 

   the ADR is a good estimate of the capacity mode. This happens when 

   the narrow link is of significantly lower capacity than the rest of the links, 

   and it is only lightly used.*/ 

   /* Compute ADR estimate */ 

adr = UtilMethodsRcv.getAvg(UtilMethodsRcv.extractLast(ord_measurs_P2,10,no_trains), no_trains-20); 

std_dev = UtilMethodsRcv.getStd(UtilMethodsRcv.extractLast(ord_measurs_P2,10,no_trains), trains_msrd -20); 

   adr_narrow=0; 

if (no_modes_P2==1 && std_dev/adr<GlobalsRcv.COEF_VAR_THR && 
adr/avg_bw>GlobalsRcv.ADR_REDCT_THR) { 

 if (Common.Verbose) System.out.println("The capacity estimate will be based on the ADR mode."); 

   adr = modes_P2_mode_value[0]; 

   adr_narrow=1; 

  } 

  if (no_modes_P2 > 1) { 
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 System.out.println("WARNING: Phase II did not lead to unimodal distribution. The ADR estimate may be 
wrong. Run again later."); 

 max_merit=0.; 

 for(i=0;i<no_modes_P2;i++) { 

  System.out.println(modes_P2_mode_value[i]-bin_wd/2.); 

  System.out.println(modes_P2_mode_value[i]+bin_wd/2.); 

  // Weiling: merit is calculated using kurtosis as the narrowness of the bell 

  merit = modes_P2_bell_kurtosis[i] * (modes_P2_mode_cnt[i] / (double)no_trains); 

  System.out.println("Figure of merit:" +  merit); 

  if (merit > max_merit){ 

   max_merit = merit; 

   cap_mode_ind = i; 

  } 

 } 

 adr = modes_P2_mode_value[cap_mode_ind]; 

} 

System.out.println("Asymptotic Dispersion Rate (ADR) estimate:"); 

System.out.println(adr); 

 /* The end of the story... Final capacity estimate */ 

 /* Final capacity estimate: the Phase I mode that is larger than ADR, 

 and it has the maximum "figure of merit". This figure of metric is the 

 "density fraction" of the mode, times the "strength fraction" of the mode. 

 The "density fraction" is the number of measurements in the central bin of the mode, 

 divided by the number of measurements in the entire bell of that mode. 

 The "strength fraction" is the number of measurements in the central bin of the mode, 

 divided by the number of measurements in the entire Phase I phase.*/ 

 if (!abort_phase1){ 

  System.out.println("Possible capacity values:"); 

  max_merit=0.; 

  for(i=0;i<no_modes_P1;i++){ 

   /* Give possible capacity modes */ 

   if (modes_P1_mode_value[i]+bin_wd/2. > adr){ 

   System.out.println(modes_P1_mode_value[i]-bin_wd/2.); 

System.out.println(modes_P1_mode_value[i]+bin_wd/2.); 

   // Weiling: merit is calculated using kurtosis as the narrowness of the bell 

  merit = modes_P1_bell_kurtosis[i] * (modes_P1_mode_cnt[i] / (double)no_trains_P1); 

   System.out.println("Figure of merit: " + merit); 

   if (merit > max_merit){ 

    max_merit =  merit; 

    cap_mode_ind = i;} 

  } 

 } 

 if (max_merit>0.){ 

urcv.happyEnd(modes_P1_mode_value[cap_mode_ind]-bin_wd/2.,  
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modes_P1_mode_value[cap_mode_ind]+bin_wd/2.); 

 getTime.getTimeOfDay(); 

 stops = getTime.seconds;stopus = getTime.useconds;  

   timeUS= (stops - starts)*1000000 + (stopus - startus); 

   System.out.println("Execution time " + (int)(timeUS/1000) + " miliseconds"); 

   urcv.termint(0); 

  } 

  /* If there is no Phase I mode that is larger than the ADR or 

 if Phase II gave a very narrow distribution  

  the final capacity estimate is the ADR.*/ 

  else{ 

  /* If there are multiple modes in Phase II (not unique estimate for ADR), 

  * the best choice for the capacity mode is the largest mode of Phase II */ 

   System.out.println(adr-bin_wd/2.); 

   System.out.println(adr+bin_wd/2.); 

   getTime.getTimeOfDay(); 

   stops = getTime.seconds; stopus = getTime.useconds; 

   timeUS= (stops - starts)*1000000 + (stopus - startus); 

   System.out.println("Execution time " + (int)(timeUS/1000) + " miliseconds"); 

   System.out.println("ADR mode"); 

   urcv.happyEnd(adr-bin_wd/2., adr+bin_wd/2.); 

   urcv.termint(0); 

  } 

 } 

 else { 

  max_merit=0.; 

System.out.println("Phase I was aborted.--> The following estimate is a lower bound for the path capacity."); 

  getTime.getTimeOfDay(); 

  stops = getTime.seconds;stopus = getTime.useconds;  

  timeUS= (stops - starts)*1000000 + (stopus - startus); 

  System.out.println("Execution time " + (int)(timeUS/1000) + " miliseconds"); 

  urcv.happyEnd(adr-bin_wd/2., adr+bin_wd/2.); 

  urcv.termint(0); 

 } 

} catch (Exception e){ System.err.println(e);} 

 finally{ udpr.closeUDPSocket(GlobalsRcv.sock_udp); 

if (GlobalsRcv.sc != null){ 

   try{GlobalsRcv.sc.close();} catch (Exception ignored){}} 

  } 

} 

} 

PathrateSnd.java 
 

public class PathrateSnd{ 
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 Server srv; 

 public PathrateSnd(int unitsNo) {srv = new Server(unitsNo);} 

 public void startServer(){ 

  srv.start(); System.out.println("[Pathrate] ----> start server");} 

 public void stopServer() { srv.stopServer();System.out.println("[Pathrate] ----> stop server");} 

} 

class Server extends Thread { 

 Selector selector; ServerSocketChannel serverChannel;ServiceThreadPool stp;boolean boolSelect; 

 public Server(int unitsNo){ 

  super();boolSelect = true; 

  try { 

   stp = new ServiceThreadPool(unitsNo); 

   Globals.po = new PrintOutput("server.log"); 

  } catch (IOException e) {} 

 } 

 public void run(){ startServer();} 

 public void startServer(){ 

  try{ selector = Selector.open();}catch (IOException e){} 

  UtilMethods.minSleepTime(); 

  /* gettimeofday latency */ 

  GetTime getTime = new GetTime(); 

  Globals.getTimeOfDayLatency = getTime.getTimeOfDayLatency(); 

  Globals.po.write("DEBUG :: gettimeofday latency(usec) = " + Globals.getTimeOfDayLatency); 

  UDPSend udps = new UDPSend(); 

  Globals.sendLatency = udps.sendLatency(Common.MAX_PACK_SZ); 

  Globals.po.write("DEBUG :: send latency(usec) = " + Globals.sendLatency); 

  // open channels for communication 

  try { openChannel(); } catch (IOException e) {}  

  serviceClients(); 

 } 

 public void stopServer() { 

  Globals.po.close(); 

  try { 

   boolSelect = false; 

   selector.wakeup();    

   selector.close(); 

   serverChannel.close(); 

  } catch (IOException ex) { }    

  stp.stopWorkers(); 

 } 

 public void openChannel() throws IOException { 

  int tcpSndPort = Common.TCPSND_PORT; 

  // TCP control connection 

  // Allocate an unbound server socket channel 
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  serverChannel = ServerSocketChannel.open(); 

  // Get the associated ServerSocket to bind it with  

  ServerSocket serverSocket = serverChannel.socket(); 

  // Set the port the server channel will listen to 

  serverSocket.bind (new InetSocketAddress (tcpSndPort)); 

  serverSocket.setReuseAddress(true); 

  // Set nonblocking mode for the listening socket 

  serverChannel.configureBlocking (false); 

  // Register the ServerSocketChannel with the Selector 

  serverChannel.register (selector, SelectionKey.OP_ACCEPT); 

 } 

 public void serviceClients() { 

  try { 

   // Wait for something of interest to happen 

   while (boolSelect) { 

    // This may block for a long time. Upon returning, the 

    // selected set contains keys of the ready channels. 

    int n = selector.select(); 

    if (n == 0) { continue;    // nothing to do } 

       // Get set of ready objects 

    Set readyKeys = selector.selectedKeys(); 

    Iterator readyItor = readyKeys.iterator(); 

 

    // Walk through set 

    while (readyItor.hasNext()) { 

     // Get key from set 

     SelectionKey key = (SelectionKey)readyItor.next(); 

     // Remove current entry 

     readyItor.remove(); 

     if (key.isAcceptable()) { 

      // Get channel 

    ServerSocketChannel keyChannel = (ServerSocketChannel)key.channel(); 

      // Get the socket channel 

      SocketChannel s = keyChannel.accept(); 

      s.configureBlocking(false); 

      // ok now put the task in someone's queue 

    // each worker has a selector registered on a number of socket channels 

      stp.addNewTask(s); 

     }  

     else {throw new IllegalStateException();} 

    } 

   } 

  } catch (IOException e) {Globals.po.close(); 

   try { selector.close(); serverChannel.close();} catch (IOException ex) { }}}} 


