
“Politehnica” University of Bucharest
Computer Science and Engineering Department

Faculty of Computer Science

Measuring the available bandwidth

in a network (end to end).
Integration in MonALISA

Student name:
Madalin Mihailescu

Coordinator:
PhD-Professor Ing. Valentin Cristea (UPB)

Adviser:
PhD-Professor Iosif Charles Legrand (Caltech)

Bucharest
- 2004 -

 2

Preface

Abstract

The available bandwidth in a network path is of major importance in congestion

control, streaming applications, quality of service verification, server selection and in

several other areas. The ability for an application to adapt its behavior to changing

network conditions depends on the underlying bandwidth estimation mechanism that the

application or transport protocol uses. So, from accurate bandwidth estimation algorithms

and tools, can benefit a large class of data- intensive and distributed scientific

applications.

The accuracy in measuring the available bandwidth is difficult to achieve if

estimation techniques that use small amount of data, instead of large data volume

techniques, are used but there is current research in this area. Existing techniques attempt

to estimate the capacity and bandwidth of both links and paths us ing as small a quantity

of data as possible. These techniques must operate from only the end points of a

connection, and must not require specialist software be deployed into the core of the

network.

The MonALISA (Monitoring Agents in A Large Integrated Services Architecture)

system provides a distributed service architecture which is used to collect and process

monitoring information. Besides the monitoring service, MonALISA provides a

videoconferencing system.

VRVS is a videoconferencing system based on a set of servers called reflectors

that route the audio/video streams to the participating clients. A goal for the VRVS

system is to enhance the quality of the service, so the quality of the alternative

connections in the system is important. The available bandwidth is the most significant

parameter that describes the quality of a connection.

 This paper presents a method for estimating the available bandwidth end to end,

its implementation and the integration in MonALISA

 3

Table of contents

Preface .. 2

Abstract ... 2
Chapter 1 - Introduction ... 5

1.1. The importance of measuring network links ... 5
1.2. History of measuring tools ... 7

Chapter 2 - Basic notions for measuring network links ... 9
2.1. Definitions .. 9

Chapter 3 - Existing techniques and tools .. 12
3.1. Existing bandwidth estimation techniques... 12

3.1.1. Variable Packet Size Probing.. 12
3.1.2 Packet Pair/Train Dispersion Probing.. 14

3.1.2.1. Packet Pair Probing.. 14
3.1.2.2. Packet Train Probing.. 15

3.1.3. Self-Loading Periodic Streams (SLoPS) .. 17
3.1.4. Trains of Packet Pairs ... 18

3.2. Existing available bandwidth estimation tools .. 19
Chapter 4 – MonALISA. Monitoring Agents using a Large Integrated Services
Arhitecture .. 22

4.1. The MonALISA Services architecture... 22
4.2. The Monitoring Service ... 24

4.2.1. The Data Collection Engine .. 24
4.2.2. Data Storage .. 26
4.2.3. Registration and Discovery... 26
4.2.4. Effective Data Handling: Predicates, Filters and Agents................................ 27

4.3. Clients and Data Access... 29
4.4. Monitoring the VRVS System... 29
4.5. Optimized Dynamic Routing ... 31

4.5.1. Minimum Spanning Trees... 31
4.5.2. Getting qualities of internet links between reflectors – the ABPing module . 33

Chapter 5 – SLoPS. Measuring end-to-end available bandwidth 34
5.1. Basic Idea ... 34

5.2.1. SLoPS with fluid cross-traffic .. 35
5.2.2. An iterative algorithm to measure A ... 36
5.2.3. SLoPS with real cross-traffic .. 37

Chapter 6 – Used Technologies .. 39
6.1. Java NIO .. 39

6.1.1. Buffers... 39
6.1.2. Channels.. 41
6.1.3. Selectors.. 42

6.2. JNI.. 43
Chapter 7 – Implementation and Design .. 45

7.1. Implementation .. 45
7.2. Class structure .. 50
7.3. The utility of JNI.. 52

 4

Chapter 8 – The Integration in MonALISA... 54
8.1. Monitoring Modules .. 54
8.1. AppControl... 55

Chapter 9 – Tests and Conclusions .. 58
9.1. Tests and evaluation... 58
9.2. Conclusions .. 59

Chapter 10 - References.. 60
Appendix - Code listing and demonstrations .. 61

A. Proof of Proposition 1 .. 61

 5

Chapter 1 - Introduction

1.1. The importance of measuring network links

With the increase in use of the Internet, more people are finding themselves

dependent on it. Just as happened with the telephone system early last century, business

and people are finding that the requirement of Internet for communication and gathering

of information is something they cannot operate without. Increasingly more and more

business models are based solely around the Internet.

However with this growth of dependency and use of the Internet, more and more

demands are being placed on the performance of the network. Users require that

consistent monitoring of the performance is carried out, in order to both detect faults

quickly and predict and provision for the growth of the network.

Measuring the Internet is difficult, some of the reasons for this are described

below. Not all ISP's are forthcoming about details of the loading and performance of their

network. Even with the support of the ISP, the complexity of the network means that

normally multiple providers are involved in the end-to-end connection between hosts.

This situation makes the monitoring of end-to-end performance by any one ISP nearly

impossible.

The inability for users to be confident in the performance in the network is

causing a demand for tools to enable users to asses the performance without assistance.

These tools need to quickly and easily measure the end-to-end performance of the

network, while not placing anymore load on the network than is absolutely necessary.

 Extra load may restrict the times that the measurement may be made, and

depending on the charging system, could create large extra traffic charges.

One possible way to meet this need would be the deployment of special software

or hardware on each router in the network. A solution such as this, however, is just not

practical. The cost, time and security problems with this outweigh the gains from this

type of instrumentation.

The cost of this solution is involved in the man hours spent upgrading software on

all of the routers in the network, the charges for this software by the vendor, and the price

 6

to upgrade older routers that are unable to run this software. This sort of upgrade is also

not going to be instantaneous. The time required for upgrading the software on every

router in the entire network would be huge. This would leave a substantial time where

there are inconsistencies in the network when it may be possible to measure some of the

paths, and not others.

An alternative approach is to use end-to-end software run on the end hosts. This

allows the measurement to be run at the users discretion and allows for simple

deployment. However this approach requires the software to infer the characteristics of

the links involved without being able to directly measure each link individually.

The need for accurate bandwidth measurement is stronger for scientific

applications in nuclear physics, astronomy or biotechnology.

Scientific experiments in the fields of high energy nuclear/particle physics, astronomy, or

biotechnology, can generate terabytes of data; experiments planned for the near future are

expected to produce petabytes. Such large data sets will be made available to thousands

of scientists around the world via a high performance computing and communication

infrastructure. Scientists must be able to analyze results of these experiments as if these

petabytes were stored in their desktop hard drive, to collaborate in `labs without walls',

and to access remote instruments as if these instruments were located next door. Research

projects such as the Grid Physics Network (GriPhyN) and the Particle Physics Data Grid

(PPDG) are motivated by the computing and networking needs of this new generation of

scientific experiments.

Expensive links and switches graded as `terabyte-capable' do not guarantee that

applications will be able to use all this potential bandwidth. It has been demonstrated that,

especially in high latency and high bandwidth paths, data intensive applications often

achieve throughput of no more than tens of Mbps, regardless of network capacity graded

orders of magnitude higher.

Several factors contribute to mismatches between the capacity of underlying

network technology and application throughput. The latter depends on the transport

protocol design (flow and congestion control algorithms), transport protocol

implementation and selection of its tunable parameters, intensity and behavior of network

cross traffic, throughput of network interfaces and operating system at end-hosts, and the

capacities and MTUs (Maximum Transmission Units) of underlying link technologies.

 7

Capacity, bandwidth, and throughput all quantify aspects of data transfer rate across a

network, which is the main performance consideration for data intensive scientific

applications. A major component missing from today's applications and transport

protocols is the ability to measure and predict the throughput achievable across a

network path. Instead, transport protocols, mainly TCP, attempt to dynamically and

adaptively search for the maximum possible rate using techniques such as slow start or

congestion avoidance, which often lead to network underutilization and low application

throughput. We could avoid these problems if we had measurement methodologies that

could accurately monitor the maximum possible bandwidth (capacity) in a network path,

as well as the maximum allowable bandwidth (available bandwidth). With accurate

bandwidth-related information, the transport protocol and applications could achieve

higher throughput and react faster to changing network conditions. Accurate bandwidth

assessment techniques would also allow a quantum jump in the functionality of Internet

traffic engineering, e.g., agents in routers or proxies that could inform routing protocols

of overloaded paths, and/or provide guidance to service differentiation mechanisms

(scheduling, input traffic limiting) for overloaded classes of traffic.

These problems can be avoided by finding accurate monitoring methods based on

UDP or more optimal on ICMP packets. These two last protocols adapt faster and better

to network changes and they don’t need keeping a connection opened during the

measurement process (with a few thousands connections you can get to congestion).

1.2. History of measuring tools

Numerous network measurement projects in the last decade, mostly focusing on

performance evaluation, have defined two generations of network performance

measurement activities. We now have a third generation. Each generation builds on the

measurement tools and experiences of the previous ones.

1. First generation: In the eighties and early nineties, several active

performance measurement tools were developed, e.g., ping, traceroute, ttcp, primarily for

use by network managers when installing equipment, debugging the network, or

monitoring basic performance metrics, such as round-trip times, loss rates (with periodic

packet probing), number of hops, or bulk TCP throughput. These tools have

 8

demonstrated enormous practical operational value for network managers, but they do not

measure more advanced performance metrics, such as capacity or available bandwidth

across a path or of a certain link in the path.

2. Second generation: Starting in the mid-nineties, several large-scale

measurement activities used first-generation tools (and slightly modified derivatives) to

evaluate and monitor the performance of various infrastructures: PingER (SLAC), NIMI

(LBNL, PSC, ACIRI), Surveyor (Advanced Networks), RIPE's Test Traffic, AMP

(NLANR), Wolski's NWS, Skitter (CAIDA), and several commercial efforts, e.g.,

Keynote, MIDS, Internet Weather Services. A common characteristic of these projects is

the large number of probing hosts distributed around the US or world. An important point

in these projects is that N probes allow bi-directional monitoring of N2 network paths.

Results from these projects have been of solid (yet limited) value in monitoring and

visualizing approximate network performance. Their results are, however, virtually

impossible to correlate, and they do not do well at capturing and analyzing performance

data in time to take immediate operational actions based on the measurements. Further,

none of the activities involved mechanisms for making measurement results available to

transport protocols, applications, or middleware to improve end-to-end performance.

3. Third generation: To make an innovative contribution to the field, the next

generation of measurement technology captures more advanced performance metrics,

such as capacity (maximum possible throughput) and available bandwidth (maximum

allowable throughput) of a network path. Such metrics are more useful to an application

than simple round-trip time or loss rate estimates. Other advanced performance metrics

related to available bandwidth include: delay variations (jitter), stationarity of cross

traffic, and distribution of queue sizes along the network path. In addition, third

generation tools must make gathered information available to applications, transport

protocols, and network middleware for use in modulating end host behavior to optimize

end-to-end performance. I will cover the existing techniques and tools in chapter 3.

 9

Chapter 2 - Basic notions for measuring

network links

2.1. Definitions

For a better understanding of the essence of the problems and the solutions

proposed, it’s necessary to define and explain some specific terms :

Hosts à end points from which a packet either originates from or is destined to.

Router à a machine with two or more network connections that forwards packets

from one connection to another that will get the packet closer to its destination.

An important thing to note about computer network routers is that they are

normally store-and-forward routers. This means that every byte of the packet must be

received from the link and placed into a buffer in the router before the router will start to

send it out on the destination link. If packets arrive at a router faster than they can be sent

out the appropriate output port a packet queue will form for this port. The queue

discipline used is almost always a FIFO queue

Link à refers to a single connection between routers or routers and hosts.

Path à the collection of links, joined by routers, that carries the packets from the

source to the destination host. Two paths are different if any intermediate router is

different.

Link latency à the time it takes from the time the first byte of a packet is placed

on the medium until the time that the first byte is taken from the medium.

Figure 1. Bandwidth and latency

 10

Link bandwidth à the rate at which bits can be inserted into the medium. The

faster the bandwidth the more bits can be placed on the medium in a given time frame

(Figure 1).

The transmission delay à the time it takes a packet to be placed on the medium.

This time is proportional to the packet size and the bandwidth of a link. It is the time

from the time the first byte is placed on the network until the time the last byte has been

sent.

The transmission time à considered to be the combination of link latency and

transmission delay. The transmission time is the time between the first byte being placed

on the medium and the last byte being taken off. This is the sum of the link latency and

the transmission delay.

The path latency à the sum of all of the individual transmission times as well as

the queueing time inside the routers. This is the time that it takes from the sender issuing

the packet until the destination receiving it. Path latency is often referred to as the one-

way delay .

Round trip time (RTT) latency à the sum of the path latency in the forward and

reverse directions, and can be measured easily by timing the sending of a packet, have the

destination machine respond to the packet immediately and the original sender timestamp

the return of this packet.

The path bandwidth à defined by the minimum of the link bandwidths, as this is

the fastest any traffic can make it through the path. The path bandwidth is also known as

the path capacity.

The bandwidth of a path is shared by the traffic under consideration and other traffic.

This reduces the amount of bandwidth available to the hosts. This other traffic is referred

to as cross traffic.

Available bandwidth à the amount of bandwidth ``left over'' after the cross

traffic. The link with the lowest available bandwidth will not necessary be the link with

the lowest capacity.

 11

Figure 2. Capacity and available

bandwidth

The capacity of a path is determined by the link with the minimum capacity

(narrow link) à C = C1.

The available bandwidth of a path is determined by the link with the minimum

unused capacity (tight link). à A. (Figure 2)

 12

Chapter 3 - Existing techniques and tools

3.1. Existing bandwidth estimation techniques

This section describes existing bandwidth measurement techniques for estimating

capacity and available bandwidth in individual hops and end-to-end paths. We focus on

four major techniques: variable packet size (VPS) probing, packet pair/train dispersion

(PPTD), self- loading periodic streams (SLoPS), and trains of packet pairs (TOPP). VPS

estimates the capacity of individual hops, PPTD estimates end-to-end capacity, and

SLoPS and TOPP estimate end-to-end available bandwidth. There is no currently known

technique to measure available bandwidth of individual hops.

In the following we assume that during the measurement of a path P its route remains the

same and its traffic load is stationary. Dynamic changes in routing or load can create

errors in any measurement methodology. Unfortunately, most currently available tools do

not check for dynamic route or load changes during the measurement process.

 3.1.1. Variable Packet Size Probing

VPS probing aims to measure the capacity of each hop along a path. S. Bellovin

and V. Jacobson were the first to propose and explore the VPS methodology. The key

element of the technique is to measure the RTT from the source to each hop of the path as

a function of the probing packet size. VPS uses the time-to- live (TTL) field of the IP

header to force probing packets to expire at a particular hop. The router at that hop

discards the probing packets, returning ICMP time-exceeded error messages back to the

source. The source uses the received ICMP packets to measure the RTT to that hop. The

RTT to each hop consists of three delay components in the forward and reverse paths:

serialization delays, propagation delays, and queuing delays.

The serialization delay of a packet of size L at a link of transmission rate C is the

time to transmit the packet on the link, equal to L/C. The propagation delay of a packet at

a link is the time it takes for each bit of the packet to traverse the link, and is independent

 13

of the packet size. Finally, queuing delays can occur in the buffers of routers or switches

when there is contention at the input or output ports of these devices.

VPS sends multiple probing packets of a given size from the sending host to each

layer 3 device along the path. The technique assumes that at least one of these packets,

together with the ICMP reply it generates, will not encounter any queuing delays.

Therefore, the minimum RTT measured for each packet size will consist of two terms: a

delay that is independent of packet size and mostly due to propagation delays, and a term

proportional to the packet size due to serialization delays at each link along the packet’s

path. Specifically, the minimum RTT Ti(L) for a given packet size L up to hop i is

expected to be:

where:

• Ck : capacity k-th hop

• a : delays up to hop i that do not depend on the probing packet size L

• ßi: slope of minimum RTT up to hop i against probing packet size L, given by

Note that all ICMP replies have the same size, independent of L; thus, the a term

includes their serialization delay along with the sum of all propagation delays in the

forward and reverse paths.

The minimum RTT measurements for each packet size up to hop i estimates the

term ßi. Repeating the minimum RTT measurement for each hop i = 1, …, H, the

capacity estimate at each hop i along the forward path is:

Unfortunately, VPS probing may yield significant capacity underestimation errors

if the measured path includes store-and-forward layer 2 switches. Such devices introduce

serialization delays of the L/C type, but they do not generate ICMP TTL-expired replies

because they are not visible at the IP layer. Modifying VPS probing to avoid such errors

remains an active research problem.

 14

 3.1.2 Packet Pair/Train Dispersion Probing
 3.1.2.1. Packet Pair Probing

Packet pair probing is used to measure the end-to-end capacity of a path. The

source sends multiple packet pairs to the receiver. Each packet pair consists of two

packets of the same size sent back to back. The dispersion of a packet pair at a specific

link of the path is the time distance between the last bit of each packet. Packet pair

techniques originate from seminal work by V. Jacobson, S. Keshav, and J. C. Bolot.

Figure 3. Packet pair dis pertion

Figure 3 shows the dispersion of a packet pair before and after the packet pair

goes through a link of capacity Ci assuming that the link does not carry other traffic. If a

link of capacity C0 connects the source to the path and the probing packets are of size L,

the dispersion of the packet pair at that first link is ? 0 = L/C0. In general, if the dispersion

prior to a link of capacity Ci is ? in, the dispersion after the link will be:

, assuming again that there is no other traffic on that link.

After a packet pair goes through each link along an otherwise empty path, the

dispersion R the receiver will measure is:

, where C is the end-to-end capacity of the path. Thus, the receiver can estimate

the path capacity from C = L/? R. Admittedly, the assumption that the path is empty of

any other traffic (referred to he re as cross traffic) is far from realistic. Even worse, cross

traffic can either increase or decrease the dispersion ? R, causing underestimation or

overestimation, respectively, of the path capacity. Capacity underestimation occurs if

 15

cross traffic packets are transmitted between the probing packet pair at a specific link,

increasing the dispersion to more than L/C. Capacity overestimation occurs if cross traffic

delays the first probe packet of a packet pair more than the second packet at a link that

follows the path’s narrow link.

Sending many packet pairs and using statistical methods to filter out erroneous

bandwidth measurements mitigates the effects of cross traffic. Unfortunately, standard

statistical approaches such as estimating the median or the mode of the packet pair

measurements do not always lead to correct estimation. Figure 4 illustrates why, showing

1000 packet pair measurements at a path from the University of Wisconsin to CAIDA (at

the University of California, San Diego, UCSD), for which the path capacity is 100 Mb/s.

Note that most of the measurements underestimate the capacity, while the correct

measurements form only a local mode in the histogram. Identifying the correct capacity-

related mode is a challenging task.

Figure 4. A histogram of capacity measurements from

1000 packet pair experiments in a 100 Mb/s path

 3.1.2.2. Packet Train Probing

Packet train probing extends packet pair probing by using multiple back-to-back

packets. The dispersion of a packet train at a link is the amount of time between the last

 16

bit of the first and last packets. After the receiver measures the end-to-end dispersion

? R(N) for a packet train of length N, it calculates a dispersion rate D as:

What is the physical meaning of this dispersion rate? If the path has no cross traffic, the

dispersion rate will be equal to the path capacity, the same as with packet pair probing.

However, cross traffic can render the dispersion rate significantly lower than the capacity.

To illustrate this effect, consider the case of a two-hop path. The source sends packet

trains of length N through an otherwise empty link of capacity C0. The probing packets

have a size of L bytes. The second link has a capacity C1 < C0, and carries cross traffic at

an average rate of Rc < C1. We assume that the links use first come first served (FCFS)

buffers. The dispersion of the packet train after the first link is ? 1 = L(N – 1)/C0, while

the train dispersion after the second link is:

where Xc is the amount of cross traffic (in bytes) that will arrive at the second link during

the arrival of the packet train at that link. The expected value of Xc is:

, so the average dispersion rate ADR the receiver measures is :

As the train length N increases, the variance in the amount of cross traffic Xc that

interferes with the probing packet train decreases, reducing also the variance of the

dispersion rate D.

This last equation shows the following important properties for the average dispersion

rate ADR. First, if Rc > 0, ADR is less than the path capacity. Second, ADR is not related

to the available bandwidth in the path, which is A = C1 – Rc in this example. In fact, it is

easy to show that ADR is larger than the available bandwidth (ADR > A) if Rc > 0.

Finally, ADR is independent of the packet train length N. However, N affects the

variance of the measured dispersion rate D around its mean ADR, with longer packet

 17

trains (larger N) reducing the variance in D.

PPTD probing techniques typically require double-ended measurements, with

measurement software running at both the source and the sink of the path. It is also

possible to perform PPTD measurements without access at the sink, by forcing the

receiver to send some form of error message (e.g., ICMP port-unreachable or TCP RST

packets) in response to each probe packet. In this case the reverse path capacities and

cross traffic may affect the results.

 3.1.3. Self-Loading Periodic Streams (SLoPS)

SLoPS is a recent measurement methodology for measuring end-to-end available

bandwidth. The source sends a number K of equal-sized packets (a periodic packet

stream) to the receiver at a certain rate R. The methodology involves monitoring

variations in the one-way delays of the probing packets. If the stream rate R is greater

than the path’s available bandwidth A, the stream will cause a short-term overload in the

queue of the tight link. One-way delays of the probing packets will keep increasing as

each packet of the stream queues up at the tight link. On the other hand, if the stream rate

R is lower than the available bandwidth A, the probing packets will go through the path

without causing increasing backlog at the tight link, and their one-way delays will not

increase. Figure 5 illustrates the two cases.

 Figure 5. One-way delays increase when the

stream rate R > available bandwidth A, but do not increase when R < A.

 18

In SLoPS the sender attempts to bring the stream rate R close to the available

bandwidth A, following an iterative algorithm similar to binary search. The sender probes

the path with successive packet trains of different rates, while the receiver notifies the

sender about the one-way delay trend of each stream. The sender also makes sure that the

network carries no more than one stream at any time. Also, the sender creates a silent

period between successive streams in order to keep the average probing traffic rate to less

than 10 percent of the available bandwidth on the path.

The available bandwidth estimate A may vary during the measurements. SLoPS

detects such variations when it notices that the one-way delays of a stream do not show a

clear increasing or nonincreasing trend. In that case the methodology reports a grey

region, which is related to the variation range of the available bandwidth A during the

measurements.

This technique will be presented in detail in Chapter 5, as it is the technique that will be

implemented in this project.

 3.1.4. Trains of Packet Pairs

B. Melander, M. Bjorkman, and P. Gunningberg proposed a measurement

methodology to estimate the available bandwidth of a network path. TOPP sends many

packet pairs at gradually increasing rates from the source to the sink.

Suppose a packet pair is sent from the source with initial dispersion ? S. The

probing packets have a size of L bytes; thus, the offered rate of the packet pair is Ro =

L/? S. If Ro is more than the end-to-end available bandwidth A, the second probing packet

will be queued behind the first probing packet, and the measured rate at the receiver will

be Rm < Ro. On the other hand, if Ro < A, TOPP assumes that the packet pair will arrive at

the receiver with the same rate it had at the sender (Rm = Ro). Note that this basic idea is

analogous to SLoPS. In fact, most of the differences between the two methods are related

to the statistical processing of the measurements. Also, TOPP increases the offered rate

linearly, while SLoPS uses a binary search to adjust the offered rate.

An important difference between TOPP and SLoPS is that TOPP can also

estimate the capacity of the tight link of the path. Note that this capacity may be higher

 19

than the capacity of the path if the narrow and tight links are different. To illustrate

TOPP, consider a single-link path with capacity C, available bandwidth A, and average

cross traffic rate Rc = C – A. TOPP sends packet pairs with an increasing offered rate Ro.

When Ro becomes larger than A, the measured rate of the packet pair at the receiver will

be:

, or

TOPP estimates the available bandwidth A to be the maximum offered rate such

that Ro~Rm. The last equation is used to estimate the capacity C from the slope of Ro/Rm

vs. Ro.

Unfortunately, in paths with multiple links, the Ro/Rm curve may show multiple slope

changes due to queuing at links having higher available bandwidth than A, so the

accuracy is unclear.

3.2. Existing available bandwidth estimation tools

Now, I will try to summarize the main existing tools for available bandwidth

estimation.

Cprobe was the first tool to attempt to measure end-to-end available bandwidth.

Cprobe measures the dispersion of a train of eight maximum-sized packets. However, it

has been previously shown that the dispersion of long packet trains measures the

dispersion rate, which is not the same as the end-to-end available bandwidth. In general,

the dispersion rate depends on all links in the path as well as on the train’s initial rate. In

contrast, the available bandwidth only depends on the tight link of the path.

Pathload implements the SLoPS methodology. It requires access at both ends of

the path and support a bandwidth range rather than a single estimate. It sends a periodic

packet trains with different rates and measures the one-way delays (OWD). In case of an

 20

overload link there will be an increasing OWD trend (as queue builds up) otherwise there

will be a non- increasing trend. The trends are detected using two algorithms.

IGI/PTR uses the PPD (packet pair dispertion) mechanism. Multiple packet pairs

are sent with increasing gap size. The IGI algorithm computes the rate of the competing

traffic while the PTR algorithm computes the available bandwidth.

PathChirp uses packet trains with exponential spaced packets called chirps. It

measures interarrival times and therefore does not require time synchronization. Delay

signatures measured are separated into excursions (segments) where all packets are part

of the same busy period.

Spruce uses Poisson distributed packet pairs (exponentially inter probe times) and

a sliding window average of the sample measurements to continuously provide available

bandwidth information. Spruce requires knowledge about the bottleneck capacity, as it

computes the available bandwidth as a difference between the capacity and a calculated

rate.

Netest sends periodic packet trains. It determines amount of cross traffic with an

algorithm called feedback adaptive control. The algorithm sends with a certain rate,

measures the received rate and adapts the sender rate until the receiver rate equals the

sender rate. It can also be used to calculate capacity.

I have to mention here three tools that measure the achievable TCP throughput for

a path. TTCP, NetPerf, and Iperf are all tools that use large TCP transfers to measure the

achievable throughput in an end-to-end path. The user can control the socket buffer sizes

and thus the maximum window size for the transfer. TTCP (Test TCP) was written in

1984, while the more recent NetPerf and Iperf have improved the measurement process

and can handle multiple parallel transfers.

All three tools require access at both ends of the path, but do not require superuser

privileges.

Iperf gives you the possibility to calculate the available bandwidth, and I will use it as

reference for my results.

 21

 Figure 6. Main existing tools

 22

Chapter 4 – MonALISA. Monitoring

Agents using a Large Integrated Services

Arhitecture

4.1. The MonALISA Services architecture

The MonALISA (Monitoring Agents in A Large Integrated Services Architecture)

system provides a distributed service architecture which is used to collect and process

monitoring information. While its initial target field of application is networks and Grid

systems supporting data processing and analysis for global high energy and nuclear

physics collaborations, MonALISA is broadly applicable to many fields of “data

intensive” science, and to the monitoring and management of major research and

education networks. MonALISA is based on a scalable Dynamic Distributed Services

Architecture (DDSA), and is implemented in Java using JINI and WSDL technologies.

The scalability of the system derives from the use of a multi threaded engine to host a

variety of loosely coupled self-describing dynamic services, the ability of each service to

register itself and then to be discovered and used by any other services, or clients that

require such information. The framework integrates many existing monitoring tools and

procedures to collect parameters describing computational nodes, applications and

network performance. Specialized mobile agents are used in the MonALISA framework

to perform global optimization tasks or help and improve the operation of large

distributed system by performing supervising tasks for different applications or real time

parameters. MonALISA is currently running around the clock monitoring several Grids

and distributed applications on around 150 sites.

A service in the DDSA framework is a component that interacts autonomously

with other services through dynamic proxies or agents that use self-describing protocols.

By using dedicated lookup services, a distributed services registry, and the discovery and

notification mechanisms, the services are able to access each other seamlessly. The use of

dynamic remote event subscription allows a service to register to be notified of a selected

 23

set of event types, even if there is no provider to do the notification at registration time.

The lookup discovery service will then automatically notify all the subscribed services,

when a new service, or a new service attribute, becomes available.

When a service is created, both the code and the appropriate parameters are

downloaded dynamically. Several advantages of this paradigm are: optimized

asynchronous communication and disconnected operation, remote interaction and

adaptability, dynamic parallel execution and autonomous mobility. The combination of

the DDSA service features and code mobility makes it possible build an extensible

hierarchy of services capable of managing very large Grids, with relatively little program

code.

The services are managed by an efficient multithreading engine that schedules and

oversees their execution, such that data handling operations are not disrupted if one or

more tasks (threads) are unable to continue. The system design also provides reliable

``non-stop'' support for large distributed applications under realistic working conditions,

through service replication, and automatic re-activation of services. These mechanisms

make the system robust against the failure or inaccessibility of multiple Grid components.

MonALISA services are organized in groups and this attribute is used for

registration and discovery. Each MonALISA service registers with a set of JINI Lookup

Discovery Services (LUS) as part of a group, and having a set of dynamic attributes.

The LUSs are also JINI services and each one may be registered with the other LUSs. If

two LUSs have common groups any information related with a change of state detected

for a service in the common group by one is replicated to the other one. In this way it is

possible to build a distributed and reliable network for registration of services and this

technology allows dynamically adding or removing LUSs from the system.

Any service should also provide for registration the code base for the proxies that

other services or clients need to instantiate for using it. This approach is used to make

sure that the right proxies are used for each service while different versions may be used

in a distributed organization at the same time.

The registration is based on a lease mechanism that is responsible to verify

periodically that each service is alive. In case a service fails to renew its lease, it is

removed from the LUSs and a notification is sent to all the services or clients that

subscribed for such events.

 24

Any monitor client or services is using the Lookup Discovery Services to find all

the active MonALISA services running as part of one or several group “communities”.

It is possible to select the services based on a set of matching attributes. The discovery

mechanism is used for notification when new services are started or when services are no

longer available. The communication between interested services or clients is done using

a MonALISA proxy service and is based on a remote event notification mechanism

which also supports subscription.

4.2. The Monitoring Service

An essential part of managing a global Data Grid is a monitoring system that is

able to monitor and track the many site facilities, networks, and the many task in

progress, in real time. The monitoring information gathered also is essential for

developing the required higher level services, and components of the Grid system that

provide decision support, and eventually some degree of automated decisions, to help

maintain and optimize workflow through the Grid. MonALISA is an ensemble of

autonomous multi- threaded, self-describing agent-based subsystems which are registered

as dynamic services and are able to collaborate and cooperate in perfo rming a wide range

of monitoring tasks in large scale distributed applications, and to be discovered and used

by other services or clients that require such information. MonALISA is designed to

easily integrate existing monitoring tools and procedures and to provide this information

in a dynamic, self describing way to any other services or clients.

 4.2.1. The Data Collection Engine

The system monitors and tracks site computing farms and network links, routers

and switches using SNMP, and it dynamically loads modules that make it capable of

interfacing existing monitoring applications and tools (e.g. Ganglia, MRTG, Hawkeye).

The core of the monitoring service is based on a multi- threaded system used to

perform the many data collection tasks in parallel, independently. The modules used for

collecting different sets of information, or interfacing with other monitoring tools, are

dynamically loaded and executed in independent threads. In order to reduce the load on

 25

systems running MonALISA, a dynamic pool of threads is created once, and the threads

are then reused when a task assigned to a thread is completed. This allows one to run

concurrently and independently a large number of monitoring modules, and to

dynamically adapt to the load and the response time of the components in the system. If a

monitoring task fails or hangs due to I/O errors, the other tasks are not delayed or

disrupted, since they are executing in other, independent threads.

A dedicated control thread is used to stop properly the threads in case of I/O

errors, and to reschedule those tasks that have not been successfully completed. A

priority queue is used for the tasks that need to be performed periodically. A schematic

view of this mechanism of collecting data is shown in Figure 5. This approach makes it

relatively easy to monitor a large number of heterogeneous nodes with different response

times, and at the same time to handle monitored units which are down or not responding,

without affecting the other measurements.

 Figure 5. A schematic view of the data collection

mechanism based on a multi -threaded engine.

This approach makes it relatively easy to monitor a large number of

heterogeneous nodes with different response times, and at the same time to handle

monitored unit s which are down or not responding, without affecting the other

measurements. As an example, we monitored 500 compute nodes performing a request

for ~200 metric values per node every 60 seconds. This provided a sustained rate of

~1600 metric values per second collected, using an average of 20 active threads. The

number of threads necessary to monitor a complete site is dynamically adjusted, and very

Farm
Monitor

Dynamic
Thread Pool

Trap Agent

Trap
Listener

SNMP

Get / trap

or

Specific
protocols

Dynamic loading of
signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

Farm
Monitor

Dynamic
Thread Pool

Trap Agent

Trap
Listener

SNMP

Get / trap

or

Specific
protocols

Dynamic loading of
signed modules or agents

Configuration
& Control

Other tools
(Ganglia, MRTG…)

WEB Server

 26

dependent on the response time for each node, which is related to its load as well as to the

quality of the network connections.

 4.2.2. Data Storage

The collected values are stored in a relational database, locally for each service.

The JDBC framework in JAVA offers the flexibility to dynamically load any driver and

connect to virtually any relational database. A normalized scheme is used to store the

result objects provided by the monitoring modules in indexed tables, which are

themselves generated as needed, dynamically. As data get older, we compress the values

stored in the database by evaluating the mean values over larger time intervals, while

keeping the fluctuation range for each parameter.

 4.2.3. Registration and Discovery

Each MonALISA service registers with a set of JINI Lookup Discovery Services

(LUS) as part of a group, and having a set of attributes. The LUSs are also JINI services

and each one may be registered with the other LUSs. If two LUSs have common groups

any information related with a change of state detected for a service in the common group

by one is replicated to the other one. In this way it is possible to build a distributed and

reliable network for registration of services and this technology allows dynamically

adding or removing LUSs from the system. Any service should also provide for

registration the code base for the proxies that other services or clients need to instantiate

for using it. This approach is used to make sure that the right proxies are used for each

service while different versions may be used in a distributed organization at the same

time. The registration is based on a lease mechanism that is responsible to verify

periodically that each service is alive. In case a service fails to renew its lease, it is

removed from the LUSs and a notification is sent to all the services or clients that

subscribed for such events.

Any monitor client services is using the Lookup Discovery Services to find all the

active MonALISA services running as part of one or several group “communities”. It is

possible to select the services based on a set of matching attributes. The discovery

 27

mechanism is used for notification when new services are started or when services are no

longer available. The communication between interested services or clients is based on a

remote event notification mechanism which also supports subscription.

The client application connects directly with each service it is interested in for

receiving monitoring information. To perform this operation, it first downloads the

proxies for the service it is interested in from a list of possible URLs specified as an

attribute of each service, and than it instantiate the necessary classes to communicate with

the service. This procedure allows each service to correctly interact with other services.

4.2.4. Effective Data Handling: Predicates, Filters and Agents

The clients, other services or agents can get any real- time or historical data by

using a predicate mechanism for requesting or subscribing to selected measured values.

These predicates are based on regular expressions to match the attribute description of the

measured values a client is interested in. They may also be used to impose additional

conditions or constraints for selecting the values. In case of requests for historical data,

the predicates are used to generate SQL queries to the local database. The subscription

requests create a dedicated thread, to serve each client. This thread performs a matching

test for all the predicates submitted by a client with the measured values in the data flow.

The same thread is responsible to send the selected results back to the client as

compressed serialized objects. Having an independent thread per client allows sending

the information they need, fast and in a reliable way, and it is not affected by

communication errors which may occur with other clients. In case of communication

problems these threads will try to reestablish the connection or to clean-up the

subscriptions for a client or a service which is no longer active.

Monitoring data requests with the predicate mechanism is also possible using the

WSDL/SOAP binding from clients or services written in other languages. The class

description for predicates and the methods to be used are described in WSDL, and any

client can create dynamically and instantiate the objects it needs for communication.

Currently, Web Services technology does not provide the functionality to register as a

listener, and to receive the future measurements a client may want to receive.

Other applications or clients may also use the Agent Filters to receive the

 28

information they need. The Agent Filter is a java module which can be dynamically

deployed to any MonALISA service. It is designed to perform a dedicated data

processing task on local data (by subscribing with a predicate to the data flow) and to

return the processed information periodically. The MonALISA service provides the run

time environment for these agents, which must be digitally signed by a trusted certificate.

As an example, such filters are used to compute the aggregate I/O traffic in a farm, or to

provide the number of nodes which are free. The same thread used for handling the

predicate subscription is used for sending the filtered results back to each client.

Dynamically loadable alarm agents, and agents able to take actions when abnormal

behavior is detected, are currently being developed to help with managing and improving

the working efficiency of the facilities, and the overall Grid system being monitored.

The clients, or any other services, use a set of proxies to connect and get

information from the monitoring services. These proxy services are used to allow

monitoring services to run behind firewalls, and to control the connections performed by

services. At the same time, these services are used to provide an intelligent multiplexing

of the same information if requested by more than one client or service. The way clients

connect to monitoring information using the MonALISA proxy services is presented in

Figure 2. In general, clients discover the nearest proxy service and use it to get the

information, but a dynamic load-balancing mechanism is also used to distribute the load

among the available proxies, so that monitoring information is served to many clients or

services without increasing the number of connections or load on individual monitoring

services.

Figure 6. MonALISA proxy services are used for accessing

monitoring information from clients or other services.

Look
up

MonALISA

Look
up

Client
(other

service)

Discovery Registration

MonALISA

MonALISA

Services
Proxy

Client
(other

service)

 DDaattaa
 FFiilltteerrss && AAggeennttss

 29

4.3. Clients and Data Access

We have developed a global graphical client which uses the discovery mechanism

to find all of the active services from a list of user defined groups. This graphical client

is implemented as a Web Start application that can be started and used from any web

browser with little effort.

A MonALISA service may provide its own GUI to any client as a complex proxy

containing the marshalled components as an attributed to the service. This GUI

communicates with each service from which the user wants detailed information and

plots the requested values. MonALISA provides flexible access to real- time or historical

monitoring values by using either a predicate subscription mechanism or dynamically

loadable filter agents. These mechanisms are used by any interested client to query and

subscribe to only the information it needs, or to generate specific aggregate values in an

appropriate format. When a client subscribes with a predicate to certain values, the GUI

will automatically update as new values matching the subscriptions are collected.

The graphical user interface allows users to visualize global parameters from

multiple sites, as well as detailed tracking of parameters for any individual site or

component in the entire system. The graphical clients also use the remote notification

mechanism, and thus are able to dynamically show when new services are started or

when services become unavailable. Dedicated filers are used to provide global views with

real time updates for all of the running services.

In Figure 7, we present a few examples in how real-time and historical data are presented

in MonALISA.

4.4. Monitoring the VRVS System

The Virtual Rooms VideoConferencing System (VRVS) is an enhanced web

based video conferencing system which is using a set of reflectors distributed world wide

for an efficient real-time distribution of the audio and video streams.

For each VRVS reflector, a MonALISA service is running using an embedded

Database, for storing the results locally, and runs in a mode that aims to minimize the

 30

Figure 7. The main GUI in MonALISA: it provides globals views

of the system as well as real time and historical plots

reflector resources it uses (typically less than 16MB of memory and practically without

affecting the system load).

Dedicated modules to interact with the VRVS reflectors were developed: to collect

information about the topology of the system; to monitor and track the traffic among the

reflectors and report communication errors with the peers; and to track the number of

clients and active virtual rooms. In addition, overall system information is monitored and

reported in real time for each reflector: such as the load, CPU usage, and total traffic in

and out.

A dedicated GUI for the VRVS version was developed as a java web-start client.

This GUI provides real time information dynamically for all the reflectors which are

monitored. If a new reflector is started it will automatically appear in the GUI and its

connections to its peers will be shown. Filter agents to compute an exponentially

mediated quality factor of each connection are dynamically deployed to every

MonALISA service, and they report this information to all active clients who are

subscribed to receive this information.

It provides real- time information about the way the VRVS system is used (number

of conferences or clients) the topological connectivity of the reflectors and the quality of

 31

it and system related information (IO traffic CPU load). Clients can also get historical

data for any of these parameters.

The subscription mechanism allows one to monitor in real time any measured parameter

in the system as all the updates are dynamically displayed on the open windows.

4.5. Optimized Dynamic Routing

We have developed agents able to provide an optimized dynamic routing of the

videoconferencing data streams for the VRVS system. These agents use information

about the quality of the alternative connections in the system to produce, in real-time, a

minimum spanning to optimize the data flow at the global level.

Monitoring agents perform ping-style measurements using UDP probes to

measure the quality of the connection with possible peer reflectors. These agents are

deployed on all MonALISA services that run on the reflectors. They perform the

measurements continuously with a set of peers that are dynamically configured for each

reflector. The probe packets are small UDP datagrams sent back and forth and are used to

compute the RTT, jitter, and the percentage of lost packages.

 4.5.1. Minimum Spanning Trees

The reflectors and all of the possible peer connections define a graph. The best

routing path for replication of the multimedia streams is defined as a Minimum Spanning

Tree (MST). The task is to find the tree that contains all the reflectors (vertices in the

Graph G) for which the total connection “cost” is minimized:

The “cost” of the connection between two reflectors (w) is evaluated using the

UDP measurements from both sides. This cost function is build with an exponentially

mediated RTT and if lost packages are detected or the jitter of theRTT is high the cost

function will increase rapidly.

 32

Based on these values provided by the deployed agents, the MST is calculated

nearly in real - time. It has been implemented the Baruvka‘s Algorithm, as it is well

suited for a parallel/distributed implementation. Once a link is part of the MST a

momentum factor is attached to that link. This is to avoid triggering reconnections for

small fluctuations in the system. Such cases may occur when two possible peers have

very similar parameters (or they may be at the same location). In Figure 8 an example of

a dynamically MST for connecting the VRVS reflectors is presented.

This is an example of a high level service developed to optimize a real-time world wide

distributed application

Figure 9. MST connections and peer link qualities

for a set of VRVS Reflectors

The MST computation is an example of a high level service developed to

optimize a real- time world wide distributed application and to help in operating such

complex systems. The use of the MST peers optimization strategy has proved that

MonALISA can successfully be used to monitor and control a distributed application,

making the application more robust and efficient.

 33

4.5.2. Getting qualities of internet links between reflectors – the

ABPing module

 The ABPing module computes the “cost” of the connection between two

reflectors. The module sends UDP packets to the other reflectors. The other reflectors

respond sending back the received packet. This way we can determine simple, but

important factors that influence the quality of each link. The quality is computed with the

following formula:

 RTimeQuality = OVERALL_COEF + RTT_COEF * rtt

+ PKT_LOSS_COEF * loss% + JITTER_COEF * jitter

 This formula is flexible enough to permit calculating any kind of quality, based on

RTT, Packet Loss and Jitter. The values obtained by pinging peers are:

• rtt – the round trip time for packets to travel to the peer and back;

• loss – percent, ranging from 0 to 1 of lost packets sent to the peer;

• jitter – sum of the variations of rtt for a set of samples, divided by the average rtt and

number of samples.

The list of available peers for each reflector and the *_COEF coefficients should

be highly configurable to allow easy reconfiguration. To reach this goal, the

configuration file is the same for all reflectors, each one knowing to extract only the

information that is needed. The coefficients must be the same for all reflectors in order to

obtain comparable RTime qualities.

The configuration file is loaded at start, and then it is periodically checked, from a

URL configured when starting MonALISA service on the reflector. If there is a new peer

for a reflector, it is added to the list of peers in the monABPing module. Similarly, if a

known peer isn’t found anymore in the configuration file, it is deleted from the peer list.

If at least one of the coefficients modify, all measurements are reset and the new values

are computed using the previous formula.

 Practicly, my project estimates another “cost”, quality of the link, which is the

available bandwidth.

 34

Chapter 5 – SLoPS. Measuring end-to-

end available bandwidth

5.1. Basic Idea

 Next, I will describe the measurement methodology that I will implement and that

is Self-Loading Periodic Streams (SLoPS).

A periodic stream in SLoPS consists of K packets of size L, sent to the path at a constant

rate R. If the stream rate R is higher than the avail-bw A, the one-way delays of

successive packets at the receiver show an increasing trend. I first illustrate this

fundamental effect in its simplest form through an analytical model with stationary and

fluid cross traffic. Then, I show how to use this ‘increasing delays’ property in an

iterative algorithm that measures end-to-end avail-bw. Finally, I depart from the previous

fluid model, and observe that the avail-bw may vary during a stream. This requires to

refine SLoPS in several ways, that is the subject of the next section.

First I have to make some basic assumptions. I consider a network path P as a

sequence of H store-and-forward links that transfer packets from a sender SND to a

receiver RCV. I assume that the path is fixed and unique (no routing changes or multipath

forwarding occur during the measurements). Each link i can transmit data with a rate Ci

bps (the link capacity). The two throughput metrics that are commonly associated with P

are the end-to-end capacity C and available bandwidth A. As I stated in Chapter 2, the

end-to-end avail-bw is defined as the maximum rate that the path can provide to a flow,

without reducing the rate of the rest of the traffic in P.

Mathematically speaking, let’s suppose that link i transmitted Ciui(t0, t0 + t) bits

during a time interval (t0, t0 + t). The term ui(t0, t0 + t), or simply ut
i(t0), is the average

utilization of link i during (t0, t0 + t), with 0 = ut
i(t0) = 1. Intuitively, the avail-bw At

i(t0)

of link i in (t0, t0 + t) can be defined as the fraction of the link’s capacity that has not been

utilized during that interval:

 35

Extending this concept to the entire path, the end-to-end avail-bw At
i(t0) during (t0, t0 + t)

is the minimum avail-bw among all links in P,

 5.2.1. SLoPS with fluid cross-traffic

Consider a path from SND to RCV that cons ists of H links, i = 1, . . . , H. The

capacity of link i is Ci. We consider a stationary (time invariant) and fluid model for the

cross traffic in the path. So, if the avail-bw at link i is Ai, the utilization is ui = (Ci - Ai)/Ci

and there are uiCit bytes of cross traffic departing from, and arriving at, link i in any

interval of length t . Also, assume that the links follow the First-Come First-Served

queueing discipline, and that they are adequately buffered to avoid losses. We ignore any

propagation or fixed delays in the path, as they do not affect the delay variation between

packets. The avail-bw A in the path is determined by the tight link t ? {1, . . . , H} with

Suppose that SND sends a periodic stream of K packets to RCV at a rate R0,

starting at an arbitrary time instant. The packet size is L bytes, and so packets are sent

with a period of T = L/R0 time units. The One-Way Delay (OWD) Dk from SND to RCV

of packet k is:

, where qk

i is the queue size at link i upon the arrival of packet k (qk
i does not include

packet k), and dk
i = qk

i /Ci is the queueing delay of packet k at link i. The OWD difference

between two successive packets k and k + 1 is:

, where

 36

We can now show that, if R0 > A the K packets of the periodic stream will arrive

at RCV with increasing OWDs, while if R0 = A the stream packets will encounter equal

OWDs. This property is stated next, and proved in Appendix A.

PROPOSITION 1. If R0 > A, then ?Dk > 0 for k = 1, . . ., K - 1. Else, if R0 = A,

?Dk = 0 for k = 1, . . ., K -1.

One may think that the avail-bw A can be computed directly from the rate at

which the stream arrives at RCV. This is the approach followed in packet train dispersion

techniques.

The following result, however, shows that, in a general path configuration, this

would be possible only if the capacity and avail-bw of all links (except the avail-bw of

the tight link) are a priori known.

PROPOSITION 2. The rate RH of the packet stream at RCV is a function, in the

general case, of Ci and Ai for all i = 1, . . . , H.

This result follows from the proof in Appendix A (apply recursively Equation 19

until i = H).

 5.2.2. An iterative algorithm to measure A

Based on Proposition 1, we can construct an iterative algorithm for the end-to-end

measurement of A. Suppose that SND sends a periodic stream n with rate R(n). The

receiver analyzes the OWD variations of the stream, based on Proposition 1, to determine

whether R(n) > A or not. Then, RCV notifies SND about the relation between R(n) and A.

If R(n) > A, SND sends the next periodic stream n + 1 with rate R(n + 1) < R(n).

Otherwise, the rate of stream n + 1 is R(n + 1) > R(n).

Specifically, R(n + 1) can be computed as follows:

à

 37

à

Rmin and Rmax are lower and upper bounds for the avail-bw after stream n,

respectively. Initially, Rmin=0 and Rmax can be set to a sufficiently high value R0
max > A.

The algorithm terminates when Rmax - Rmin = ? , where ? is the avail-bw estimation

resolution. If the avail-bw A does not vary with time, the previous algorithm will

converge to a range [Rmin, Rmax] that includes A after [log2(Rmax/?)] streams.

 5.2.3. SLoPS with real cross-traffic

We assumed so far that the avail-bw A is constant during the measurement

process. In reality, the avail-bw may vary because of two reasons. First, the avail-bw

process At (t) may be non-stationary, and so its expected value may also be a function of

time. Even if At (t) is stationary, however, the process At can have a significant statistical

variability around its (constant) mean E[At], and to make things worse, this variability

may extend over a wide range of timescales t . How can we refine SLoPS to deal with the

dynamic nature of the avail-bw process?

From the tests made, I concluded that there are three clear situations in analyzing

the OWD variations of a stream.

Figure 10.a. R > A Figure 10.b. R < A

 38

Figure 10.c. R <> A

Figure 10. OWD variations for a periodic

 stream of 100 packets

In Figure 10.a, the stream rate R is higher than the long-term avail-bw A. Notice

that the OWDs between successive packets are not strictly increasing, as one would

expect from Proposition 1, but overall, the stream OWDs have a clearly increasing trend.

This is shown by the fact that most packets have a higher OWD than their predecessors.

On the other hand, the stream of Figure 10.b has a rate R lower than the long-

term avail-bw A. Even though there are short-term intervals in which we observe

increasing OWDs, there is clearly not an increasing trend in the stream.

The third stream, in Figure 10.c the stream does not show an increasing trend in

the first half, indicating that the avail-bw during that interval is higher than R. The

situation changes, however, after the 60-th packet. In that second half of the stream there

is a clear increasing trend, showing that the avail-bw decreases to less than R.

The previous example motivates two important refinements in the SLoPS methodology.

First, instead of analyzing the OWD variations of a stream, expecting one of the two

cases of Proposition 1 to be strictly true for every pair of packets, we should instead

watch for the presence of an overall increasing trend during the entire stream. Second,

we have to accept the possibility that the avail-bw may vary around rate R during a

probing stream. In that case, there is no strict ordering between R and A, and thus a third

possibility comes up, that we refer to as ‘grey-region’ (denoted as R <> A).

In the next chapters I will describe the technologies that I used, the design and the

implementation of my application, its integration in MonALISA, test results and an

analysis of its accuracy.

 39

Chapter 6 – Used Technologies

6.1. Java NIO

The Java Development Kit 1.4 provides developers non-blocking I/O on both

sockets and files. For Java network programmers, non-blocking I/O is very exciting,

because it makes writing scalable, portable socket applications simpler.

Previously, Java programmers would have to deal with multiple socket

connections by starting a thread for each connection. Inevitably, they would encounter

issues such as operating system limits, deadlocks, or thread safety violations. Now, the

developer can use selectors to manage multiple simultaneous socket connections on a

single thread. I will talk about selectors later.

 6.1.1. Buffers

Starting from the simplest and building up to the most complex, the first

improvement to mention is the set of Buffer classes found in the java.nio package. These

buffers provide a mechanism to store a set of primitive data elements in an in-memory

container. Basically, imagine wrapping a combined DataInputStream/DataOutputStream

around a fixed-size byte array and then only being able to read and write one data type,

like char, int, or double. There are seven such buffers available: ByteBuffer, CharBuffer,

DoubleBuffer, FloatBuffer, IntBuffer, LongBuffer, ShortBuffer.

The ByteBuffer actually supports reading and writing the other six types, but the

others are type specific. To demonstrate the use of a buffer, the following snippet

converts a String to a CharBuffer and reads a character at a time. You convert the String

to a CharBuffer with the wrap method, then get each letter with the get method.

CharBuffer buff = CharBuffer.wrap(args[0]);

for (int i=0, n=buff.length(); i<n; i++) {

 System.out.println(buff.get());

}
When using buffers, it is important to realize there are different sizing and

 40

positioning values to worry about. The length method is actually non-standard, specific to

CharBuffer. There is nothing wrong with it, but it really reports the remaining length, so

if the position is not at the beginning, the reported length will not be the buffer length, but

the number of remaining characters within the buffer. In other words, the above loop can

also be written as follows:

CharBuffer buff = CharBuffer.wrap(args[0]);

for (int i=0; buff.length() > 0; i++) {

System.out.println(buff.get());

}

Getting back to the different sizing and positioning values, the four values are

known as capacity, limit, position, and mark :

capacity à the maximum number of data elements the buffer can hold; the capacity is set

when the buffer is created and can never be changed

mark à A remembered position. Calling mark() sets mark = position. Calling reset() sets

position = mark. The mark is undefined until set.

position à the index of the next element to be read or written; the position is updated

automatically by relative get() and put() methods

limit à the first element of the buffer that should not be read or written; in other words,

the count of live elements in the buffer

The following relationship between these four attributes always holds:

0 <= mark <= position <= limit <= capacity

The position is an important piece of information to keep in mind when reading from and

writing to a buffer. For instance, if you want to read what you just wrote you must move

the position to where you want to read from, otherwise, you'll read past the limit and get

whatever just happens to be there. This is where the flip() method comes in handy,

changing the limit to the current position and moving the current position to zero. You

can also rewind() a buffer to keep the current limit and move the position back to zero.

The wrap() mechanism shown above is an example of a non-direct buffer. Non-

direct buffers can also be created and sized with the allocate method, essentially

wrapping the data into an array. Memory areas that are targets of I/O operations must be

contiguous sequences of bytes. For this reason, the notion of a direct buffer was

introduced. Direct buffers are intended for interaction with channels and native I/O

routines. They make a best effort to store the byte elements in a memory area that a

 41

channel can use for direct access by using native code to tell the operating system to drain

or fill the memory area directly.

A direct ByteBuffer can be creates using the allocateDirect(int capacity) method.

Direct buffers rely on the system's native I/O operations to optimize access operations.

 6.1.2. Channels

Channels are the second major innovation of java.nio. They provide direct

connections to I/O services. A Channel is a conduit that transports data efficiently

between byte buffers and the entity on the other end of the channe l (usually a file or

socket).

A good metaphor for a channel is a pneumatic tube, the type used at drive-up

bank-teller windows. Your paycheck would be the information you're sending. The

carrier would be like a buffer. You fill the buffer (place your paycheck in the carrier),

"write" the buffer to the channel (drop the carrier into the tube), and the payload is carried

to the I/O service (bank teller) on the other end of the channel.

The response would be the teller filling the buffer (placing your receipt in the

carrier) and starting a channel transfer in the opposite direction (dropping the carrier back

into the tube). The carrier arrives on your end of the channel (a filled buffer is ready for

you to examine). You then flip the buffer (open the lid) and drain it (remove your

receipt). You drive away and the next object (bank customer) is ready to repeat the

process using the same carrier (Buffer) and tube (Channel) objects.

 The new socket channels can operate in nonblocking mode and are selectable.

These two capabilities enable tremendous scalability and flexibility in large applications.

It's no longer necessary to dedicate a thread to each socket connection (and suffer the

context-switching overhead of managing large numbers of threads). Using the new NIO

classes, one or a few threads can manage hundreds or even thousands of active socket

connections with little or no performance loss.

All the socket channels (SocketChannel, ServerSocketChannel, and

DatagramChannel) create a peer socket object when they are instantiated. These are the

familiar classes from java.net (Socket, ServerSocket, and DatagramSocket), which have

been updated to be aware of channels. The peer socket can be obtained from a channel by

 42

invoking its socket() method. Additionally, each of the java.net classes now has a

getChannel() method.

While every socket channel (in java.nio.channels) has an associated java.net

socket object, not all sockets have an associated channel. If you create a Socket object in

the traditional way, by instantiating it directly, it will not have an associated

SocketChannel, and its getChannel() method will always return null.

To place a socket into nonblocking mode, we look to the common superclass of

all the socket channel classes: SelectableChannel. The following methods are concerned

with channel's blocking mode:

public abstract class SelectableChannel extends AbstractChannel implements Channel {

// This is a partial API listing

public abstract void configureBlocking (boolean block) throws IOException;

public abstract boolean isBlocking();

public abstract Object blockingLock();

}

Nonblocking sockets are usually thought of for server-side use because they make

it easier to manage many sockets simultaneously. But there can also be benefits to using

one or a few sockets in nonblocking mode on the client side. For example, with

nonblocking sockets, a GUI application can pay attention to user requests and carry on

conversations with one or more servers simultaneously. Nonblocking mode is useful

across a broad range of applications.

 6.1.3. Selectors

Next, we'll explore selectors. Selectors provide the ability to do readiness

selection, which enables multiplexed I/O. Readiness selection and multiplexing make it

possible for a single thread to efficiently manage many I/O channels simultaneously.

C/C++ coders have had the POSIX select() and/or poll() system calls in their toolbox for

many years. Most other operating systems provide similar functionality. But readiness

selection was never available to Java programmers until JDK 1.4. Programmers whose

primary body of experience is in the Java environment may not have encountered this I/O

model before.

 43

For an illustration of readiness selection, let's return to the drive-through bank

example. Imagine a bank with three drive-through lanes. In the traditional (nonselector)

scenario, imagine that each drive-through lane has a pneumatic tube that runs to its own

teller station inside the bank, and each station is walled off from the others. This means

that each tube (channel) requires a dedicated teller (worker thread). This approach doesn't

scale well and is wasteful. For each new tube (channel) added, a new teller is required,

along with associated overhead such as tables, chairs, paper clips (memory, CPU cycles,

context switching), etc. And when things are slow, these resources (which have

associated costs) tend to sit idle.

Now imagine a different scenario in which each pneumatic tube (channel) is

connected to a single teller station inside the bank. The station has three slots where the

carriers (data buffers) arrive, each with an indicator (selection key) that lights up when

the carrier is in the slot. Also imagine that the teller (worker thread) spends as much time

as possible reading an interesting book. At the end of each paragraph, the teller glances

up at the indicator lights (invokes select()) to determine if any of the channels are ready

(readiness selection). The teller (worker thread) can perform another task while the drive-

through lanes (channels) are idle yet still respond to them in a timely manner when they

require attention.

While this analogy is not exact, it illustrates the paradigm of quickly checking to

see if attention is required by any of a set of resources, without being forced to wait if

something isn't ready to go. This ability to check and continue is key to scalability. A

single thread can monitor large numbers of channels with readiness selection. The

Selector and related classes provide the APIs to do readiness selection on channels.

 Selectors represent the most powerfull aspect of java NIO, as readiness selection

is essential to large-scale, high-volume server-side applications.

6.2. JNI

The Java Native Interface (JNI) is the native programming interface for Java that

is part of the JDK. By writing programs using the JNI, you ensure that your code is

completely portable across all platforms.

JNI allows Java code that runs within a Java Virtual Machine (VM) to operate

 44

with applications and libraries written in other languages, such as C, C++, and assembly.

Programmers use the JNI to write native methods to handle those situations when an

application cannot be written entirely in the Java programming language.

Programming through the JNI framework lets you use native methods to do many

operations. Native methods may represent legacy applications or they may be written

explicitly to solve a problem that is best handled outside of the Java programming

environment.

The JNI framework lets your native method utilize Java objects in the same way

that Java code uses these objects. A native method can create Java objects, including

arrays and strings, and then inspect and use these objects to perform its tasks. A native

method can also inspect and use objects created by Java application code. A native

method can even update Java objects that it created or that were passed to it, and these

updated objects are available to the Java application. Thus, both the native language side

and the Java side of an application can create, update, and access Java objects and then

share these objects between them.

Native methods can also easily call Java methods. Often, you will already have

developed a library of Java methods. Your native method does not need to "re- invent the

wheel" to perform functionality already incorporated in existing Java methods. The

native method, using the JNI framework, can call the existing Java method, pass it the

required parameters, and get the results back when the method completes.

It is easy to see that the JNI serves as the glue between Java and native applications.

Figure 11 shows how the JNI ties the C side of an application to the Java side.

 Figure 11. The interaction C- JNI -Java

 45

Chapter 7 – Implementation and Design

In this chapter I will describe the implementation of this project, class structure

and the integration in MonALISA.

7.1. Implementation

My implementation consists of two components: process SND running at the

sender and process RCV running at the receiver. The tool uses UDP for the periodic

packet streams. Additionally a TCP connection between the two end – points serves as a

‘control channel’. The control channel transfers messages regarding the characteristics of

each stream, the abortion or end of the measurement process, etc. In the followings I

describe the implementation in detail.

A. Clock and timing issues

SND timestamps each packet upon its transmission. So, RCV can measure the

relative OWD Dk of packet k, that differs from the actual OWD by a certain offset. This

offset is due to the non-synchronized clocks of the end-hosts.

Since I am only interested in OWD differences, a constant offset in the measured OWDs

does not affect the analysis. Clock skew can be a potential problem, but not here.

B. Selection of T and L

The transmission period T and the packet size L are two important parameters.

First, the transmission rate R of a stream is :

R = L/T

Given the stream rate R, I will select values for L and T to satisfy the previous

relation.

There are some practical constraints in the selection of L and T, however.

Specifically, L can not be less than a certain number of bytes and it should not be more

than the path’s MTU (to avoid fragmentation). Also, if L is too small the possibility of

 46

zero padding in certain layer links may cause a signifficant change in the layer packet

size, and thus in the stream rate at those links.

On the other hand the transmission period T should be as small as possible. The reason is

that as T increases, so does the duration of each stream. Ideally the transmission of each

stream should complete before the processes SND or RCV get interrupted by a context

switch at the end – hosts. Additionally, a lower value of T leads to a shorter duration for

the entire measurement process. The minimum possible value of T depends on the

hardware and operating system of the measurement hosts.

C. Selection of stream length K

There is a trade-off in the selection of the number of packets K in a stream. First,

if K is too large the stream may overflow the queue of the tight link when R > A, causing

losses in both the stream and the cross traffic packets.

On the other hand, if K is too small, the stream will not provide RCV with enough

samples to infer in a robust manner whether there is an increasing trend in the measured

OWDs. I use K = 100 packets, because this stream length rarely causes packet losses,

while it provides an adequate number of OWD measurements to detect an increasing

trend.

D. A fleet of streams

My project does not determine whether R > A based on a single stream. Instead, it

sends a fleet of N streams. Each stream consists of K packets of size L bits, transmitted

periodically in every T seconds. All streams in a fleet have the same rate R = L/T. Each

stream is sent only when the previous stream has been acknowledged. This introduces an

idle interval of one round-trip time ? between streams. The objective of this idle period is

to let the path ‘drain’ the last stream before sending a next one.

There are two main reasons that I use N streams of K packets each, instead of a

single fleet of N x K packets. First, having N streams allows us to examine N consecutive

times whether R > A or not. This is because RCV checks the measured OWDs for an

increasing trend independently in each stream. Second, the use of multiple streams

separated by a ‘silence’ period ? allows the queues in the network to drain our

 47

measurement traffic and recover from the short-term overload that each stream causes.

The default value for N is 12 streams.

N, K and T determine the duration U of a fleet, where:

U = N x (K x T + ?)

If a stream encounters excessive losses (>10%), or if more than a number of

streams within a fleet encounter moderate losses (>3%), the entire fleet is aborted and the

next fleet is send with the same rate.

E. Detecting an increasing OWD trend

Suppose that the (relative) OWDs of a particular stream are D1, D2, . . . , DK. As

a pre-processing step, I partition these measurements into K=Γ groups of G

consecutive OWDs. Then, we compute the median OWD Dk of each group. Then I

analyze the set {Dk, k = 1, . . . , G}, which is more robust to outliers and errors.

I use two complementary statistics to check if a stream shows an increasing trend.

The Pairwise Comparison Test (PCT) metric of a stream is

, where I(X) is one if X holds, and zero otherwise. PCT measures the fraction of

consecutive OWD pairs that are increasing, and so 0 = SPCT = 1. If the OWDs are

independent, the expected value of SPCT is 0.5. If there is a strong increasing trend, SPCT

approaches one.

The Pairwise Difference Test (PDT) metric of a stream is:

PDT quantifies how strong is the start-to-end OWD variation, relative to the OWD

absolute variations during the stream. Note that -1 = SPDT = 1. If the OWDs are

independent, the expected value of SPDT is zero. If there is a strong increasing trend, SPDT

approaches one.

In my project, the PCT metric shows an increasing trend if SPCT > 0.55, while the PDT

shows increasing trend if SPDT > 0.4. These two threshold values for SPCT and SPDT (0.55

and 0.4, respectively) were chosen after the tests made.

 48

There are cases in which one of the two metrics is better than the other in

detecting an increasing trend. Consequently, if either the PCT or PDT metrics shows an

‘increasing trend’, the stream is considered as type-I, increasing. Otherwise, the stream is

considered of type-N, non- increasing.

F. Grey-region

If a large fraction f of the N streams in a fleet are of type-I, the entire fleet shows

an increasing trend and we infer that the fleet rate is larger than the avail-bw (R > A).

Similarly, if a fraction f of the N streams are of type-N, the fleet does not show an

increasing trend and we infer that the fleet rate is smaller than the avail-bw (R < A).

It can happen, though, that less than N ×f streams are of type-I, and also that less

than N×f streams are of type-N. In that case, some streams ‘sampled’ the path when the

avail-bw was less than R (type-I), and some others when it was more than R (type-N).

Then, the fleet rate R is in the ‘grey-region’ of the avail-bw, and write R <> A. The

interpretation that we give to the grey-region is that when R <> A, the avail-bw process

At (t) during that fleet varied above and below rate R, causing some streams to be of type-

I and some others to be of type-N. The averaging timescale t, here, is related to the

stream duration V. In my project, f is set to 50%.

G. Rate adjustment algorithm

After a fleet n of rate R(n) is over, I determine whether R(n) > A, R(n) < A, or

R(n) <> A. I will present the iterative algorithm that determines the rate R(n+1) of the

next fleet.

First, together with the upper and lower bounds for the avail-bw Rmax and Rmin, I

also maintain upper and lower bounds for the grey-region, namely Gmax and Gmin .

When R(n) <> A, one of these bounds is updated depending on whether Gmax < R(n) <

Rmax (update Gmax), or Gmin > R(n) > Rmin (update Gmin). If a grey-region has not been

detected up to that point, the next rate R(n + 1) is chosen, as half-way between Rmin and

Rmax. If a grey-region has been detected, R(n + 1) is set half-way between Gmax and Rmax

when R(n) = Gmax, or half-way between Gmin and Rmin when R(n) = Gmin. The complete

rate adjustment algorithm, including the initialization steps, is given in . It is important to

 49

note that this binary search approach succeeds in converging to the avail-bw, as long as

the avail-bw variation range is strictly included in the [Rmin,Rmax] range.

The measurement terminates not only when the avail-bw has been estimated

within a certain resolution ? (Rmax - Rmin = ?), but also when Rmax - Gmax = ? and Gmin -

Rmin = ?, meaning when both avail-bw boundaries are within ? from the corresponding

grey-region boundaries. The parameter ? is referred to as grey-region resolution.

The tool eventually reports the range [Rmin, Rmax].

H. Detection of a sender context switch

In my implementation I check whether a context switch occurred at SND while a

stream was being sent.

Suppose that ti is the transmission time of packet i from SND. ti is carried in packet i.

RCV compares the sending times of consecutive packets to see whether ti+1 – ti > T + W,

where W is maximum allowed deviation from the target period T. If ti+1 – ti > T + W, I

assume that SND was switched out after sending the i-th packet of a stream. Then, RCV

splits the received stream into two substreams, one between packets 1 and i, and another

between packets i +1 and K. If a substream includes less than K+1 packets, it is discarded

from the OWD analysis.

I. Detection of a receiver context switch

I also check whether a context switch occurred at RCV while a stream was being

received. Suppose that ai is the arrival time of packet i at the RCV process. If RCV is

switched out while receiving a stream, some of the stream packets will be accumulated in

a kernel buffer at the receiving host. When RCV runs again, those packets are transferred

from kernel to user space with a spacing of Q µs, where Q is the latency of the recvfrom

system call. Typically, Q is a few microseconds and it can be measured at RCV before

the measurements start. So, RCV can detect a local context switch comparing the arrival

times of consecutive packets. If ai+1 – ai ~ Q, packets i and i+1 are discarded from the

OWD analysis.

 50

J. Measurement latency

Since this implementation is based on an iterative algorithm, it is hard to predict

how long will a measurement take. For the default tool parameters, and for a path with A

~ 100Mbps and ? = 100ms, the tool needs ~ 15 seconds to produce a final estimate.

7.2. Class structure

 My project consists of two parts: the sender and the receiver. It is practicly a

client-server model, and I implemented it using java NIO.

 The server first initializies a ServiceThreadPool for handling the messages from

the clients. Then, it opens a ServerSocketChannel, sets it in non-blocking mode, and

registers it with a Selector for accepting connections from the clients:

// TCP control connection
 // Allocate an unbound server socket channel
 serverChannel = ServerSocketChannel.open();
 // Get the associated ServerSocket to bind it with
 ServerSocket serverSocket = serverChannel.socket();

 // Set the port the server channel will listen to
 serverSocket.bind (new InetSocketAddress (tcpSndPort));

// Set nonblocking mode for the listening socket
 serverChannel.configureBlocking (false);

 // Register the ServerSocketChannel with the Selector
 serverChannel.register (selector, SelectionKey.OP_ACCEPT);

When a client connects the server puts the ‘task’ in a worker’s queue. The ‘task’

represents the client’s socket channel. I have implemented a LoadBalancingStrategy for

the workers’ queues.

Each WorkerThread has a Selector. Working with java NIO allows me to unify a

worker’s jobs, meaning that when adding a ‘task’ in a worker’s queue, I register the

socket channel with the worker’s selector so at the next iteration the worker will also test

this socket channel. Each client has a unique ConnectionHandler object attached to the

socket channel, that deals with the client’s control messages.

synchronized (internalLock) {

selector.wakeup();
 // Register interest in when connection
 SelectionKey key =

 51

sc.register(selector, SelectionKey.OP_WRITE, new
ConnectionHandler(sc, this, sock_udp));

}

In Figure 12, there is a diagram of the server’s classes.

 Figure 12. The server’s class diagram

The client opens a SocketChannel, and connects to the server. The client’ socket

channel works in blocking mode as it does not need the non-blocking advantages.

After getting the UDP socket it then starts the algorithm described in the previous

chapters.

The client’s class diagram is described bellow in Figure 13.

 52

 Figure 13. The client’s class diagram

7.3. The utility of JNI
An important part of my implementation is the usage of native code C. The

classes GetTime, UDPRecv and UDPSend have native methods defined and implemented
in C.

// GetTime.java
public native void getTimeOfDay();
public native int getTimeOfDayLatency();

static {

System.out.println("Loading time library...");
 System.load(Common.libpath + "/libtime.so");
}

 53

// UDPRecv.java
public native int getUDPSocket(int UDPRCV_PORT,int UDP_BUFFER_SZ);
public native void closeUDPSocket(int sock_udp);

 public native void recvStream(int cur_pkt_sz, int exp_fleet_id,
 int stream_cnt, int MAX_STREAM_LEN,
 int UDPRCV_PORT, int UDP_BUFFER_SZ,
 int sock_udp);

static {
 System.load(Common.libpath + "/libudprecv.so");
 }

//UDPSend
public native int getUDPSocket(int UDP_BUFFER_SZ);

 public native void closeUDPSocket(int sock_udp);
 public native int sendStream(int cur_pkt_sz, int fleet_id,
 int stream_cnt, int stream_len, int time_interval,
 int min_sleep_interval, int min_timer_intr,
 int gettimeofday_latency, int UDPRCV_PORT,
 String address, int sock_udp);

 static {
 System.out.println("Loading udpsend library...");
 try {
 System.load(Common.libpath + "/libudpsend.so");
 } catch (Exception e) {
 System.out.println("Library udpsend not found");
 }
 }

 The need for native code C comes from the fact that I need very accurate timing.

In jdk 1.4 you can only get time im milliseconds. In C, by using the gettimeofday system

call you can get it in microseconds.

 UDPSend and UDPRecv classes provide the methods for the UDP communication

and they are writ ten also in C. The idea is that, assuming that you use the path’s MTU

size for the packet to avoid fragmentation (1.500 bytes = 12.000 bits), for a path with

~100 Mbps capacity you have to obtain a transmission rate of ~100 Mbps, and this cand

be obtained by sending 12.000 bits packets at a time interval of ~120 microseconds. So

for a 1Gbps path the time interval must be of ~12 microseconds.

The latency of a send in Java is ~40 microseconds and so to high for testing the

gigabit paths. On the other hand, the latency of a send in C is ~6 microseconds, enough to

test those paths.

 54

Chapter 8 – The Integration in

MonALISA

8.1. Monitoring Modules

The main component that gathers data, injecting it into the system is a monitoring

module. A monitoring module is a Java class that can be dynamically loaded from any

location specified by a URL. At the same time with importing, data is also translated

(usually by parsing) to a format understood by the MonALISA. With numerical data

received from the monitored device, information about monitored node, such as name,

cluster and farm, is also added.

 Usually, these modules are invoked at fixed time intervals, using a priority queue.

They can extract SNMP data, run rsh and ssh scripts where this is possible, connect

through a TCP socket and query a device etc. In order to maintain up-to-date large

distributed systems, these modules are built to be dynamically instantiated from certain,

possible fixed, URLs.

 All modules implement a MonitoringModule interface that allows different

implementation for each module.

When it is invoked, the module returns a vector of Results that are passed further

to the MonALISA core.

A monitoring module is a Java class that must implement the following interface:

public interface MonitoringModule extends lia.util.DynamicThreadPoll.SchJobInt {
 public MonModuleInfo init(MNode node, String args);
 public String[] ResTypes();
 public String getOsName();
 public Object doProcess() throws Exception;
 public MNode getNode();
 public String getClusterName();
 public String getFarmName();
 public boolean isRepetitive();
 public String getTaskName();
 public MonModuleInfo getInfo();

}

 The SchJobInt is an interface that represents a job that can be scheduled for

 55

execution. A monitoring module is such a job that monitors the activity on a certain

MNode (monitored node that is part of a Cluster, on a Farm). It is invoked at

configurable time intervals – the doProcess() method. If the job fails, it throws an

exception. If it succeeds, it returns an object: a Result, or a vector of Results. These

results are serialized and passed to the listening clients.

My module is called MonPathload. When this module is initialized, the

configuration must be read from a certain URL, passed as a parameter in the

ml.properties configuration file. Then, at fixed intervals, the configuration is reread from

the same URL. This can be easily achieved by defining an inner class to handle this

problem:

// the scheduling is made in the constructor
// timer task for reloading the config file
TimerTask task = new ConfigLoader();

 Timer ttask = new Timer(true);
ttask.schedule(task, 0, CONFIG_RELOAD_INTERVAL);

class ConfigLoader extends TimerTask {

 public void run(){…}
 }

 In the doProcess() method we just call for each peer, the FillResults method of

PathloadRcv. This is the “worker” class for this module (the client). PathloadRcv has a

Hashtable with all its peers as key and a vector with measurements as values for each

key. The FillResults method returns the last measurement made.

 So the client resides in a MonitoringModule. The server, on the other hand is

called from the AppControl and can be started or stoped remotely.

8.1. AppControl

All the modules must implement the lia.app.AppInt interface and must be

packaged in .jar files that exactly respect the package structure.

The definition for lia.app.AppInt is:

package lia.app;

public interface AppInt {

public boolean start();
public boolean stop();
public int status();

 56

public String info();
public String exec(String sCmd);
public boolean update(String sUpdate);
public boolean update(String sUpdate[]);

public String getConfiguration();
public boolean updateConfiguration(String s);
public boolean init(String sPropFile);
public String getName();

 public String getConfigFile();

} // end of interface AppInt

start()

This function should start the service and return true if the service could be started

and false if the service could not be started. Here I instantiate a PathloadSnd object,

which represents the server and call its startServer() method. I do this if the object hasn’t

been already instantiated (two consecutive calls of start()).

stop()

This function should stop the service and return true if the service could be

stopped and false if the service could not be stopped. Here I test whether the object has

been instantiated and call its stopServer() method if it has.

restart()

 This function calls stop() and then start().

status()

Returns one of the following codes:

• lia.app.AppUtils.APP_STATUS_STOPPED (0) - the application is not

running

• lia.app.AppUtils.APP_STATUS_RUNNING (1) - the application is

running

• lia.app.AppUtils.APP_STATUS_UNKNOWN (2) - application status

could not be determined

info()

Returns a string with the application configuration files as an XML.

exec(String)

Executes the given command and returns the output of the command. You can

return null if the application you are controlling does not accept any user commands.

update(String)

 57

Changes the application configuration files according to the given argument. You

should implement the commands explained in the Client-Server protocol document. The

return value must be true if the requested update could be done or false if the

configuration could not be updated.

update(String [])

Executes a set of updates.

getConfiguration()

Returns the content of the module's configuration file as a string value. I use

lia.app.AppUtils.getConfig(Properties prop, String sFile)

updateConfiguration(String)

Replaces the content of the configuration file with the given string. I use

lia.app.AppUtils.updateConfig(String sFile, String sContent)

init(String)

This function is called by the main program when the module is loaded. The

parameter is the module's configuration file. I use lia.app.AppUtils.getConfig(Properties

prop, String sFile) to read the contents of this file.

getName()

Should return the complete name of the module to make sure that there is no

conflict in names.

getConfigFile()

Returns the configuration file name given as parameter to init(String).

 58

Chapter 9 – Tests and Conclusions
9.1. Tests and evaluation

I have tested my algorithm between my computer from school and

monalisa.cern.ch. It is a 100 Mbps connection and the path has 11 links.

The result s are obtained from the MonALISA graphical client (Figure 14).

 The results are from an hour analysis.

 Figure 14. Tests between 141.85.99.167 – monalisa.cern.ch (100 Mbps connection)

 The measurement latency was of about 15 seconds / measurement.

 An important problem is the traffic generated. Each measurement needed about 10

fleets of streams to estimate the available bandwidth. The packets sent were about 1.000

bytes. A fleet has 12 streams and a stream has 100 packets. So the total traffic generated

during a measurement process was ~1.000 * 100 * 12 * 10 bytes ~ 10Mbytes.

 It seems high, but the fact is that this traffic is the total traffic; at a specific

moment of time (sending a fleet), the traffic is about 1Mbyte.

 59

9.2. Conclusions

 My goal was to implement an accurate method for estimating the available

bandwidth in a network end-to-end. From the results that I obtained, this implementation

works pretty good.

By integrating it into the MonALISA system, I obtained more then an application

that measures bandwidth end-to-end. I obtained a tool for monitoring different paths, and

a tool that can improve the VRVS system.

By knowing the available bandwidth in real time, the VRVS reflectors can route

the streams on the best path possible, so enhancing the performances of the system.

The tool must be tested more on the gigabit paths.

A future goal in this domain is to obtain the same accuracy with a less number of

packets, and so with less traffic generated.

Besides adjusting the previous algorithm, we are analyzing a new idea: the

simulation of the packet trains as impulse signals.

This can be done by considering a train of packets of different sizes (in SLoPS I

use the same size for all the packets in a stream), and sent at different rates.(also, in

SLoPE the rate is constant during a stream).

We can look at the train of packets as a sum of delta dirac impulses of amplitude

li, where i is the i-th packet in the train.

)(*)(
1

i

n

i
i ttltI −= ∑

=

δ

We are looking for a transfer function H(L, A), where L is a latency and A is the available

bandwidth so we can compute the output “signals”:

 O(t) = H(t, L, A) ? I(t) (the convolution)

dttIttHtO)(*)()('' ∫
∞

∞−

−=

This is the computed output. We also have the real output:

)(*)(''

1

'
i

n

i
i ttltO −= ∑

=

δ

From these two relations we can adjust the available bandwidth in the transfer function.

 60

Chapter 10 - References

 J. C Bolot. - Characterizing End-to-End Packet Dispersion Delay and Loss

in the Internet

 C. Dovrolis, P. Ramanathan si D. Moore – What do Packet Dispersion

Tecniques Measure?

 A.B. Downey Using Pathchar to Estimate Internet Link Characteristics

 V. Jacobson – Congestion Avoidance and Control

 M. Jain si C. Dovrolis – End-to-End Available Bandwidth, Measurement

Methodology, Dynamics and Relation with TCP Throughput

 Java NIO – Ron Hitchens; Publisher: O’Reilly

 Java Native Interface – Beth Stearns

http://java.sun.com/docs/books/tutorial/native1.1/index.html

 MonALISA web page http://monalisa.cacr.caltech.edu

 H.B. Newman, I.C. Legrand, P. Galvez, R. Voicu, C. Cirstoiu (2003),

“MonALISA: A Distributed Monitoring Service Architecture”, CHEP03, La

Jolla, California;

 61

Appendix - Code listing and

demonstrations

A. Proof of Proposition 1
A.1 At the first link

Case 1: R0 > A1.

Suppose that tk is the arrival time of packet k in the queue. Over the interval [tk, tk

+ T), with T = L/R0, the link is constantly backlogged because the arriving rate is higher

than the capacity (R0 + u1 C1 = C1 + (R0 - A1) > C1). Over the same interval, the link

receives L + u1C1T bytes and services C1T bytes. Thus,

and so,

Packet k +1 departs the first link ? time units after packet k, where

, that is independent of k. So, the packets of the stream depart the first link with a

constant rate R1, where:

We refer to rate Ri-1 as the entry-rate in link i, and to Ri as the exit-rate from link i.

Given that R0 > A1 and that C1 = A1, it is easy to show that the exit-rate from link 1 is

larger or equal than A1 and lower than the entry-rate (A1 = R1 when A1 = C1):

Case 2: R0 > A1.

In this case, the arrival rate at the link in interval [tk, tk + T) is R0 + u1C1 = C1). So,

packet k is serviced before packet k + 1 arrives at the queue. Thus,

 62

A.2 Induction to subsequent links

The results that were previously derived for the first link can be proved

inductively for each link in the path. So, we have the following relationship between the

entry and exit rates of link i:

, so

Consequently, the exit-rate from link i is:

 (A)

Also, the queueing delay difference between successive packets at link i is:

 (B)

A.3 OWD variations

If R0 > A, we can apply the result obtained before recursively for i = 1, . . ., (t-1)

to show that the stream will arrive at the tight link with a rate Rt-1 = At-1 > At. Thus, ?dt
k>

0, and so the OWD difference between successive packets will be positive, ?dk> 0.

On the other hand, if R0 = A, then R0 = Ai for every link i (from the deffinition of

A). So, applying recursively the (A) formula from the first link to the last, we see that Ri

< Ai for i = 1, . . ., H. Thus, (B) shows that the delay difference in each link i is ?di
k = 0,

and so the OWD differences are ?dk = 0.

 63

B. Code Listing

//PathloadSnd

package lia.Monitor.Farm.Pathload;

import java.nio.channels.ServerSocketChannel;
import java.nio.channels.SocketChannel;
import java.nio.channels.Selector;
import java.nio.channels.SelectionKey;

import java.net.ServerSocket;
import java.net.InetSocketAddress;

import java.util.Iterator;
import java.util.Set;

import java.io.IOException;

public class PathloadSnd {

 Server srv;

 public PathloadSnd(int unitsNo) {
 srv = new Server(unitsNo);
 }

 public void startServer(){

 srv.start();
 System.out.println("[Pathload] ----> start server");
 }
 public void stopServer() {

 srv.stopServer();
 System.out.println("[Pathload] ----> stop server");
 }

 class Server extends Thread {

 Selector selector;
 ServerSocketChannel serverChannel;
 ServiceThreadPool stp;
 boolean boolSelect;
 public Server(int unitsNo) {
 super();
 boolSelect = true;
 try {
 stp = new ServiceThreadPool(unitsNo);
 Globals.po = new PrintOutput("server.log");
 } catch (IOException e) {}

 }

 64

 public void run(){
 startServer();
 }

 public void startServer(){

 try {
 selector = Selector.open();
 }catch (IOException e){}
 UtilMethods.minSleepTime();

 /* gettimeofday latency */

 GetTime getTime = new GetTime();

Globals.getTimeOfDayLatency =
getTime.getTimeOfDayLatency();

Globals.po.write("DEBUG :: gettimeofday latency(usec)
= " + Globals.getTimeOfDayLatency);

 UDPSend udps = new UDPSend();

Globals.sendLatency =
udps.sendLatency(Common.MAX_PKTSZ);
Globals.po.write("DEBUG :: send latency(usec) = " +
Globals.sendLatency);

 // open channels for communication
 try {
 openChannel();
 } catch (IOException e) {}
 serviceClients();

 }

 public void stopServer() {
 Globals.po.close();

 try {
 boolSelect = false;
 selector.wakeup();
 selector.close();

 serverChannel.close();

 } catch (IOException ex) {
 }

 stp.stopWorkers();
 }

 public void openChannel() throws IOException {

 int tcpSndPort = Common.TCP_SNDPORT;

 // TCP control connection
 // Allocate an unbound server socket channel
 serverChannel = ServerSocketChannel.open();

 65

 // Get the associated ServerSocket to bind it with
 ServerSocket serverSocket = serverChannel.socket();

 // Set the port the server channel will listen to

serverSocket.bind (new InetSocketAddress
(tcpSndPort));

 // Set nonblocking mode for the listening socket
 serverChannel.configureBlocking (false);

 // Register the ServerSocketChannel with the Selector

serverChannel.register (selector,
SelectionKey.OP_ACCEPT);

 }

 public void serviceClients() {

 try {
 // Wait for something of interest to happen
 while (boolSelect) {

// This may block for a long time. Upon
returning, the
// selected set contains keys of the ready
channels.

 int n = selector.select();
 if (n == 0) {
 continue; // nothing to do
 }

 // Get set of ready objects
 Set readyKeys = selector.selectedKeys();
 Iterator readyItor = readyKeys.iterator();

 // Walk through set
 while (readyItor.hasNext()) {

 // Get key from set

SelectionKey key =
(SelectionKey)readyItor.next();

 // Remove current entry
 readyItor.remove();

 if (key.isAcceptable()) {
 // Get channel

 ServerSocketChannel
 keyChannel =

 (ServerSocketChannel)key.channel();

 // Get the socket channel

SocketChannel s =
keyChannel.accept();

 s.configureBlocking(false);

 66

// ok now put the task in
//someone's queue
// each worker has a selector
//registered on a number of
//socket channels
// I kind of unify the
//worker's jobs

 stp.addNewTask(s);

 } else {

throw new
IllegalStateException();

 }

 }

 }
 // Never ends

 } catch (IOException e) {
 Globals.po.close();
 try {
 selector.close();
 serverChannel.close();
 } catch (IOException ex) {
 }
 }
 }
 }

}

// ServiceThreadPool
package lia.Monitor.Farm.Pathload;

import java.io.IOException;
import java.nio.channels.SocketChannel;

public class ServiceThreadPool {

 LoadBalancingStrategy lbs;
 int unitsNo;

 public ServiceThreadPool(int unitsNo) throws IOException {
 this.unitsNo = unitsNo;
 lbs = new LoadBalancingStrategy(unitsNo);
 for (int i = 0; i < unitsNo; i++) {
 WorkerThread wt = new WorkerThread(lbs);
 lbs.addNewUnit(wt);
 wt.start();
 }
 }

 public void addNewTask(SocketChannel sc) throws IOException {
 WorkerThread wt = (WorkerThread)lbs.selectUnitForNewTask();
 wt.addNewTask(sc);
 }

 67

 public void stopWorkers() {
 lbs.stopWorkers();
 }
}

// WorkerThread
package lia.Monitor.Farm.Pathload;

import java.io.IOException;
import java.nio.channels.SelectionKey;
import java.nio.channels.Selector;
import java.nio.channels.SocketChannel;
import java.util.Iterator;
import java.util.Set;

import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;

import java.net.Socket;

public class WorkerThread extends Thread {

 Charset charset = Charset.forName("ISO-8859-1");
 CharsetDecoder decoder = charset.newDecoder();
 CharsetEncoder encoder = charset.newEncoder();

 ByteBuffer buffer = ByteBuffer.allocateDirect (11);
 CharBuffer charBuffer = CharBuffer.allocate(11);

 LoadBalancingStrategy lbs;
 Selector selector;

 Object internalLock;

 int sock_udp;

public WorkerThread(LoadBalancingStrategy lbs) throws IOException
{

 this.lbs = lbs;
 selector = Selector.open();
 internalLock = new Object();

 // UDP Socket
 UDPSend udps = new UDPSend();
 sock_udp = udps.getUDPSocket(Common.UDP_BUFFER_SZ);

 }

 public void run() {
 while (true) {
 synchronized(lbs.lbsLock) {
 if (!lbs.boolWorkers) {

 68

 try {
 selector.close();
 } catch (IOException e) {}
 break;
 }
 }
 // Wait for something of interest to happen
 /* If we have no connections to serve we
 * must block again
 */

// System.out.println("Waiting for something to
happen");

 // This may block for a long time. Upon returning, the
 // selected set contains keys of the ready channels.
 try {

//System.out.println("Worker blocked at
select...");

 while (selector.select() == 0) {
 synchronized(lbs.lbsLock) {
 if (!lbs.boolWorkers)
 break;
 }

//System.out.println("Worker blocked at
internalLock...");

 synchronized (internalLock) {
 }
 }
 } catch (IOException e) {
 // Selector exception
 break;
 }

 // Get set of ready objects
 Set readyKeys = selector.selectedKeys();
 Iterator readyItor = readyKeys.iterator();
 // Walk through set
 while (readyItor.hasNext()) {
 // Get key from set

SelectionKey key = (SelectionKey)
readyItor.next();

 // Remove current entry
 readyItor.remove();

// get the ConnectionHandler associated with
this key
ConnectionHandler ch = (ConnectionHandler)
key.attachment();

 SocketChannel sc = ch.getSocketChannel();

// a control message from the client is on the
channel

 if (key.isReadable()) {

 ch.readDataFromSocket();

 // remove interest for OP_READ

 //registerForOperations(sc,

 69

 (key.interestOps() & (~SelectionKey.OP_READ)));

 }
 else
 if (key.isWritable()) {
 /* tell this receiver our send latency */
 try {

 sc.write(encoder.encode

(CharBuffer.wrap(Integer.toString(Globals.
sendLatency))));

 } catch (Exception e) {}

// remove interest for OP_WRITE and
register interest in OP_READ
unregisterForOperations(sc,
(~SelectionKey.OP_WRITE));
registerForOperations(sc,
SelectionKey.OP_READ);

 } else { // we did not register for this
 throw new IllegalStateException();
 }
 }
 }
 }

 public void addNewTask(SocketChannel sc) throws IOException {

 Socket s = sc.socket();
 String inetAddr = s.getInetAddress().toString();

Globals.po.write(new String("[] New connection from " +
inetAddr));

 synchronized (internalLock) {
 selector.wakeup();
 // Register interest in when connection
 SelectionKey key =
 sc.register(selector, SelectionKey.OP_WRITE,

new ConnectionHandler(sc, this,
sock_udp));

 }
 }

 protected void registerForOperations(SocketChannel sc, int ops) {
 //synchronized (internalLock) {
 // selector.wakeup();
 sc.keyFor(selector).interestOps(ops);
 //}
 }

 public void unregisterForOperations(SocketChannel sc, int ops) {
 //synchronized (internalLock) {
 // selector.wakeup();
 SelectionKey key = sc.keyFor(selector);
 key.interestOps(key.interestOps() & ops);
 //sc.keyFor(selector).interestOps(ops);
 //}

 70

 }

 public void eraseChannel(SelectionKey key) {
 // Get channel
 SocketChannel sc = (SocketChannel) key.channel();
 key.attach(null);
 key.cancel();
 lbs.taskFinished(sc);
 try {
 sc.close();
 } catch (IOException ex) {}
 }

 public void stopWorker() {
 selector.wakeup();
 }
}

// ConnectionHandler
package lia.Monitor.Farm.Pathload;

import java.nio.channels.SocketChannel;
import java.nio.channels.SelectionKey;

import java.net.Socket;
import java.net.InetAddress;

import java.nio.CharBuffer;

public class ConnectionHandler {

 SocketChannel sc;
 WorkerThread wt;
 PrintOutput po;

 int sock_udp;

int phase; // i need this to know what to do
for each control message
// represents the phase of the
algorithm
//? are the codes in
Common.java sufficient ?......

 int train_id;

 int train_len;

 int fleet_id;
 int transmission_rate;
 int cur_pkt_sz;
 int stream_len;
 int time_interval;
 int num_stream;
 int stream_cnt;

 71

 String address;
 UDPSend udps;

public ConnectionHandler(SocketChannel sc, WorkerThread wt, int
sock_udp) {

 this.sc = sc;
 Socket socket = sc.socket();
 InetAddress inetAddr = socket.getInetAddress();
 address = inetAddr.toString();
 address = address.substring(1);
 udps = new UDPSend();

 po = new PrintOutput(address);
 this.wt = wt; this.sock_udp = sock_udp;
 phase = 0; train_id = 0; train_len = 0; fleet_id = -1;
 stream_cnt = 0; num_stream = Common.NUM_STREAM;
 }

 public int readDataFromSocket () {

// reads a control message from the client and analysis the
faze of the algorithm
//? should i create a JobPoolThread for the udp
messages ?......

 int ctr_code = recv_ctr_msg();

 // check what control message the client has sent us
if ((((ctr_code & Common.CTR_CODE) >> 31) == -1) &&
((ctr_code & 0x7fffffff) == Common.SEND_TRAIN)

 && phase == 0) {

 /* receiver starts ADR measurement */
 po.write("[PHASE 0 --> START ADR] : SEND_TRAIN");
 send_train();
 phase++;
 return 1;
 }

if ((((ctr_code & Common.CTR_CODE) >> 31) == -1) &&
((ctr_code & 0x7fffffff) == Common.GOOD_TRAIN)

 && phase == 1) {
 po.write("[PHASE 1 --> ADR] : GOOD TRAIN");
 phase++;
 return 1;
 }

if ((((ctr_code & Common.CTR_CODE) >> 31) == -1) &&
((ctr_code & 0x7fffffff) == Common.BAD_TRAIN)

 && phase == 1) {
 po.write("[PHASE 1 --> ADR] : BAD TRAIN " + train_id);
 train_id++ ;
 send_train();
 return 1;
 }

if ((((ctr_code & Common.CTR_CODE) >> 31) == -1) &&
((ctr_code & 0x7fffffff) == Common.SEND_FLEET)

 && phase == 6) {
 po.write("[PHASE 6 --> START AVB] : SEND FLEET");

 72

 phase = 2;

 ctr_code = Common.RECV_FLEET | Common.CTR_CODE ;
 send_ctr_msg(ctr_code);
 stream_cnt = 0;
 fleet_id++;
 po.write("\nSending fleet " + fleet_id);
 // start sending the fleet
 send_fleet();

 return 1;
 }

if ((((ctr_code & Common.CTR_CODE) >> 31) == -1) &&
((ctr_code & 0x7fffffff) == Common.CONTINUE_STREAM)) {

 po.write("[PHASE x --> AVB] : CONTINUE STREAM");
 stream_cnt++ ;
 if (stream_cnt < Common.NUM_STREAM) {
 send_fleet();
 }

 return 1;
 }

if ((((ctr_code & Common.CTR_CODE) >> 31) == -1) &&
((ctr_code & 0x7fffffff) == Common.ABORT_FLEET)) {

 po.write("[PHASE x --> AVB] : ABORT FLEET");
 return 1;
 }

if ((((ctr_code & Common.CTR_CODE) >> 31) == -1)
&&((ctr_code & 0x7fffffff) == Common.TERMINATE)) {

 po.write("[PHASE 7 --> STOP AVB] : TERMINATE");
 po.write("\n\n");
 po.close();
 // remove interest for OP_READ

wt.unregisterForOperations(sc,
(~SelectionKey.OP_READ));

 wt.eraseChannel(sc.keyFor(wt.selector));
 return 1;
 }
 switch (phase) {
 case 2 :
 transmission_rate = ctr_code;

po.write("[PHASE 2 --> PARAM] : TRANSMISSION
RATE " + transmission_rate);

 phase++; break;
 case 3 :
 cur_pkt_sz = ctr_code;

po.write("[PHASE 3 --> PARAM] : CUR_PKT_SZ " +
cur_pkt_sz);

 phase++; break;
 case 4:
 stream_len = ctr_code;

po.write("[PHASE 4 --> PARAM] : STREAM_LEN " +
stream_len);

 phase++; break;
 case 5:

 73

 time_interval = ctr_code;
po.write("[PHASE 5 --> PARAM] : TIME_INTERVAL "
+ time_interval);

 phase++; break;

 default :

System.out.println("[PHASE > 2] CLIENT
TERMINATED");

 po.write("\n\n");
 po.close();
 // remove interest for OP_READ

wt.unregisterForOperations(sc,
(~SelectionKey.OP_READ));

 wt.eraseChannel(sc.keyFor(wt.selector));

 }

 return 1;
 }

 private int send_fleet() {

 int tmp1sec, tmp1usec, tmp2sec, tmp2usec;
 double t1=0, t2 = 0 ;
 int ctr_code, ret_val ;

 po.write("#");
 // JNI call to send a stream of UDP packets in C

udps.sendStream(cur_pkt_sz, fleet_id, stream_cnt,
stream_len, time_interval, Globals.minSleepInterval,
 Globals.minTimerIntr, Globals.getTimeOfDayLatency,

Common.UDP_RCVPORT, address,
sock_udp);

 /* Wait for 2000 usec and send End of
 * stream message along with streamid.
 */
 //....? is this necessary ?...... don't think so
 GetTime getTime = new GetTime();
 getTime.getTimeOfDay();
 tmp2sec = GetTime.seconds;
 tmp2usec = GetTime.useconds;
 t1 = (double) tmp2sec * 1000000.0 +(double)tmp2usec ;
 do {
 getTime.getTimeOfDay();
 tmp2sec = GetTime.seconds;
 tmp2usec = GetTime.useconds;
 t2 = (double) tmp2sec * 1000000.0 +(double)tmp2usec ;
 } while((t2 - t1) < 2000) ;

 ctr_code = Common.FINISHED_STREAM | Common.CTR_CODE ;

 send_ctr_msg(ctr_code);
 send_ctr_msg(stream_cnt);

 return 1;
 }

 74

 private int send_train() {

 int pack_id;
 byte train_id_n, pack_id_n ;
 int ctr_code, ret_val, i, train_len=0;

 if (train_len == 5)
 train_len = 3;
 else
 train_len = Common.TRAIN_LEN - train_id*15;

udps.sendTrain(Common.MAX_PKTSZ, train_len, train_id,
sock_udp, address, Common.UDP_RCVPORT);

 //? is this sleep necessary ?.......don't think so
 try {
 Thread.sleep(0, 200000);
 } catch (Exception e) {}

 ctr_code = Common.FINISHED_TRAIN | Common.CTR_CODE ;
 send_ctr_msg(ctr_code);
 return 0 ;
 }

 /*
 * receive a tcp control message
 */
 public int recv_ctr_msg() {
 int count;
 int ctr_code = -1;
 wt.buffer.clear(); // Empty buffer
 try {
 count = sc.read (wt.buffer);
 wt.buffer.flip(); // Make buffer readable
 wt.decoder.decode(wt.buffer, wt.charBuffer, false);
 wt.charBuffer.flip();
 ctr_code = Integer.parseInt(wt.charBuffer.toString());
 wt.buffer.clear();
 wt.charBuffer.clear();
 } catch (Exception e){}

 return ctr_code;
 }

 /*
 * sends a tcp control message
 */
 public void send_ctr_msg(int ctr_code) {
 try {
 String code = Integer.toString(ctr_code);
 int len = code.length();
 for (int i = 0; i < 11 - len; i++) code = "0" + code;
 sc.write(wt.encoder.encode(CharBuffer.wrap(code)));
 } catch (Exception e) {}
 }

 75

 public SocketChannel getSocketChannel() {
 return sc;
 }
}

// PathloadRcv
package lia.Monitor.Farm.Pathload;

import java.net.Socket;
import java.net.InetSocketAddress;

import java.nio.ByteBuffer;
import java.nio.CharBuffer;
import java.nio.channels.SocketChannel;
import java.nio.charset.Charset;
import java.nio.charset.CharsetDecoder;
import java.nio.charset.CharsetEncoder;
import java.nio.channels.Selector;

import java.util.Hashtable;
import java.util.Vector;

import lia.Monitor.monitor.Result;

public class PathloadRcv {

 int tcpSndPort = Common.TCP_SNDPORT;
 static Selector selector;
 InetSocketAddress socketAddress;

Charset charset;
 CharsetDecoder decoder;
 CharsetEncoder encoder;
 // Allocate buffers
 ByteBuffer buffer;
 CharBuffer charBuffer;
 String address;
 public Hashtable myPeers;

 public PathloadRcv() {
 myPeers = new Hashtable();
 }

 public void startClient (String addr) {
 address = addr;
 System.out.println("[PathloadRcv] : " + address);
 init();
 service();
 }

 public void fillResults(Result result) {
 synchronized (myPeers) {
 Vector savb = (Vector) myPeers.get(result.NodeName);

result.param[0] = ((Double)savb.get(savb.size()-
1)).doubleValue();

 }
 }

 76

 public void init() {
 socketAddress = new InetSocketAddress(address, tcpSndPort);
 charset = Charset.forName("ISO-8859-1");
 decoder = charset.newDecoder();
 encoder = charset.newEncoder();
 // Allocate buffers
 buffer = ByteBuffer.allocateDirect(1024);
 charBuffer = CharBuffer.allocate(1024);
 GlobalsRcv.po = new PrintOutput("client.log");

 GlobalsRcv.slow=0;
 GlobalsRcv.interrupt_coalescence=0;
 GlobalsRcv.bad_fleet_cs=0;
 GlobalsRcv.num_stream = Common.NUM_STREAM;
 GlobalsRcv.stream_len = Common.STREAM_LEN ;
 GlobalsRcv.exp_flag = 1;
 GlobalsRcv.num=0;
 GlobalsRcv.snd_time_interval=0;

 GlobalsRcv.converged_gmx_rmx = 0 ;
 GlobalsRcv.converged_gmn_rmn = 0 ;
 GlobalsRcv.converged_rmn_rmx = 0 ;
 //GlobalsRcv.counter = 0 ;
 //GlobalsRcv.prev_actual_rate = 0;
 //GlobalsRcv.prev_req_rate = 0 ;
 GlobalsRcv.cur_actual_rate = 0 ;
 GlobalsRcv.cur_req_rate = 0 ;
 GlobalsRcv.bw_resol=0;
 GlobalsRcv.increase_stream_len=0;
 GlobalsRcv.lower_bound=0;

 GlobalsRcv.exp_fleet_id = 0;

 GlobalsRcv.tr_min = 0; GlobalsRcv.tr_max = 0;
 GlobalsRcv.grey_min = 0 ; GlobalsRcv.grey_max = 0;

GlobalsRcv.min_time_interval = 0; GlobalsRcv.sendLatency =
0;

 GlobalsRcv.recvLatency = 0;
 GlobalsRcv.max_rate = 0; GlobalsRcv.min_rate = 0;
 GlobalsRcv.tr = 0; GlobalsRcv.adr = 0;

GlobalsRcv.max_rate_flag = 0; GlobalsRcv.min_rate_flag =
0;
GlobalsRcv.converged_gmx_rmx_tm =
0;GlobalsRcv.converged_gmn_rmn_tm = 0;

 GlobalsRcv.converged_rmn_rmx_tm = 0;
 GlobalsRcv.trend_idx = 0;
 GlobalsRcv.ic_flag = 0;
 GlobalsRcv.num_bursts = 0;
 GlobalsRcv.tmp_b2b = 0;
 GlobalsRcv.repeat_1 = 0; GlobalsRcv.repeat_2 = 0;
 GlobalsRcv.pct_metric = new double[50];
 GlobalsRcv.pdt_metric = new double[50];
 GlobalsRcv.bad_fleet_rate_mismatch = 0;
 GlobalsRcv.retry_fleet_cnt_cs = 0;
 GlobalsRcv.retry_fleet_cnt_rate_mismatch = 0;

 77

 GlobalsRcv.TMP = 0;

 GlobalsRcv.cur_pkt_sz = 0; GlobalsRcv.transmission_rate = 0;
 GlobalsRcv.time_interval = 0;

 }

 public void service() {

int trend = 0, prev_trend = 0, exp_start_timesec,
exp_start_timeusec;

 GetTime getTime = new GetTime();
 getTime.getTimeOfDay();
 exp_start_timesec = GetTime.seconds;
 exp_start_timeusec = GetTime.useconds;

 UDPRecv udpr = new UDPRecv();

 try {

 // TCP Connection
 GlobalsRcv.sc = SocketChannel.open();
 Socket socket = GlobalsRcv.sc.socket();
 socket.setReuseAddress(true);

 GlobalsRcv.sc.configureBlocking(true);
 GlobalsRcv.sc.connect(socketAddress);

 // UDP Socket

GlobalsRcv.sock_udp =
udpr.getUDPSocket(Common.UDP_RCVPORT,

 Common.UDP_BUFFER_SZ);

ConnectionMethodsRcv cmrcv = new
ConnectionMethodsRcv(GlobalsRcv.sc, this);

 // get recvLatency
 GlobalsRcv.recvLatency =

udpr.recvfromLatency(GlobalsRcv.sock_udp,
Common.UDP_RCVPORT, Common.MAX_PKTSZ);

 // get SND send latency
 GlobalsRcv.sendLatency = cmrcv.recv_ctr_msg();
 //...............................

GlobalsRcv.min_time_interval = GlobalsRcv.SCALE_FACTOR
*((GlobalsRcv.recvLatency > GlobalsRcv.sendLatency) ?
GlobalsRcv.recvLatency : GlobalsRcv.sendLatency) ;
GlobalsRcv.min_time_interval =
GlobalsRcv.min_time_interval >
GlobalsRcv.MIN_TIME_INTERVAL?

GlobalsRcv.min_time_interval :
GlobalsRcv.MIN_TIME_INTERVAL;
GlobalsRcv.po.write("[] Min Time Interval : " +
GlobalsRcv.min_time_interval);
GlobalsRcv.po.write("[] Send Latency : " +
GlobalsRcv.sendLatency);

 78

GlobalsRcv.po.write("[] Recv Latency : " +
GlobalsRcv.recvLatency);

 //...............................
GlobalsRcv.max_rate = (Common.MAX_PKTSZ+28) * 8. /
GlobalsRcv.min_time_interval ;
GlobalsRcv.min_rate = (Common.MIN_PKTSZ+28) * 8./
GlobalsRcv.MAX_TIME_INTERVAL ;

 // Estimate ADR
 GlobalsRcv.adr = cmrcv.getADR();
 GlobalsRcv.po.write("[] ADR : " + GlobalsRcv.adr);

if (GlobalsRcv.bw_resol == 0) GlobalsRcv.bw_resol =
.02 * GlobalsRcv.adr ;

 if (GlobalsRcv.interrupt_coalescence > 0) {
 GlobalsRcv.bw_resol = .05 * GlobalsRcv.adr;
 }

if (GlobalsRcv.adr > 0) GlobalsRcv.tr =
GlobalsRcv.adr;

 else GlobalsRcv.tr = 15 * GlobalsRcv.min_rate ;
GlobalsRcv.po.write("[] Max rate, Min rate : " +
GlobalsRcv.max_rate + ", " + GlobalsRcv.min_rate);

/* if ADR couldnot be estimated, then initialize tr =
1 mbps */
if (GlobalsRcv.tr == 0 || GlobalsRcv.tr >
GlobalsRcv.max_rate)
GlobalsRcv.tr = (GlobalsRcv.max_rate +
GlobalsRcv.min_rate) / 2. ;

 else if (GlobalsRcv.tr < GlobalsRcv.min_rate)
 GlobalsRcv.tr = GlobalsRcv.min_rate ;

 /* Estimate the available bandwidth.*/

GlobalsRcv.transmission_rate = (int)(1000000 *
GlobalsRcv.tr);

 GlobalsRcv.max_rate_flag = 0 ;
 GlobalsRcv.min_rate_flag = 0 ;

 int ctr_code;

 int fleet_aborted = 0;

 double prev_tr;

 while (true) {

// if the fleet was aborted resend it with the same
parameters

 // otherwise calculate the new parameters
 if (fleet_aborted == 0) {
 System.out.println("fleet not aborted!!!");
 if (UtilMethodsRcv.calc_param() == -1) {

//ctr_code = Common.TERMINATE |
Common.CTR_CODE;

 //cmrcv.send_ctr_msg(ctr_code);

 79

cmrcv.terminate_gracefully(exp_start_times
ec, exp_start_timeusec) ;

 break;
 }
 }

System.out.println("-->TRANSM RATE : " +
GlobalsRcv.transmission_rate);
// a hack for the cases in which tha rate
remains constant

 prev_tr = GlobalsRcv.tr;

 cmrcv.send_ctr_msg(GlobalsRcv.transmission_rate);

 cmrcv.send_ctr_msg(GlobalsRcv.cur_pkt_sz) ;

 if (GlobalsRcv.increase_stream_len > 0)
 GlobalsRcv.stream_len=3 * Common.STREAM_LEN;
 else
 GlobalsRcv.stream_len = Common.STREAM_LEN;

 cmrcv.send_ctr_msg(GlobalsRcv.stream_len);

 cmrcv.send_ctr_msg(GlobalsRcv.time_interval);

 ctr_code = Common.SEND_FLEET | Common.CTR_CODE ;
 cmrcv.send_ctr_msg(ctr_code);

 ctr_code = cmrcv.recv_ctr_msg();

if ((((ctr_code & Common.CTR_CODE) >> 31) == -1)
&& ((ctr_code & 0x7fffffff) == Common.RECV_FLEET
))
//GlobalsRcv.po.write("FROM SND --> RECV

FLEET");
 System.out.println("FROM SND --> RECV FLEET");
 System.out.println("RECEVEING FLEET....");
 // recv fleet
 if (cmrcv.recv_fleet() == -1) {
 fleet_aborted = 1;
 // ? is this for the best ?

 /*if (
GlobalsRcv.increase_stream_len == 0) {

 trend = GlobalsRcv.INCREASING;
if (GlobalsRcv.exp_flag == 1 &&
prev_trend != 0 && prev_trend != trend)

 GlobalsRcv.exp_flag = 0;
 prev_trend = trend;

if
(UtilMethodsRcv.rate_adjustment(GlobalsRcv
.INCREASING) == -1)

cmrcv.terminate_gracefully(exp_start_timesec,
exp_start_timeusec);

 }*/
 }
 else {
 fleet_aborted = 0;

 80

 UtilMethodsRcv.get_sending_rate() ;

trend =
UtilMethodsRcv.aggregate_trend_result();

if ((trend == -1) &&
(GlobalsRcv.bad_fleet_cs > 0) &&

(GlobalsRcv.retry_fleet_cnt_cs
>GlobalsRcv.NUM_RETRY_CS)) {

cmrcv.terminate_gracefully(exp_start_timesec,
exp_start_timeusec) ;

 break;
 }

else if(((trend == -1) &&
(GlobalsRcv.bad_fleet_cs > 0) &&

(GlobalsRcv.retry_fleet_cnt_cs
<= GlobalsRcv.NUM_RETRY_CS))) /* repeat
fleet with current rate. */

 continue ;

 if (trend != GlobalsRcv.GREY) {

if (GlobalsRcv.exp_flag == 1 &&
prev_trend != 0 && prev_trend != trend)

 GlobalsRcv.exp_flag = 0;
 prev_trend = trend;
 }

if (UtilMethodsRcv.rate_adjustment(trend)
== -1) {

cmrcv.terminate_gracefully(exp_start_timesec,
exp_start_timeusec);

 break;
 }
 }

 // the hack for the repeating of the rate
 if (fleet_aborted == 0) {

if (trend == GlobalsRcv.INCREASING &&
prev_tr <= GlobalsRcv.tr) {

//System.out.println("I : " +
prev_tr + "-" + GlobalsRcv.tr);

 GlobalsRcv.tr -= 5;
 }

if (trend == GlobalsRcv.NOTREND && prev_tr
>= GlobalsRcv.tr) {

 //System.out.println("N");
 GlobalsRcv.tr += 5;
 }

if (trend == GlobalsRcv.GREY && prev_trend
== GlobalsRcv.INCREASING

 && prev_tr <= GlobalsRcv.tr) {
 //System.out.println("GI");
 GlobalsRcv.tr -= 5;
 }

if (trend == GlobalsRcv.GREY && prev_trend
== GlobalsRcv.NOTREND

 && prev_tr >= GlobalsRcv.tr) {

 81

 //System.out.println("GN");
 GlobalsRcv.tr += 5;
 }
 }
 }

 } catch (Exception e) {
 System.out.println("[pathload rcv] : exceptionnn");
 System.err.println(e);
 } finally {
 udpr.closeUDPSocket(GlobalsRcv.sock_udp);

 if (GlobalsRcv.sc != null) {
 try {
 GlobalsRcv.sc.close();
 } catch (Exception ignored) {
 }
 }
 GlobalsRcv.po.close();
 }
 }

}

