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Introduction 

The MonALISA framework 

The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) system 
provides a distributed monitoring service. MonALISA is based on a scalable Dynamic 
Distributed Services Architecture (DDSA), which is designed to meet the needs of 
physics collaborations for monitoring global Grid systems, and is implemented using 
JINI/JAVA and WSDL/SOAP technologies. The scalability of the system derives from 
the use of multithreaded Station Servers to host a variety of loosely coupled self-
describing dynamic services, the ability of each service to register itself and then to be 
discovered and used by any other services, or clients that require such information, and 
the ability of all services and clients subscribing to a set of events (state changes) in the 
system to be notified automatically. The framework integrates several existing 
monitoring tools and procedures to collect parameters describing computational nodes, 
applications and network performance. It has built- in SNMP support and network-
performance monitoring algorithms that enable it to monitor end-to-end network 
performance as well as the performance and state of site facilities in a Grid. MonALISA 
is currently running around the clock on the US CMS test Grid as well as an increasing 
number of other sites. It is also being used to monitor the performance and optimize the 
interconnections among the reflectors in the VRVS system. 

Vision and Goals for JINI  

The JINI architecture consists of a core infrastructure component, a programming model, 
and service components that collaborate to provide a dynamic, distributed, self-healing 
network where services can discover and join spontaneously. It is a Java-based solution 
and can be considered as a network extension of the core Java application model. It is a 
simple, elegant solution for the complex dynamic distributed computing problem.  

As a dynamic distributed technology, JINI has the following vision and goals: 

• To provide an infrastructure to connect anything, anytime, anywhere. The vision 
of JINI is to provide an infrastructure that can help different network users to 
discover, join, and participate in any network community spontaneously. 

• To provide an infrastructure to enable "network plug and work." The goal of JINI 
is to make any service joining the network available for other users without 
installation and configuration hassles. The vision is 0% installation and 0% 
configuration. It should be as easy as plugging a telephone into a telephone jack 
and using it—but it is not there yet. In fact, today's services are more operating 
system-and driver-centric. Even after downloading appropriate drivers and 
appropriate configuring, it is more a scenario of "plug and pray" than of "plug and 
play." 
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• To support a service-based architecture by abstracting the hardware/software 
distinction. JINI's vision is to provide an architecture centered around a service 
network instead of a computer network or device network. JINI's architecture 
simplifies the pervasive nature of computing by treating everything as a service. 
This service can be provided through hardware, software, or a combination of 
both. The advantage in abstracting this way enables the infrastructure to be 
designed to accommodate a single type of entity—a service. All protocols, such as 
joining or leaving the network, can be defined with respect to this service type 
instead of individual types. Such abstraction also helps in hiding the 
implementation of the service provider from the service requester. 

• To provide an architecture to handle partial failure. A distributed architecture is 
not complete until it provides a mechanism for handling partial failures. JINI's 
vision is to provide an infrastructure and an associated programming model that 
can handle partial failures and help in establishing a self-healing network of 
services. 

JINI's architecture is based on the following environmental assumptions  

• The existence of a network with reasonable network latency This is to ensure that 
network latency does not affect the performance of a JINI system because JINI 
relies heavily on Java's mobile-code feature.  

• Each JINI-enabled device has some memory and processing power. For devices 
without processing power or memory, a proxy exists that contains both processing 
power and memory. This is a strong assumption because all network citizens are 
expected to have minimum computing capability, memory, and ability to 
communicate. 

• Each device should be equipped with a Java Virtual Machine (JVM). The 
availability of different JVM footprints makes it easier to Java-enable any device. 

• Service components are implemented using Java. This is an assumption for 
software components that would be joining a JINI community. All the service 
components should live as Java objects to facilitate the service requester to 
download and run code dynamically. The point to note here is that JINI does not 
expect a Java service implementation but a Java wrapper. 

The only assumption, which is very strong, is the expectation of JINI-enabled devices. 
These are devices with minimum computing capabilities, communicating capabilities, 
and memory that should host a Java Virtual Machine (JVM). This is fine for many 
devices, but it can cause problems for the numerous devices that are currently processor-
less and driver-controlled. But the provision of a proxy (any device that has a processor, 
memory, and network capability willing to represent a processor- less device) makes this 
assumption easier to meet. By this approach, you can use a desktop computer to represent 
all your processor- less devices, such as printers, scanners, electric switches, washing 
machines, and microwave ovens, and also to control them.  
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The JINI architecture consists of the following components  

• An infrastructure component, which enables building a federation of JVM 

• A programming model component, which provides a set of interfaces for 
constructing reliable distributed services 
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• The services component, which forms the living entities and represents the offered 
functionality within the federation 

Although the system has three component parts, the boundary between the parts is 
blurred. All three parts collaborate with each other, like a set of gears within a machine, 
to achieve the overall system objectives. In fact, the infrastructure and the services 
components are built using the programming model component interfaces.  

JINI architecture is a Java-based solution for dynamic distributed computing. The JINI 
system extends the Java application environment from a single JVM to a network of 
JVMs. From that perspective, JINI can be seen as a network extension of the 
infrastructure, programming model, and services of Java application environment. JINI 
utilizes most of the core Java technologies, such as RMI and JavaBeans, while adding 
additional functionality to meet the distributed/network nature of the system. 
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Regarding the question: “How tightly are JINI architecture and Java coupled? “, the 
answer has two parts: 

• JINI is tightly coupled with Java as an application environment and a 
programming model. 

• JINI is not coupled with Java as a language. 

This means that the service can be implemented in any language: C, C++, or JPython. 
But to participate in the architecture, it should be subjected to a compiler that can produce 
Java-compliant byte code. If not, it can be Java wrapped/Java-tized using Java native 
interface (JNI). In this way, even a legacy application can be Java-wrapped and can be 
made into a JINI service. To summarize: JINI architecture is not Java language-centric 
but Java application-centric.  

System Components  

The JINI system comprises three components: (1) the infrastructure, (2) a programming 
model, and (3) services. 
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Infrastructure Component  

The Infrastructure component is a core part of the architecture and its goal is to provide 
mechanisms for devices, services, and users to discover, join, and detach from the 
network. The Infrastructure component is composed of the following subcomponents:  

• Discovery and join protocol, which defines the way that services discover, 
become part of, and advertise services to the other members of the federation. 

• Remote method invocation (RMI), the distributed architecture environment that 
enables service proxies to be downloaded. 

• Distributed security model, which provides the concept of security within the 
network. The distributed security model is an extension of Java's security model 
for distributed systems. 

• Lookup service, which serves as a repository of services and helps network 
members to find each other within the JINI community. Entries in the repository 
are Java-compliant byte-code objects, which can be written in Java or wrapped by 
Java. 
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Programming Model Component  

The programming model is based on the Java application platform and its ability to move 
code between nodes. The programming model defines a set of interfaces, which taken 
together become the distributed extension of the Java programming model to form the 
JINI programming model. The programming model supports the following interfaces:  

• Lease interface, which extends the Java programming model by adding time to 
the notion of holding a reference. This approach provides a renewable, duration-
based model for allocating and freeing the resource references. 

• Event notification interface, which extends the popular JavaBeans component 
event delegation model. This model allows an event to be handled by third-party 
objects and recognizes that the delivery of the distributed notification may be 
delayed. 

• Transaction interface, which allows the system to handle object-oriented 
transaction handling. The interface does not define the actual mechanisms 
involved in the transaction but provides rules for the objects involved in the 
transaction. This approach provides freedom in choosing the preferred mechanics 
and individual object implementation. 

Services Component  

The services component represents an important concept within JINI architecture, and it 
denotes the entities that have come together to form the JINI community. The entities 
could be hardware, software, or a combination of hardware and software. The services 
are identified as Java objects within the system. Each service has an interface, which 
defines the operations that can be requested of that service. The interface also reflects the 
service type. A service is a composite entity and can be composed of other subservices. 
In fact, the lookup service—one of the subcomponents of the core JINI infrastructure—is 
implemented as a JINI service. Other constituents that form a part of JINI architecture 
and implemented as JINI services are:  

• JavaSpaces service, which provides an optional distributed persistence 
mechanism for the objects within a JINI community 

• Transaction manager service, which provides distributed transactions for the 
distributed objects 

Interaction and Interdependence between Components  

As stated above, although the system has three parts, each part has a specific role in the 
overall architecture and they work in tandem to achieve the overall system objective. 
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Both infrastructure and service components rely heavily on the programming model. For 
example, the lookup service makes use of leasing and event interfaces: JavaSpaces 
utilizes leasing, event, and transaction interfaces. In short, any component within the JINI 
system has to adopt the programming model recommended.  

 

Theoretically, any service component is not forced to implement the programming model 
interfaces, but that is required for interaction with the infrastructure. For example, 
whether or not a service implements a leased service when it registers with a lookup 
service, it is leased. In scenarios where a service requester just invokes the service 
provider's method without sharing any resources or maintaining session information, 
leasing can be optional. An example of valid JINI service that does not use leasing and 
transaction is Jiro's log service. (Jiro technology provides tools and technology to reduce 
interoperability issues between storage systems, management software, and network 
devices.) Thus, the combination of infrastructure, services, and a programming model 
makes this architecture more reliable, dependable, and dynamic and helps to overcome 
the known issues with distributed computing. 

System Service Architecture  

Let us now look at the way that JINI components work together to provide a dynamic 
distributed service network. 
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Following is a walk-through of the steps that occur when a service provider registers with 
a JINI community, and when a service requester requests service.  

Service Provider Registering within JINI Community  

1. When a service is initiated into the network, it drops a discovery packet on the 
network, with a reference back to itself. The goal is to find one or more lookup 
services. 

2. Any lookup service within the JINI community listens on a well-known port for 
the discovery packet and appropriately responds to the service provider. 

3. When a lookup service within a network is discovered, the service joins the 
network by uploading all its characteristics into the lookup service. The service 
characteristics, its description, and its type are encapsulated as a proxy (Java) 
object, which is uploaded into the lookup service. This service is now available to 
any network citizen joining the community using the discovery and join protocol. 

Service Requester Requesting Service within JINI Community  

4. Any client (service requester) needing a service joins the community using the 
discovery protocol. In that process it locates one or more lookup services within 
the community. 

5. After locating a lookup service, the client looks for the service in the lookup 
service based on its service type (Java interfaces). 
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6. Once the service is found, the client invokes the service, which involves moving 
the proxy code on to the client. Now the client can perform any operation on the 
service by calling its methods. This movement of the code between the lookup 
service and the client gives the service provider greater freedom in the 
communication pattern and makes it possible to maintain the integrity of the 
proxy code as it is supplied by the service provider. 

7. Once the service proxy is downloaded, a service requester, depending upon its 
requirements, creates, negotiates, or terminates its lease with the service provider. 

The MonALISA service architecture 

The DDSA architecture incorporates many features that make it suitable for managing 
and optimizing workflow through Data Grids composed of hundreds of sites, with 
thousands of computing and storage elements, and thousands of pending tasks, such as 
those foreseen by the LHC experiments.  
 
In order to scale and operate robustly in managing global, resource-constrained Grid 
systems, the DDSA framework uses a set of Station Servers, one per facility or site in a 
Grid, that host a variety of dynamic, agent-based services. The services are registered 
with, and can be mutually discovered by a lookup service, and they are notified 
automatically in case of ``events'' signaling a change of state anywhere in a large 
distributed system. This allows the ensemble of services to cooperate in real time to 
gather, disseminate, and process time-dependent state and configuration information 
about the site facilities, networks, and many jobs running throughout the Grid. The 
monitored information is reported to higher level services, that in turn analyze the 
information, and take corrective action to improve the overall efficiency of operation of 
the Grid (through load balancing, for example) or to mitigate problems as needed. The 
DDSA framework is inherently distributed, ``loosely coupled'' and self-restarting, making 
it scalable and robust. Cooperating services and applications are able to access each other 
seamlessly, to adapt rapidly to a dynamic environment (such as worldwide-distributed 
analysis by hundreds of physicists in a major HEP experiment). The services are 
managed by an efficient multithreading engine that schedules and oversees their 
execution, such that Grid operations are not disrupted if one or more tasks (threads) are 
unable to inaccessibility of multiple Grid components (when a key network link goes 
down, for example). 
 
A service in the DDSA framework is a component that interacts autonomously with other 
services through dynamic proxies or agents that use self-describing protocols. By using 
dedicated lookup services, a distributed services registry, and the discovery and 
notification mechanisms, the services are able to access each other seamlessly. The use of 
dynamic remote event subscription allows a service to register to be notified of a selected 
set of event types, even if there is no provider to do the notification at registration time. 
The lookup discovery service will then automatically notify all the subscribed services, 
when a new service, or a new service attribute, becomes available. 
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The code mobility paradigm (mobile agents or dynamic proxies) used in the DDSA 
extends the remote procedure call and the client server approach. Both the code and the 
appropriate parameters are downloaded dynamically into the system. Several advantages 
of this paradigm are: optimized asynchronous communication and disconnected 
operation, remote interaction and adaptability, dynamic parallel execution and 
autonomous mobility. The combination of the DDSA service features and code mobility 
makes it possible build an extensible hierarchy of services capable of managing very 
large Grids, with relatively little program code. 
 
A prototype implementation of the DDSA based on JINI  technology was developed. The 
JINI architecture federates groups of devices and software components into a single, 
dynamic distributed system; functionality that the future Open Grid Services Architecture 
(OGSA) will need to include. JINI enables services to find each other on a network and 
allows these services to participate and cooperate within certain types of operations, 
while interacting autonomously with clients or other services. 
 
This architecture simplifies the construction, operation and administration of complex 
systems by:  

• allowing registered services to interact in a dynamic and robust (multithreaded) 
way; 

• allowing the system to adapt when devices or services are added or removed, with 
no user intervention; 

• providing mechanisms for services to register and describe themselves, so that 
services can intercommunicate and use other services without prior knowledge of 
the services' detailed implementation. 

 
WSDL/SOAP, bindings for all the distributed objects were also included, in order to 
provide access to the monitoring information from other types of clients and to facilitate a 
possible future migration to the Open Grid Services Architecture. 

The monitoring service 

An essential part of managing a global Data Grid is a monitoring system that is able to 
monitor and track the many site facilities, networks, and the many tasks in progress, in 
real time. The monitoring information gathered also is essential for developing the 
required higher level services, and components of the Grid system that provide decision 
support, and eventually some degree of automated decisions, to help maintain and 
optimize workflow through the Grid. We therefore developed the agent-based 
MonALISA system, based on the DDSA framework. MonALISA is an ensemble of 
autonomous multi- threaded, self-describing agent-based subsystems which are registered 
as dynamic services and are able to collaborate and cooperate in performing a wide range 
of monitoring tasks in large scale distributed applications, and to be discovered and used 
by other services or clients that require such information.  
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MonALISA is designed to easily integrate existing monitoring tools and procedures and 
to provide this information in a dynamic, self describing way to any other services or 
clients. MonALISA services are organized in groups and this attribute is used for 
registration and discovery. 

The data collection engine 

The system monitors and tracks site computing farms and network links, routers and 
switches using SNMP, and it dynamically loads modules that make it capable of 
interfacing existing monitoring applications and tools (e.g. Ganglia, MRTG, Hawkeye).  
The core of the monitoring service is based on a multithreaded system used to perform 
the many data collection tasks in parallel, independently. The modules used for collecting 
different sets of information, or interfacing with other monitoring tools, are dynamically 
loaded and executed in independent threads. In order to reduce the load on systems 
running MonALISA, a dynamic pool of threads is created once, and the threads are then 
reused when a task assigned to a thread is completed. This allows one to run concurrently 
and independently a large number of monitoring modules, and to dynamically adapt to 
the load and the response time of the components in the system. If a monitoring task fails 
or hangs due to I/O errors, the other tasks are not delayed or disrupted, since they are 
executing in other, independent threads. A dedicated control thread is used to stop 
properly the threads in case of I/O errors, and to reschedule those tasks that have not been 
successfully completed. A priority queue is used for the tasks that need to be performed 
periodically. A schematic view of this mechanism of collecting data is shown in figure 
below. 
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This approach makes it relatively easy to monitor a large number of heterogeneous nodes 
with different response times, and at the same time to handle monitored units which are 
down or not responding, without affecting the other measurements. As an example, we 
monitored 500 compute nodes performing a request for ~200 metric values per node 
every 60 seconds. This provided a sustained rate of ~1600 metric values per second 
collected, using an average of 20 active threads. The number of threads necessary to 
monitor a complete site is dynamically adjusted, and very dependent on the response time 
for each node, which is related to its load as well as to the quality of the network 
connections. 

Data storage 

The collected values are stored in a relational database, locally for each service. The 
JDBC framework in JAVA offers the flexibility to dynamically load any driver and 
connect to virtually any relational database. A normalized scheme is used to store the 
result objects provided by the monitoring modules in indexed tables, which are 
themselves generated as needed, dynamically. As data are becoming older, we are  
compressing the values stored in the database by evaluating the mean values on larger 
time intervals and at the same time keeping the fluctuation range for each parameter. 
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Registration and Discovery 

Each MonALISA service registers with a set of JINI Lookup Discovery Services (LUS) 
as part of a group, and having a set of attributes. The LUSs are also JINI services and 
each one may be registered with the other LUSs. If two LUSs have common groups any 
information related with a change of state detected for a service in the common group by 
one is replicated to the other one. In this way it is possible to build a distributed and 
reliable network for registration of services and this technology allows dynamically 

adding or removing LUSs from the system. Any service should also provide for 
registration the code base for the proxies that other services or clients need to instantiate 
for using it. This approach is used to make sure that the right proxies are used for each 
service while different versions may be used in a distributed organization at the same 
time. The registration is based on a lease mechanism that is responsible to verify 
periodically that each service is alive. In case a service fails to renew its lease, it is 
removed from the LUSs and a notification is sent to all the services or clients that 
subscribed for such events.  
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Any monitor client services is using the Lookup Discovery Services to find all the active 
MonALISA services running as part of one or several group “communities”. It is possible 
to select the services based on a set of matching attributes. The discovery mechanism is 
used for notification when new services are started or when services are no longer 
available. The communication between interested services or clients is based on a remote 
event notification mechanism that also supports subscription. 
 
The client application connects directly with each service it is interested in for receiving 
monitoring information. To perform this operation, it first downloads the proxies for the 
service it is interested in from a list of possible URLs specified as an attribute of each 
service, and than it instantiate the necessary classes to communicate with the service. 
This procedure allows each service to correctly interact with other services.  

Predicates, Filters and Alarm Agents 

The clients can get any real- time or historical data by using a predicate mechanism for 
requesting or subscribing to selected measured values. These predicates are based on 
regular expressions to match the attribute description of the measured values a client is 
interested in. They may also be used to impose additional conditions or constraints for 
selecting the values. In case of requests for historical data, the predicates are used to 
generate SQL queries into the local database. The subscription will create a dedicated 
thread to serve each client. This thread will perform the matching test for all the 
predicates submitted by a client with the measured values in the data flow. The same 
thread is responsible to send the selected results back to the client as compressed 
serialized objects. Having an independent thread per client allows sending the 
information they need, fast, in a reliable way and it is not affected by communication 
errors that may occur with other clients. In case of communication problems these threads 
will try to reestablish the connection or to cleanup the subscriptions for a client or a 
service that is not anymore active. 
 
Monitoring data requests with the predicate mechanism is also possible using the 
WSDL/SOAP binding from clients or services written in other languages. The class 
description for predicates and the methods to be used are described in WSDL and any 
client can create dynamically and instantiate the objects it needs for communication.  
 
Currently, the Web Services technology does not provide the functionality to register as a 
listener and to receive the future measurements a client may want to receive. Other 
applications or clients may also use the Agent Filters to receive the information they 
need. The Agent Filter is a java module which can be dynamically deployed to any 
MonALISA service, and is designed to perform a dedicated data processing task on local 
data (by subscribing with a predicate to the data flow) and returns back the processed 
information periodically. The MonALISA service provides the run time environment for 
these agents that must be digitally signed by a trusted certificate. As an example, such 
filters are used to compute the aggregate IO traffic in a farm, or to provide the number of 
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nodes that are free. The same thread used for handling the predicate subscription is used 
for sending the filtered results back to each client. 
 
Dynamically loadable alarm agents, and agents able to take actions when abnormal 
behavior is detected, were developed to help with managing and improving the working 
efficiency of the facilities, and the overall Grid system being monitored. 

The VRVS system 

The Virtual Rooms VideoConferencing System (VRVS) is an enhanced web based video 
conferencing system that is using a set of reflectors distributed world wide for an efficient 
real-time distribution of the audio and video streams. 
 
For each VRVS reflector, a MonALISA service is running using an embedded database, 
for storing the results locally, and runs in a mode that aims to minimize the reflector 
resources it uses (typically less than 16MB of memory and practically without affecting 
the system load). Dedicated modules to interact with the VRVS reflectors were 
developed: to collect information about the topology of the system; to monitor and track 
the traffic among the reflectors and report communication errors with the peers; and to 
track the number of clients and active virtual rooms. In addition, overall system 
information is monitored and reported in real time for each reflector: such as the load, 
CPU usage, and total traffic in and out.  
 
A dedicated GUI for the VRVS version was developed as a java web-start client. This 
GUI provides real time information dynamically for all the reflectors which are 
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monitored. If a new reflector is started it will automatically appear in the GUI and its 
connections to its peers will be shown. Filter agents to compute an exponentially 
mediated quality factor of each connection are dynamically deployed to every 
MonALISA service, and they report this information to all active clients who are 
subscribed to receive this information.  

 
It provides real-time information about the way the VRVS system is used (number of 
conferences or clients) the topological connectivity of the reflectors and the quality of it 
and system related information (IO traffic CPU load). Clients can also get historical data 
for any of these parameters. 
 
The subscription mechanism allows one to monitor in real time any measured parameter 
in the system as all the updates are dynamically displayed on the open windows. 
Examples of some of the services and information available, visualizing the number of 
clients and the active virtual rooms, the traffic in and out of all the reflectors, as well as 
problems such as lost packets between reflectors. 
 
In addition to dedicated monitoring modules and filters for the VRVS system, we 
developed agents able to supervise the running of the VRVS reflectors automatically. 
This will be particularly important when scaling up the VRVS system further.  
 
In case a VRVS reflector stops or does not answer correctly to the monitoring requests, 
the agent will try to restart it.  
 
If this operation fails twice the Agent will send an email to a list of administrators. These 
agents are the first generation of modules capable of reacting and taking well defined 
actions when errors occur in the system. These agents, capable to take action in the 
system, may be dynamically loaded. For security reasons such agents must be digitally 
signed by developers with trusted certificates, declared for each running service. 

Dynamic routing 

Agents able to provide an optimized dynamic routing of the videoconferencing data 
streams were developed. 
 
These agents require information about the quality of the alternative connections in the 
system and they solve, in real- time, a minimum spanning tree problem to optimize the 
data flow at the global level. 
 
To evaluate the connection quality with possible peer reflectors monitoring agents 
performing ping like measurements using UDP packages were developed and they are 
deployed on all the MonALISA services. These agents perform continuously (every 2s) 
such measurements with a selected set of possible peers, which can be dynamically 
reconfigured, for each reflector. We are using small UDP packages to evaluate the Round 
Trip Time (RTT), its jitter and the percentage of lost packages.  
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The reflectors and all these possible peer connections we are measuring define a graph. 
The best routing path for reapplication of the multimedia streams is defined as a 
Minimum Spanning Tree (MST). This means that we need to find the tree that contains 
all the reflectors (vertices in the graph G) for which the total connection “cost” is 
minimized:  
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∑
∈
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The “cost” of the connection between two reflectors (w) is evaluated using the UDP 
measurements from both sides. This cost function is build with an exponentially mediated 
RTT and if lost packages are detected or the jitter of the RTT is high the cost function 
will increase rapidly. 
 
Based on these values provided by the deployed agents, the MST is calculated nearly in 
real - time. The algorithm that was implemented is the algorithm of Baruvka, as it was 
well suited for a parallel/distributed implementation. Once a link is part of the MST a 
momentum factor is attached to that link. This is to avoid triggering reconnections for 
small fluctuations in the system. Such cases may occur when two possible peers have 
very similar parameters (or they may be at the same location). In the figure shown above 
an example of a dynamically MST for connecting the VRVS reflectors is presented. 
 
This is an example of a high level service developed to optimize a real-time world wide 
distributed application and to help in operating such complex systems. These 
developments are transforming the VRVS system into a new class of large scale 
distributed systems with real time constraints. 
 
The MonALISA framework is a means of carrying out the development of this system, 
both in terms of its operational characteristics (heuristic, self-discovering, autonomous) 
and the relatively short development time required for implementing a distributed 
monitoring and management system of this scale and complexity.  

The existing approach 

In the current MonALISA framework, the multicast path setup is used in VRVS, a 
videoconferencing system based on a set of servers called reflectors that route the 
audio/video streams to the participating clients, for monitoring and controlling the VRVS 
reflectors in order to enhance the quality of the service. 
 
A ReflRouter client was developed to provide an optimized dynamic routing of the 
videoconferencing data streams. This client requires information about the quality of the 
alternative connections in the system and it solves, in real-time, a minimum spanning tree 
problem to optimize the data flow at the global level. 
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To evaluate the connection quality with possible peer reflectors there were developed 
monitoring agents performing ping like measurements using UDP packages, which are 
deployed on all the MonALISA services. These agents perform continuously (every 4s) 
such measurements and with a selected set of possible peers, which can be dynamically 
reconfigured, for each reflector. The best routing path for reapplication of the multimedia 
streams is defined as a Minimum Spanning Tree (MST). This means that we need to find 
the tree that contains all the reflectors (vertices in the graph G) for which the total 
connection “cost” is minimized. The “cost” of the connection between two reflectors (w) 
is evaluated using the UDP measurements from both sides. This cost function is build 
with an exponentially mediated RTT and if lost packages are detected or the jitter of the 
RTT is high the cost function will increase rapidly. Based on these values provided by the 
deployed agents, the MST is calculated nearly in real - time. 
 
There are some critical cases that must be analyzed before running the MST algorithm. 
For this, each ReflNode is checked. If a node isn’t active then it must not appear in the 
MST. Further, the tunnels that start from the inactive node must also not be present in the 
computed tree. Therefore, the next state will be set to MUST_DEACTIVATE. If the node 
is active, then each link to the other reflectors (either active peers or neighbor reflectors) 
is checked. If the peer reflector isn’t active the respective tunnel must not be active. 
 
Another problem arises when between two reflectors there is no ABPing information, or 
there is only one ABPing link. In this case, the state of the both peer links depends on the 
current status of the peer link. If there is at least one peer link, then both must be 
activated. If none is active, then no peer link must be active. For the other cases the next 
state of a tunnel is initialized as INACTIVE, and the MST algorithm will set it as needed. 
For implementation, the Boruvka’s algorithm was used, as it is also appropiate for a 
parallel implementation. The original Borvuka algorithm is: 

 
 
Given G = (V,E) 
T = graph consisting of V with no edges 
while T has < n-1 edges do 

for each connected component C of T do 
e = min cost edge (v,u) s.t. v in C and u not in C 
T := T union {e} 

 
But there can be a problem if the graph isn’t connex. In this case, there is no way to 
connect n-1 edges, so that condition is modified such that the while cycle repeats as long 
as there is at least one union made into the for cycle. In our case, while joining subtrees, 
we also mark the next state of each tunnel that is used to perform the respective joint as 
ACTIVE. 
 
Another modification that must be done to this algorithm is that the process is going to be 
running iterative, i.e. we compute the MST, issue commands to change the tree, then we 
compute the MST and change the tree again and so on. A problem that could appear is 
that of active links oscillation. 
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For example, as in the above figures: at moment t1, the link between B and C is worse 
and therefore, is inactive; at the next moment, the link between A and C is worse and the 
algorithm would issue the commands to deactivate link A-C and activate instead the B-C 
link; but at the third moment, link between A and C is better once more than B-C, ant the 
algorithm would send new commands. This would be very bad for a system where there 
are live conferences ongoing. Therefore, we must take care and issue the commands for 
changing the route only when the new route is much better than the current route. 
 
This problem can be solved by setting an inertial factor for the links belonging to the 
MST. Links that are currently in the MST have an artificial cost lowered by, for example 
20%. It is important to give this value relative, not absolute as the cost of the links can 
vary very much – for example links between the reflectors in the same LAN have very 
low cost, compared to those separated by oceans. Using this inertial factor we are sure 
that the oscillations cannot happen very often, and that when a new link is chosen, it will 
bring a semnificative improvement in quality. 
 
It’s worth saying that this algorithm runs in O(m log n), where m is the number of edges 
and n the number of vertexes. 

Contribution 

The major disadvantage of this approach, as most of the existing schemes, is that of being 
centralized, i.e. they assume that information about each link in the network is available 
at one node. While the centralized schemes are fast and produce cheap trees, the 
requirement of all information to be present at one node is problematic in large sized 
networks as the overhead to collect and store the data is prohibitive. Among the 
distributed schemes that are available, many are based on the distributed minimum 
spanning tree algorithms. These, however, require participation of all the nodes in the 
network, and have an unsatisfactory theoretical upper bound on competitiveness. The 
first part of this paper presents a distributed minimum spanning tree that has optimum 
complexity in time and messages as presented in the following chapter. 
 
Another interesting problem in network is the problem of multicasting in networks also 
known as the Steiner tree problem. The scheme proposed is distributed and produces 
delay constrained trees that are little more expensive than those produced by centralized 
Steiner heuristics. An extension to this scheme makes it adaptive to changing delays 
along links and permits dynamic joins and leaves. The scheme requires very little 
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information in addition to that which is already maintained in routing tables for current 
protocols. 
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A highly asynchronous minimum spanning tree 

Introduction 
 
In this chapter we present a distributed protocol for obtaining a minimum spanning tree in 
an asynchronous network. We assume that each edge has a distinct weight associated 
with it. When the protocol terminates, each node knows which edges incident on it are in 
the minimum spanning tree.  
 
This protocol maintains a spanning forest of trees (referred to as fragments), each of 
which is a subtree of the MST. Fragments are merged over their minimum weight 
outgoing edges until a single fragment that spans the entire network remains. In order to 
keep the message complexity low, each fragment has a level number associated with it 
which is a mesure of the number of nodes in the fragment.  
 
We present a protocol, CompMST, which requires O(min (N, (D+d) log N) time and 
O(E+N log N/log log N) messages where D is the maximum degree of a node and d is the 
diameter of the MST. To arrive at this protocol we first present a protocol Async. In 
Async, a fragment does not wait for another fragment to reach a particular level before it 
can combine with it. The protocol takes at most O(min(N,(D+d)log N) time and O(N2) 
messages. The features of Async and those from the [3] are combined to obtain 
CompMST. The requirement of balanced growth is relaxed and a fragment at level l has 
to wait for a neighbour fragment to reach a level greater or equal to l – log l before 
combining with it.The CompMST protocol behaves like the protocol in [3] when the 
fragment size is small and like Async when the fragment size reaches N/log N. 

Problem formulation 

The network is modeled like an undirected graph with N nodes and E edges. All nodes 
are assumed to have distinct identities. We assume that all the edges e have distinct 
weights w(e) and each process knows the weight of all edges incident on it. The nodes 
communicate via messages. Messages are not lost and they arrive at their destination 
within finite but unpredictable time. Further, messages sent over an edge arrive in the 
order in which they are sent. On the initiation of the protocol, we assume that each 
process knows the weight of each edge incident on it. On the termination of the protocol, 
each node knows which edges incident on it belong to the minimum spanning tree. 
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Basic concepts 

The pioneering work presented in [1] forms the backbone of the papers in [2], [3] and [4]. 
In all these papers their algorithms use the following concepts: 
 
Fragments         As mentioned before, the algorithm uses fragments which are connected 

subgraphs of the MST 
Edge labels   There are three possible labels for edges. Initially all the edges are 

Unlabeled Thereafter, adjacent fragments join to form larger fragments by 
labeling their intermediate edge as Branch of the MST. Any edges that 
are found to connect nodes of the same fragment are labeled as Rejected, 
and are subsequently ignored. Each edge is labeled once in the Greedy 
Joining Policy described below the edges being labeled as Branch or 
Rejected 

 
Outgoing edge An edge is characterized as outgoing of a fragment if one adjacent node is 

in the fragment and the other is not. 
 
Fragment ID  Each fragment has a unique ID identifying the fragment 
 
Level concept In addition to a unique identifier referred as Fid each fragment is 

characterized by a level L. All nodes have zero level in the beginning. The 
level increases when two fragments join. The joining of two fragments on 
their common minimum outgoing edge (MOE) is referred as equi-join 
which differs from submission which refers to a fragments being absorbed 
by another fragment. Each level estimates the size of a fragment 

 
Greedy Joining Policy Each fragment tries to find its minimum outgoing edge and joins 

along another fragment. That edge is labeled Branch of the new fragment 
and thus an edge of the MST. Smaller fragments can submit anytime to 
greater ones, but greater fragments must wait on their MOE until the other 
fragment submits or becomes equal or greater level. 

 
PROPERTY 1. Given a fragment of an MST, let e be a minimum-weight outgoing edge 
of the fragment. Then joining e and its adjacent nonfragment node to the fragment yields 
another fragment of an MST. 
PROOF. Suppose the added edge e is not in the MST containing the original fragment. 
Then there is a cycle formed by e and some subset of the MST edges. At least one edge 
x ≠  e of this cycle is also an outgoing edge of the fragment, so that w(x)≥ w(e). Thus, 
deleting x from the MST and adding e forms a new spanning tree which must be minimal 
if the original tree was minimal. The original fragment with e added is a fragment of the 
new MST.  
 
PROPERTY 2. If all the edges of a connected graph have different weights, then the 
MST is unique. 
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PROOF. Suppose, to the contrary, that there are two different MSTs. Let e be the 
minimum-weight edge that is in one but not both of the trees, and let T be the set of edges 
of the MST containing e and T' be the edge set of the other MST. The edge set {e} U T' 
must contain a cycle, and at least one edge of this cycle, say e', is not in T (since T 
contains no cycles). Since the edge weights are all different and e' is in one but not both 
of the trees, w(e) < w(e'). Thus {e} U T' - (e'} is the edge set of a spanning tree of smaller 
weight than T', yielding a contradiction. 
 
 
The protocol maintains a forest of rooted trees (referred to as fragments). The root of the 
fragment is the root of the corresponding tree and the root’s identity is used to identify 
the fragment. The best edge of a fragment is the minimum weight edge among all edges 
leading out of the fragment.  
 
The Prim-Dijkstra algorithm starts with a single node and successively enlarges the 
fragment until it spans the graph. The Kruskal algorithm starts with all nodes as 
fragments and successively extends the fragment with the smallest-weight minimum 
outgoing edge, combining fragments were possible. 
 
Each fragment has a level number associated with it. Fragments containing only a single 
node are at level 0. When two fragments at level l merge, a new fragment at level l+1 is 
created. For such a level numbering scheme, it can be shown that a fragment with the 
level number l contains at least 2l nodes. Therefore, the level number of a fragment 
cannot exceed log N. The level of a node is the level number of the fragment to which it 
belongs. 

The pioneering work of Gallager, Humblet and Spira [1] 

One of the major innovations of this paper, which is regarded as classic not only for the 
MST problem but for distributed algorithms in general, was the concept of the level. 
Levels characterize fragments and enforce a hierarchy, that breaks the symmetry problem 
in the behavior of fragments during the joining procedure. The underlying idea is that 
levels are an estimate of the size of the fragment. Since each level increase requires an 
equi­join, the maximum possible level is log(N ), which will help estimating the 
complexity of the algorithm. Within each fragment, one node is the root of the fragment. 
In their work the idea of core edge was used. The core edge is the edge on which two 
fragments join. The two adjacent nodes act like a root. to the edge. The other papers use 
the idea of root as described here. The way the root is determined will be explained later 
in this section. We use distance from the root to define a hierarchy (typical “father­child” 
hierarchy for trees). The nodes know if a message, sent along the Branches, travels from 
or towards the root. Naturally, the father of a node is the neighbor node towards the root. 
We will see that, as the root changes the father relations may change.  
Nodes can be roots, leaders or simple nodes.  
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• root The root is the coordinator and decision maker of its fragment. Its 
responsabilities are to oversee a Finding procedure and, after the completion of 
the Reporting procedure, to either nominate a new node (named the leader, see 
below) to carry out the next join, or else end the algorithm.  

• leader. It is the node that attempts to join its fragment with another adjacent 
fragment. Its responsibilities, after having completed those of a simple node, are 
to follow the Joining policy and join correctly with the other fragment (this will 
become clear later). When the leader receives an initiate message, it becomes a 
simple node.  

• simple node. None of the above. Its responsibilities are to participate in both the 
Finding procedure (find its local MOE which as we said is a MOE adjacent to this 
node) and the Report procedure, i.e., report the best MOE among all those reports 
from nodes below it in the ``father­child'' hierarchy.  

 
It is better to examine the algorithm in all its various cases, through the explanation of the 
messages exchanged between nodes. We can distinguish two procedures.  
 
Finding Procedure  
 
This is the procedure by which the fragment looks for its next MOE. When a node 
becomes a root it starts this procedure by sending a copy of the following message over 
each of its Branch edges and broadcasting the following message(s).  
 

• initiate message: The root of the fragment has mandated a search for the MOE of 
its fragment. The message must be forwarded along each outbound branch in the 
“father­child” hierarchy, thereby reaching all nodes of the fragment. It also carries 
the information of the new fragment identity and level.  

 
Once a node a of fragment Fa has received such an initiate message, it must choose from 
its edges, the minimum outgoing one, which we will refer to as its local MOE. It picks its 
minimum weight Unlabeled edge and carries out the following dialog to determine where 
it leads to. Assume that it connects to node b of Fb .  
 

• test message: node a asks “Is this an outgoing edge, to a greater or equal level  
fragment?”.  
 

• reject message: node b can reply “No, we are in the same fragment and I have  
already rejected this edge myself”. It is not difficult to see that we can 
reject an edge using only two messages ­ even two test messages can be 
enough. Node a will repeat the same procedure with its next minimum 
Unlabeled edge, until an accept message is received (see below) or it runs 
out of Unlabeled edges. In this case, infinity is considered to be the weight 
of the local MOE.  
 

• accept message: node b can reply “Yes, it is outgoing, and my level is greater or 
equal to your level”. This edge is the local MOE of the node, and the search stops. 
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However, if Lb<La , node b puts the test message aside and carries on with the 
procedures initiated within its own fragment. (This is case 1 where a non­trivial 
delay can occur in responding to a message in this algorithm.) Eventually, node b 
will receive an initiate message with Lb = L a , in which case it can send a delayed 
accept message back to node a. The only exception is if node b receives a 
changeRoot message in order to join along the edge (a,b) while Lb < La . In this 
case, node b first submits to node a and then, after the joining procedure is 
complete, sends a delayed reject message back to node a. In addition, since Fb 
joined Fa before node a reported its local MOE, node a will extend the Finding 
procedure into Fb . 

 
• report message: it is the answer to the initiate message. Every node reports the 

weight of its MOE to its parent. Every parent compares the incoming report 
messages and its local MOE and reports only the minimum of them all.  

 
Joining Procedure 
 
The root accumulates the report messages, decides which one is the MOE for the whole 
fragment, and then informs the adjacent node that it will be the new leader. 
 

• changeRoot message: it is sent along the path from the root to the node adjacent 
to the fragment MOE inviting that node to become the leader of the fragment. On 
the way the message, reverses the “father” relation of adjacent nodes and so when 
it finally reaches the leader, the branches of the fragment are rooted towards the 
leader.  

 
Let us assume that the old root chose a as leader. Having received a changeRoot message 
node a knows that it can proceed in joining along the edge (a,b), which is both the local 
MOE of a and the MOE of the whole fragment.  
 

• connect message: node a says “My fragment and I would like to join with you”. 
The joining could be either equi­join or submission. Node a, waits for a connect 
message (case 2 of non trivial delay) that will establish the joining in terms of 
equi­join (La = Lb ) or submission (La = Lb ). Note that a connect message will 
always lead to a join, since the only way for rejection of the edge would be if Fb 
submits to Fa , but this is impossible because the accept message, previously sent 
by b, guarantees that Lb = La . Although Lb may have increased, it could never 
decrease and thus the Joining Policy is not violated. This way cycles are avoided 
(see the correctness section).  

 
We can now discuss the way the root is determined. In the beginning, every node is a 
trivial fragment and thus a root. In an equi­join, the root can be one of the two nodes 
adjacent to the MOE by say smaller node id number. In a submission, the root of Fb 
remains and node a will have b as its father. The algorithm terminates when the final root 
can not find an outgoing edge, i.e., the reported MOE is equal to infinity. 
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An improvement in node counting from Chin, Ting [3] 

The major innovation of the algorithm is that it tries to keep the fragment level a better 
estimate of the fragment size. It is obvious that any fragment of level L must have at least 
2L nodes. However, this is just a lower bound of its size: the fragment may have many 
more nodes than 2L if it has accepted a lot of submissions. The modified algorithm 
demands that  
 

2L = Size(F ) = 2L+1 
Tracking the fragment size can be achieved by having the root count the report messages 
it receives. More accurately, each report message has a counter that is increased at each 
hop of the message. Each node adds the counters of all the messages that it receives. At 
the root, the level of the fragment is compared with the size. If Size(F) = 2L+1 then the 
level is increased until it satisfies the previous double inequality. Then an initiate 
message is broadcasted and the procedure of finding the MOE is repeated. We will call 
this procedure Root Level Increase.  
 
A complementary idea suggested in this algorithm concerns a change in the Joining 
policy in order to exploit better the counting procedure. When a fragment (F1,L1) with v1 
as new root, submits to (F2,L2) at node v2 with L1 < L2 , F1 will either be included in the 
size counting procedure of F2 or it will begin a size counting procedure for itself. Node v1 
will calculate the new possible size according to the previous formula. If the new level of 
F1 is greater than L2 then the submission is cancelled and a new Finding procedure is 
initiated in F1. This procedure increases the efficiency of the algorithm to ))(( NGN ⋅Θ  
where G is the function explained in the introduction. Intuitively, we can observe that the 
mentality of the Joining Policy expects small size fragments to submit to bigger ones. By 
keeping in fragments, the level closely related to the size, we make the enforcement of 
this policy easier.  

An optimal algorithm by Awerbuch [4] 

This is the first algorithm that achieved the optimal bounds for both communication and 
time. The price paid is the loss of simplicity; two phases are required and the second one 
is further subdivided in two parts. 
 
Two new procedures are introduced: the Root Update procedure and the Test Distance 
procedure. 
 
The Root Update resembles the Root Level Increase procedure of the previous algorithm. 
The difference is that instead of counting the number of report messages, the existence of 
“long” paths is detected. The initiate message has a counter and counts the number of 
nodes it visits. The counter is initialised to 2L+1 and is decreased at each hop. When the 
counter becomes negative (we will say that the message expired), a message is sent back 
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to the root. The level is increased by one and a new initiate message is issued, restarting 
the Find MOE procedure.  
 
The Test Distance procedure applies to fragments that have just submitted. The fragment 
tests to see if its distance from the new root is big enough to justify a level increase. Thus 
instead of staying idle, it manages to have its level increased in time related to the level.  
 
Assume a fragment F, L with root v that has submitted to F1,  L1 at w (see the figure 
below), and that v has not received an initiate message from the “new” root, i.e., F has 
not yet been “officially” recognised as part of the great tree. Node v sends a testDistance 
message towards the new root. As in the initiate message, the message has a counter 
initialised to 2L. Decreasing at each hop, it may become negative, in which case we say 
that the procedure succeeded and the message returns to v that it can now increase its 
level by one. A testDistance message will be sent again, with the increased level, until the 
new root is reached or an initiate message arrives from the new root. Note that the role of 
this procedure is to update the level of the submitted fragment as soon as possible, so that 
adjacent fragments, that are connected with their MOE to it, will get to submit sooner 
(see complexity section).  
 

 
 

The algorithm is divided into phases and parts as follows: 
 

• Counting Nodes. In this auxiliary phase, we want to count the nodes of the 
network and thus we try to find a Spanning Tree that will help us do that 
correctly. Weights are neglected and the joining policy changes as follows: each 
fragment joins along the edge that leads to the greater fragment. Therefore, we 
achieve fast level increase and the communication and time complexity of this 
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phase are O(E +N log(N)) and O(N) respectively (see [4] for details). Having a 
Spanning Tree, the number of nodes in the network can be counted.  

 
• MST phase. This is the main part of the algorithm, where an MST is found. This 

phase is divided into two parts. 
 

o Fragments' Size: 0 to
N

N
log

 . In this part, the algorithm behaves exactly 

the same as the first algorithm we examined. The complexity of this part is 
optimal (see [4] for details), because the phase ends when the sizes of the 

fragments become
N

N
log

. Intuitively, we can observe that the first level 

increases are very fast compared to the later ones. 
 

o Fragments' Size: 
N

N
log

 to N . After the size of F becomes Size(F) = 

N
N

log
, the two new procedures are brought into action. Having fragments 

of this size makes sure that we have fewer than log(N) fragments in this 
phase.  

Corectness of previous algorithms 
 
In order to prove that the algorithms are correct, we have to prove that they terminate  
and find the MST.  
 
For termination, the following theorem holds for the three algorithms and proves  
that they terminate.  
 
Theorem  

The algorithms [1], [3] and [4] are deadlock free.  
 
PROOF 
A slightly different proof than the one in [1] will be given here. 
 
To prove that the algorithms find the minimum of the spanning trees we can recall two 
properties that we mentioned in the introduction. In other words it is sufficient to verify 
that the algorithms find at each step the MOE of each fragment. The previous description 
must have left no doubt that the edge selected by the root as MOE is indeed of minimum 
weight and outgoing for all the nodes that received the initate message and participated in 
the Finding procedure.  
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In addition, we must prove that it actually finds a tree, i.e., that it does not create a cycle. 

 
 

Theorem  
The algorithms [1] and [3] do not create cycles. 
 
PROOF 
Cycles are avoided because of the ordering of edges. As shown in the previous figure the 
can't exist since c < b < a where a, b, c are the weights of the edges and therefore, Fa can 
not submit on a, since c < a.  
 
Also, because the decisions are taken within a fragment in a centralised way, it is not 
possible to have a cycle, i.e., a fragment decides to join to one fragment at a time and 
then participates in a new Finding procedure and re­examine their previous outgoing 
edges. This centralization and the use of levels in the joining policy are clear in the 
following discussion.  
 
Assume a cycle of MOEs of fragments (see previous figure), considering fragments as 
“generalised” nodes.  
It is obvious that such a cycle would have to include a submission. A cycle of equi­joins 
is not possible, since equi­joins are only done along common MOEs for both fragments 
and so we can have only one for each initiate message of each fragment. 
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After the new initiate message arrives, the level is increased.  
 
Assuming a submission, say Fc to Fa , we have to assume a difference in levels La > LC . 
Assume that FB wants to join with FC , then it must be LB = LC .  
Obviously, LA > LB and thus FA can neither submit nor equi­join with FB . This way, 
cycles can not be created. 

A minimum spanning tree protocol 

In this section we describe the Async protocol. Each iteration is executed in two phases. 
In the first phase, the fragment identity is propagated to all sites in the fragment. After 
this phase is over, the root initiates the second phase for finding the best edge. 
 
First-phase The root of a fragment initiates the first phase by sending an initiate1 
message with the fragment identity (which is the identity of the root) as a parameter to its 
children. On receiving the message initiate1 a node updates its fragment identity and 
propagates initiate1 to its children. When the initiate1 message reaches a leaf node, it 
sends a finish message to its parent. An intermediate site waits for a finish message from 
all children before sending a finish message to its parent. When the root receives the 
finish message from all children, it knows that all nodes in the fragment know the current 
fragment identity. The root initiates the second phase. 
 
Second phase The root of a fragment initiates the second phase by sending initiate2 to its 
children. In this phase the best edge of the fragment is found as in [1]. A node sends a test 
message over an edge to ascertain that the edge is outgoing. However, the reply to a test 
message is not delayed (because if the receiving node is in the same fragment, then it 
must know the correct fragment identity since the first phase of the iteration has 
completed). After a node has determined its local best edge it propagates this edge weight 
towards the root using report messages. The root picks the edge with the minimum 
weight among the local best edges and sends a change-root message to the node in the 
fragment with this as an incident edge. This node becomes the new root of the fragment 
and sends a connect message over the best edge in an attempt to combine with the 
fragment at the other end. 
 
Consider the case when a connect message from a site i in fragment F reaches a site j, 
which is in fragment G. We have the following cases: 

• if j receives initiate1 and has not sent a finish message, then j treats (i,j) as an edge 
of the fragment and sends initiate1 to i. Further, site j waits for a finish message 
from i before sending its finish message. In this case, nodes in F are absorbed in G 
as a part of the current iteration of G 

• if j has already sent its finish message then the response to the connect message is 
delayed. If (i,j) is also the best edge of G then G will also send a connect message 
over this edge and F and G will merge ending the iteration. The node with the 
larger identity among the two end-points of the best edge will become the new 
root of the combined fragment and will initiate the next iteration. Otherwise when 
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j gets initiate1 message during the first phase of the next iteration, it will send an 
initiate1 message to i and as a result F will be absorbed as a part of that iteration. 

 
Hence, fragments are absorbed only while a site is executing the first phase and no new 
sites are added to a fragment while in the second phase. 
 

The composite protocol 

CompMST behaves like the protocol in [3] when the fragment size is small and like 
Async when the fragment size becomes large. In contrast to Async, the level numbers are 
explicitly stored by the sites and we require that the response to a test message sent by a 
node i at a level l to a node j to be delayed only if the level number of j is less than l-log l. 
Since log l increases with l, the protocol becomes more asynchronous as l increases. In 
CompMST the level number of a fragment is proportional to the amount of time it has to 
wait before updating its level number. The changes required to Async to obtain this 
behaviour are explained in the following: 
 
First-Phase The initiator site sends initiate1 message to its children with its current level 
number and the fragment identity. On receiving initiate1 a site updates its level number 
and fragment identity and propagates initiate1 to its children. The number of nodes are 
counted while propagating the finish(count) messages, where count is the number of 
nodes in the subtree rooted at the node sending the message. A leaf sends a finish(1) 
message to its parent. After site i has received a finish(countm) message from each child 
m, it sums up the counts received from the children, adds one to it and sends the resulting 
number in a finish message to its parent. The first phase terminates after the initiator 
receives a finish message from each child. Let M be the sum of the counts received from 
the children by the initiator. The initiator then updates its level number to log(M+1). This 
may be greater than the level number previously stored in the initiator due to fragments 
absorbed during this first phase.  
 
Second Phase is modified as follows. The initiator propagates its new level number in 
the initiate2 messages and sites update their level numbers on receiving this message. The 
level number of a node is included in the test message sent by it. If a node j receives a test 
message from a node with level l and j’s fragment identity differs from the one received 
then the response is delayed by j until its level number becomes at least l-log l. 
 
In addition, we use a protocol Update which allows a node to update the level number 
and fragment identity of the nodes in its fragment. The initiator site starts the protocol by 
sending the update message to its children with the fragment identity and level number in 
it. On receiving update(level,id), site i updates its level number and fragment identity and 
propagate the update message to its children. 
 
Consider the case in which there is a sequence of fragments, F1, F2,…, Fm, all at level li 
such that the connect message of Fi arrives at a node in Fi+1. 
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If the best edge of Fm leads to a node in a fragment with a higher level number lj then the 
level numbers of nodes in F1, F2,…, Fm are updated to lj   as in [1]. This updating may take 

up to
il

m

i
i SF =∑

=1

time. This is a problem since we want a node that waits O(Sli) time 

before it updates its level number to be able to increase its level number to at least 
 liSlog  and it may be the case that  liSlog  > lj. For this purpose we have to count the 
nodes in C and update the level number accordingly. The changes required in the 
protocol are explained in the following. 
 
Consider the case when a connect message from i in fragment F at level li is received by a 
node j in fragment G at level lj. If j has already sent a connect message to i (so that both F 
and G have the same best edge) then F and G are merged. If j>i then j becomes the root 
of the combined fragment and initiates a new iteration. Otherwise, i becomes the new 
root. If j has not sent a connect message to i then j behaves as follows: 

• li > lj  
 In this case, site j delays response to the connect message until its level becomes 
at least li (the connect message is then handled as described in case 2 below) or it sends a 
connect message to i (in this case the fragments are merged as described above) 
 

• li <= lj  
 a. Site j has received the initiate1 and has not sent the finish message: 
 In this case site j propagates initiate1 to i and waits for a finish message from i 
before sending a finish message to its parent. Thus F is absorbed in G and nodes in F 
participate in the current iteration of the protocol in G). The number of nodes in F are 
therefore inceluded in updating the number of G. 
 
 b. Site j has sent the finish message and li < lj – log lj  
 In this case since j has already sent the finish message, the nodes in F will not be 
included in updating the level number of G. Therefore, we require that i counts the 
number of nodes in F and reports that count to j before the connect message is processed 
by j. To do this, j sends a message to i instructing it to count the number of nodes, and 
temporarily refrains from sending a report message to its parent in G if it has not already 
sent it. Let C be the fragment rooted at i after the completion of first-phase and count be 
the number of nodes in C which is reported to i when first phase completes. 

• if log (count) >=lj  then site i decides to keep C distinct from G. It notifies j of 
this fact so that j can resume execution of the second phase in G. In addition, site i 
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updates its level to log(count) and initiates Update to update the level number of 
the nodes in C 
• if log(count) < lj  then G absorbs C. In this case, i notifies j of its decision to 
get absorbed and then updates its fragment identity to G and level number to lj 
Further it initiates Update to update the level number and fragment identity for 
the nodes in its subtree. If j has not already sent the report message then nodes in 
C participate in the second phase of the current iteration of G. When j receives 
initiate2 it propagates it to i and waits for a report message from i before sending 
its own report message.  

 
 c. Site j has sent the finish message and lj >= li >=lj –log lj  
 
In this case nodes in F cannot participate in the current iteration of G. As the previous site 
i updates its fragment identity to i and initiates first-phase. However, site j does not 
refrain from sending messages to its parent while counting is in progress. After the first 
phase is over, sit ei update its level number to max(lj, log (count)) where count is the 
number of nodes reported to i when the first phase complets. Site i then initiates the 
update procedure of the level number of nodes in its fragment. 
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Distributed Delay Constrained Multicast Path Setup Algorithm 
For High Speed Networks  

Steiner problem in graphs 
  
The problem of finding an optimal multicast tree in a point to point network translates to 
the Steiner Problem in graphs. Since the Steiner problem is NP complete, heuristic 
approaches are required for path setup. The problem takes a new dimension in Wide Area 
Networks, where centralized algorithms are not feasible, and distributed schemes are 
needed. It is also desirable that node participation for path setup is limited to nodes 
directly involved in the multicast. An additional requirement that comes from the nature 
of the applications such as videoconferencing that use the multicast support from the 
network is that of bounded end-to-end delays along any path from the source to each 
destination in the multicast tree. The first algorithm that we present here a heuristic 
algorithm that ensures delay bounds, is distributed, and produces trees that are only 
slightly more expensive than those produced by centralized algorithms. Further, we 
examine the degradation in performance in case of changing delays along network links 
(where QoS guarantees on delay are not available), and propose ways of making the tree 
adaptive to these changes. This dynamic routing approach minimizes resource reservation 
demands and also makes changing multicast groups permissible.. 
 
As multimedia data transfer capability in networks becomes increasingly available, 
applications such as video conferencing and distance education are gaining popularity. 
Multicast support is currently available from networks, but the current schemes are 
concerned only with connectivity, not optimality, and do not provide QoS (Quality of 
Service) guarantees such as delay bounds and jitter control that are needed for such 
applications. The bandwidth savings obtained from the use of multicast trees can be 
maximized by using optimal tree setup algorithms. Future networks will require such 
schemes to be integrated at lower layers in the protocol stack. 
 
The multicast path setup schemes can also be classified on the basis of QoS guarantees 
they provide. Again, most of the centralized and distributed schemes produce trees that 
are optimal only in terms of a metric on the links but are silent in terms of parameters 
such as end-to-end delays. A centralized scheme that finds delay constrained multicast 
trees was proposed by Kompella [9], and a distributed version of the same was later given 
by the authors [15]. This delay constrained distributed scheme is based on pruned MSTs 
and suffers from the drawback mentioned above. A distributed algorithm that does not 
require MST construction and requires limited participation by nodes during path setup 
has been proposed by Bauer and Varma [10] but it produces unconstrained trees. 
 
Finally, schemes can be classified as dynamic and static. Dynamic schemes allow for 
dynamically changing multicast groups with the possibility of joining and leaving an 
active multicast. These are also adaptive, i.e. they change the tree in response to changes 
in the network parameters. Static schemes, on the other hand, build a tree before the 
beginning of a multicast and the tree is used throughout the lifetime of the multicast. 
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Static schemes also require strict resource reservation to be made at the time of the path 
setup. 

Problem Formulation 
 
The delay constrained multicast path setup problem in a network can be formulated as 
follows. The network is modeled as a graph G(V,E) with cost and delay functions defined 
on the links. The capacities of the links are assumed to be fixed and  known. The cost 
metric on the links could be any combination of monetary cost and  network related 
parameters. 
 
INPUTS : 
C(e)  : C : E → N, gives cost of edge e 
D(e)  : D : E → N, gives the delay on e 
s  : Source node 
S  : Set of destinations 
∆  : Max. permissible delay from 

  source to destination. ∆ ∈ N 
 
OUTPUT: 
T, a tree rooted at s spanning all nodes in S. 
 
CONSTRAINT 
Σ D(e) < ∆     ∀ v ∈ Σ 
e ∈P(s,v) 
where P(s,v) is the set of edges along the path from 
source s to destination v. 
 
 
 
OBJECTIVE 
Minimize:   Σ   C(e) . 
      e ∈ T 
 
Using the above formulation, the proposed algorithm computes the (static) multicast tree. 
In the extension of the algorithm where dynamically changing link delays and multicast 
groups are permitted, the formulation is different in that the delay function D(e) and the 
set S are also functions of the (wall clock) time. D(e) is then not a specified function, but 
is calculated using a statistical model of the link.  

Algorithm  

The distributed multicast tree setup algorithm has three distinct phases. Phase 1 is a ‘Tree 
Construction’ phase, Phase 2 is a ‘Tree Repair’ phase. At the end of Phase 2, the tree 
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setup is complete and the multicast session can begin. Phase 3 of the algorithm handles 
changes in link parameters and/or changes in the multicast group, and may be invoked at 
any point during the lifetime of a multicast. 
 
Phase 1: Tree Construction 
 
Given the multicast group and the cost and delay functions on the edges, this phase 
constructs a tree rooted at the source and spanning all destination nodes. The tree 
construction is done using the distributed Kruskal Shortest Path Heuristic (K-SPH) [15]. 
 
K-SPH heuristic algorithm begins by treating all destination nodes and the source node as 
trivial subtrees. Each subtree ι detects the subtree ι′ closest to it and requests a join to the 
subtree ι′ via the shortest path between subtrees ι and ι′ . This process is continued till a 
single tree remains. In Phase 1 of the algorithm, distributed K-SPH scheme is used to 
setup a tree. Such a distributed implementation of the K-SPH heuristic can be found in 
[7]. 
 
Distributed K-SPH results in a multicast tree which minimizes a metric, i.e. it can be used 
to form a tree that is a minimum cost tree or a minimum delay tree. Two separate 
approaches can be adopted for optimizing (or meeting the bound on) the parameter not 
already optimized : 
 

• Cost First Heuristic (CFH) : which optimizes the cost using K-SPH and then 
'repairs' the tree wherever delay bounds are violated. 

• Delay First Heuristic (DFH) : which first obtains the minimum delay tree using 
K-SPH and then attempts to reduce the cost by making changes wherever delays 
are unnecessarily small. 

 
The two methods can be expected to give different cost-competitiveness and differ in 
their running complexities. The cost- first heuristic, while can be expected to give lower 
cost trees, may result in too much modification to ensure delay bounds, which may 
reduce its cost-competitiveness. The delay-first heuristic ignores the costs at the first step, 
but needs fewer modifications since the delay bounds have already been met. DFH will 
never cause a total degeneration of the tree built by the K-SPH. CFH, on the other hand, 
may lead to this situation if modifications of the tree are unable to guarantee delay 
bounds. Our experiments with the two approaches show that DFH gives better overall 
results, and hence CFH is not explored further. 
 
Phase 2: Tree Repair 
 
Phase 2 begins when the source s sends a DISCOVER_DELAY packet to all its children 
using the tree setup in phase 1. As this packet trickles down and reaches a node v, the 
node v and the packet is marked with the delay encountered on the path from s to v. Each 
node stores this ‘delay mark’. 
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Next, all destination nodes whose marked delay exactly matches with the delay bound, 
send a NO_CHANGE packet upwards to their parents. As soon as a NO_CHANGE 
packet travels over a link, the link is declared permanent, which means that this link will 
not be removed from the tree. The packet is forwarded upwards till the source.  
 
The leaf nodes that have delays marked smaller than the delay bound (no leaf node can 
have a mark larger than the bound since this is a minimum delay tree, else it is impossible 
to meet the delay bound in the network), calculate the SLACK (= delay bound -delay 
mark), and send a SLACK_PACKET upwards to their parents. This packet contains the 
sender’s index, as well as the slack. As soon as the packet reaches a node (other than the 
originator) which is also a multicast member, the links from the originator to this node 
are discarded, and the links that come within slack plus delay of the discarded link's are 
considered for inclusion. These are discovered by a localized flooding to neighbours. If 
more than one links meet the criteria, the cheapest are chosen. Delay marks are revised, 
and according to new marked delays, links may get declared permanent. However, it may 
happen that no cheaper paths with delays within slack amount of the delay on current 
links can be found. In that case, the packet is sent further up and the cycle repeats. In case 
of new links being found, the balance slack, if any, is sent further up.  
 
This method tries to achieve cost reduction by changes in levels closest to the leaf 
nodes whenever possible. This strategy is useful since the closer we are to the source, the 
larger is the number of destinations receiving the packets from the link, which makes the 
possibility of changing that link without disrupting the whole tree very small. Keeping 
the minimum delay links near the source is also desirable for adaptability of the tree 
(phase 3). It is thus a trade-off between the amount of modification and the cost. It is to 
be noted that the original links are discarded but not forgotten, as these may be required 
in the next phase. 
 
Phase 3 : Tree Adaptation 
 
The third phase of the algorithm is invoked in two situations, when the delays along links 
change or when a node joins or leaves a multicast. If the delay on a link (that is a part of 
the tree) changes, the node receiving packets from that link sends a DISCOVERY-
REQUEST packet to its parent. The parent marks the link on which this packet is 
received and forwards the packet upwards, till the packet reaches the source. The source 
then sends the DISCOVER_DELAY packet, and phase 2 is repeated in the partial tree 
formed by the marked links. 
 
In this phase, the new situation that can occur is that of negative SLACK values. These 
are handled differently. The first node to receive a SLACK_PACKET carrying a negative 
value removes the link along which the packet was received, thus breaking the tree into 
two subtrees. The links that were obtained through K-SPH in phase 1 are now brought 
back into the tree to connect the two subtrees via the shortest delay path. The discover 
delay and slack-reduction steps are repeated till slack values become positive. It may be 
noted that positive slack values are handled just as in phase 2. 
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Dynamic joins and leaves are handled using a Weighted Greedy Approach and then 
running phase 2 on the partial tree consisting of new links. The performance of this 
scheme is better than the weighted greedy approach because of the cost reduction 
achieved by phase 2, while it retains the simplicity as re-optimization is built into the 
algorithm itself. 
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 A Genetic Algorithm for Steiner Tree Optimization with Multiple 
Constraints Using Prüfer Number 
 

Introduction 
The main advantages of Genetic Algorithms include:  

• since solutions are coded as bit strings, referred to as chromosomes, large 
problems can be easily handled by using long strings; 

• genetic operations, such as crossover and mutation, are very easy to implement;  

• with a pool of chromosomes (candidate solutions), Genetic Algorithms search the 
solution space at different corners in parallel; therefore, the algorithm can be 
easily implemented on multi-processor machines to search in parallel;  

• randomized genetic operations, such as mutation, can keep the search from being 
trapped by local-optima.  

 
Genetic Algorithms have been successfully applied to control problems in ATM 
networks, such as bandwidth allocation and buffer management. They also have been 
applied to point-to-point routing and spanning tree problem in communication networks. 
 
The Genetic Algorithms (GAs) are used to solve an optimization problem based on the 
principle of evolution. A population of candidate solutions, called chromosomes, is 
maintained at each iteration of the evolution. Each chromosome consists of linearly 
arranged genes which are represented by binary strings. Three basic operations, namely, 
reproduction, crossover, and mutation, are adopted in the evolution to generate new 
offspring. Reproduction is based on the Darwinian survival of the fittest among strings 
generated. Samples (represented as bit strings) with larger fitness function values are 
selected to generate new offspring bit strings by means of crossover operations, and the 
offspring are converted into new parameter solutions. Intuitively, a bit string with a larger 
fitness function value should have a higher probability of contributing one or more 
offspring bit strings in the next generation and vice versa. Crossover is used to cut 
individually two parent bit strings into two or more segments and to then combine the 
segments undergoing crossover to generate two offspring bit strings. Crossover can 
produce offspring that are radically different from their parents. Suppose the crossover 
operation is performed on the two bit 
strings, “01110001” and “10011011”, and that they are split at the second bit; then, two 
new bit strings, “01011011” and “10110001” are generated. There are other ways of 
implementing the crossover operation, e.g., arithmetic crossover. 

 
  parents      offsprings  
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Mutation is to perform random alternation on bit strings by means of some operations, 
such as bit shifting, inversion, rotation, etc. A mutation operation will create new 
offspring bit strings different from those generated by the reproduction and crossover 
operations. Mutation can extend the scope of the solution space and reduce the possibility 
of falling into local extremes. In the literature, has been suggested that the possibility of 
mutation should be set to a very low value. 

Problem formulation 
 
A network is modeled as a directed, connected graph G = (V, E), where V is a finite set of 
vertices (network nodes) and E is the set of edges (network links) representing 
connection of these vertices. Let n = card (V) be the number of network nodes and l =card 
(E) be the number of network links. The link e = (u, v) from node u ∈V to node v∈V 
implies the existence of a link e ' = (v, u) from node v to node u. Three non-negative real 
value functions are associated with each link e (e∈E): cost C(e):E? R+, delay 
D(e):E? R+, and available bandwidth B(e):E? R+. The link cost function, C(e), may be 
either monetary cost or any measure of the resource utilization, which must be optimized. 
The link delay, D(e), is considered to be the sum of switching, queuing, transmission , 
and propagation delays. The link bandwidth, B(e), is the residual bandwidth of the 
physical or logical link. The link delay and bandwidth functions, D(e) and B(e), define 
the criteria that must be constrained (bounded). Because of the asymmetric nature of the 
communication networks, it is often the case that C(e) ?  C(e '), D(e) ?  D(e '), and B(e) ?  
B(e '). A multicast tree T(s, M) is a sub-graph of G spanning the source node s ∈V and 
the set of destination nodes M ∈V-{s}. Let m =card(M) be the number of multicast 
destination nodes. We refer to M as the destination group and {s} ∪ M the multicast 
group. In addition, T(s, M) may contain relay nodes (Steiner nodes), that is, the nodes in 
the multicast tree but not in the multicast group. Let PT(s, d) be a unique path in the tree 
T from the source node s to a destination node d ∈M.  
The total cost of the tree T(s, M) is defined as the sum of the cost of all links in that tree 
and can be given by 
  C (T(s,M))= ∑

∈ ),(

)(
MsTe

eC  

The total delay of the path PT(s,d) is defined as the sum of the delay of all links along 
PT(s,d) 
  D (PT  (s,d))= ∑

∈ ),(

)(
dsPe T

eD  

The bottleneck bandwidth of the path PT(s,d) is defined as the minimum available 
residual bandwidth at any lynk along the path: 
  B(PT(s,d))= min {B(e), ),( dsPe T∈ } 
Let d∆ be the delay constraint and Bd the bandwidth constraint of the destination node d. 
The bandwidth delay-constrained least-cost multicast problem is defined as minimization 
of C(T(s,M)) subject to 
  MddsPD dT ∈∀∆≤)),((   
  MdBdsPB dT ∈∀≤)),((   
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Genetic algorithms 
 
Genetic algorithms are the most widely known types of evolutionary computation 
methods today. In general, a genetic algorithm has five basic components 

1. An encoding method, that is a genetic representation (genotype) of the solutions 
to the program 

2. A way to create an initial population of individuals (chromosomes) 
3. An evaluation function, rating solutions in terms of their fitness and a selection 

mechanism 
4. The genetic operators (crossover and mutation) that alter the genetic composition 

of offspring during reproduction 
5. Values for the parameters of genetic algorithm 

A general structure of the genetic algorithm is as follows: 
 
Procedure: Genetic Algorithms 
Begin 
t := 0; 
initialize P(t); {P(t) is the population of individuals in generation t} 
evaluate P(t); 
While (not termination condition) do 
Begin 

recombine P(t) to yield C(t); {creation of offspring C(t) by means of genetic operators} 
evaluate C(t); 
select P(t + 1) from P(t) and C(t); 
t := t + 1; 

End 
End 
  
  

Genotype: modified Prufer numbers 
 
A spanning tree T has n nodes, n=3, and its Prüfer number, P(T), is an n-2 digit number. 
Encoding of the Steiner tree by the Prüfer number is more difficult than encoding of the 
spanning tree. 
Special difficulty arises because: 
• The Steiner trees contain a variable number of nodes in the range from m+1 to n, and 
their associated Prüfer numbers include between m-1 and n-2 digits. 
• In the spanning case, the set of eligible nodes for consideration in decoding algorithm is 
the set of all nodes that are not appeared in the Prüfer number. In the Steiner case, this 
rule is not applicable. 
We adopt the encoding/decoding algorithms of the Prüfer numbers to be suitable for the 
Steiner tree problems. Figures 2 and 3 show these algorithms, which convert a Steiner 
tree to its associated Prüfer number and vice versa. Let i be the lowest numbered leaf 
(node of degree 1) in T and j be the predecessor of i. The Prüfer number is built up by 
appending j to the right of P(T) and removing i and the edge (i, j) from T. Thus i is no 
longer considered at all and if i was the only successor of j, then j has become a leaf. This 
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process is repeated, until only two nodes remain in T to be considered. Thus, P(T) is built 
and read from left to right. Let P be the set of nodes that are part of the Prüfer number, 
P(T). In our modified Prüfer number decoding algorithm (see Figure 3), we consider that 
the set of eligible nodes, R, be all nodes in the multicast group, {s} ∪ M, that are not 
member of P, i.e., R=({s} ∪ M)n P'. 
 
Procedure: Convert a Tree to its Prüfer number 
Begin 
P(T) := null; 
While (more than two nodes remain in T) do 
Begin 
Find i, the lowest numbered leaf in T; 
Let j be the predecessor of i; 
Append j to the right of P(T); 
Remove i and the edge (i, j) from T; 
End 
End 
 
Procedure: Convert a Prüfer number to a tree 
Begin 
R := ({s}? M)n P'; {Let the set of eligible nodes, R, be all nodes in the multicast group that are 
not part of P(T)} 
While (one or more digits remain in P(T)) do 
Begin 
Find i, the lowest numbered eligible node in R; 
Let j be the leftmost digit of P(T); 
Add the edge (i, j) to T; 
Remove j from P(T); 
Remove i from R; {Designate i as not no longer eligible} 
If (j . P(T)) then {if j dos not occur anywhere in what remains of P(T)} 
Add j to R; {Designate j as eligible} 
End 
{Now, there are exactly two nodes, i and j, in R which are still eligible for consideration} 
Add the edge (i, j) to T; 
End 
 
The Prüfer encoding establishes a one-to-one correspondence (non-redundancy property) 
between k-node trees and the set of all string of k-2 digits. This means that we can use 
only (k-2)-digit permutation (short encoding property) to uniquely represent a tree where 
each digit is an integer between 1 to k inclusive. The transformation back and forth 
between edges and Prüfer numbers can be carried out in O(n log n) with the aid of a heap. 
 

The pre-processing phase 
 
Before starting the genetic algorithm, we can remove all the links, which their bandwidth 
are less than the minimum of all required thresholds (Min {Bd | ∀ d∈M}). If in the 
refined graph, the source node and all the destination nodes are not in a connected sub-
graph, this topology does not meet the bandwidth constraint. In this case, the source 
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should negotiate with the related application to relax the bandwidth bound. On the other 
hand, if the source node and all the destination nodes are in a connected sub-graph, we 
will use this sub-graph as the network topology in our GA-based algorithms. 
 

The initial population  
 
Random individual creation algorithm: In this algorithm, a linked list is constructed 
from the source node s to one of the destination nodes. Then, the algorithm continues 
from one of the unvisited destinations and at each node the next unvisited node is  
randomly selected until one of the nodes in the previous sub-tree (the tree that is 
constructed in the previous step) is visited. The algorithm terminates when all destination 
nodes have been mounted to the tree.  
 
Procedure: random individual creation 
Begin 
n := 1; 
First := True; 
While (n<=Number of Destinations) do 
Begin 

Initialize the n-th link list; 
If (First) then 

Current-node := Source 
Else 

Current-node := One of unvisited Destinations; 
GTM := Temporary matrix of the network graph; 
Add the Current-node to the n-th link list; 
Link-list-comp := False; 
While (Not Link-list-comp) do 
Begin 

k := Number of connected nodes to the Current-node in GTM; 
If (k=0) then 
Begin 

Remove the Current-node in the n-th link list; 
Remove the link between the Current-node and the previous node in 
Gold; 
Current-node := previous node in the n-th link list; 
GTM := Gold  

End 
Else 
Begin 

i := a random natural number in interval [1,k]; 
Add the i-th node to the n-th link list; 
Gold := GTM; 
Remove all links to the Current-node in GTM; 
Current-node := the i-th node; 
If (First) then 

If (Current-node is one of the destinations) then 
Begin 
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Link-list-comp := True; 
Make an individual by n-th link list; 
n := n+1; 
First := False; 
Mark the found destination as a visited destination 

End 
Else 

If (the Current-node is a node in one of the previous link lists(for 
example j -th link list)) then 

{ if the Current-node has a connection to the source node, this 
link has higher priority} 

Begin 
n-th link list := j -th link list from the source node to 
found position + Inverse (n_th link list); 
Link-list-comp := True; 

     Add the n-th link list to the individual; 
n := n+1; 
Mark this destination as a visited destination 

End 
End {Else} 

End {inner while} 
End {outer while} 
End {procedure} 
 
  

The fitness function 
 
We define the fitness function for each individual, the tree T(s, M), using the penalty 
technique, as follows: 
 

 
where a is a positive real coefficient, f(z) is the penalty function and ? is the degree of 
penalty (? is considered equal to 0.5). 
 

Selection 
 
The selection process used here is based on spinning the roulette wheel pop-size times, 
and each time a single chromosome is selected as a new offspring. The probability Pi that 
a parent Ti is selected is given by: 
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Where F(Ti) is the fitness of the Ti individual. 
 

Crossover  
 
The algorithm uses two crossover schemes for recombination of two individuals, which 
represent Steiner trees: 
Crossover I: Let {PF(s, d1), PF(s, d2), …, PF(s, dm)} be the set of paths from the source 
node s to all destination nodes in TF and {PM(s, d1), PM(s, d2), …,  PM(s, dm)} be the 
same set in TM. Since, we have found these paths for all individuals in the current 
population for calculating the fitness function of them, the algorithm will not be complex. 
A fitness function for the path P(s, di) based on the total cost, the total delay and the 
minimum bandwidth of the path using the penalty technique, is defined as follows: 

 
where a is a positive real coefficient, f(z) is the penalty function and ? is the degree of 
penalty (? is considered equal to 0.5). According to the crossover probability of Pc, two 
multicast trees TF(s,M) and TM(s, M) are selected as parents and the crossover operation 
produce an offspring TO(s, M). Each individual may be recombined with its right 
individual and its left individual through the crossover operator. For each destination 
node di, we compute the fitness of PM(s, di) and PF(s, di) and select the better path. 
 
Procedure: The crossover operator 
Begin 

For i:=1 to m do { m is the number of destination nodes} 
If F(PM(s, di)) > F(PF(s, di)) then 

PO(s, di) := PM(s, di) 
Else 

PO(s, di) := PF(s, di); 
Current-tree := PO(s, d1); 
For i:=2 to m do 
Begin 

Previous-node := s; 
Start-node := s; 
Current-node := The second node in the PO(s, di); 
New-link := False; 
While (Previous-node <> di) do 
Begin 
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If the Current-node does not exist in the current-tree then 
Begin 

Add the link between the Current-node and the Previous node to 
the current-tree; 
New-link := True; 

End 
Else 
Begin 

If the New-link = True then 
Remove all link from Start-node to the Previous-node in PO(s, 
di) in the current-tree; 
Start-node := Current-node 
New-link := False; 

End 
Previous-node := Current-node; 
If there is another node in PO(s, di) then 

Current-node := the next node in the PO(s, di) 
End 

End 
End 
 
Crossover II: In this scheme, it is used a simple one-point crossover. The constructed 
offspring do not necessarily represent Steiner trees. Then, the effective and fast check and 
recovery algorithm proposed in Q. Zhang, Y.W. Lenug, "An orthogonal genetic 
algorithm for multimedia multicast routing" is used to connect the separate sub-trees in 
the offspring and also connecting the absent nodes of multicast group to the final tree. 
 

Mutation 
 
There are two following algorithms for mutation operator: 
Mutation I: The mutation procedure randomly selects a subset of nodes and breaks the 
multicast tree into some separate sub-trees by removing all the links that are incident to 
the selected nodes. Then, the effective and fast check and recovery algorithm is used to 
connect the separate sub-trees and also connecting the absent nodes of multicast group to 
the final tree. 
Mutation II: According to the mutation probability Pm, the mutation procedure randomly 
selects an infeasible chromosome from one of the following class (If the first class is 
empty, a chromosome is selected from the second class and so on) 
• Class 1: The chromosomes, which do not satisfy the delay and the bandwidth 
constraints. 
• Class 2: The chromosomes, which do not satisfy the delay constraint. 
• Class 3: The chromosomes, which do not satisfy the bandwidth constraint. 
If all chromosomes in the current population satisfy both of the QoS constraints, we exit 
from the mutation procedure. Then, we select only the paths that satisfy both of the QoS 
constraints in the selected chromosome.  
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Implementation 

In the current version of MonALISA the service that provide the data for the clients that 
are registered with them is done by means of a Proxy service. The proxy being also a 
service registers itself and it can be found by clients. The client finds such a Proxy and 
sends to it the request messages. Being connected to all the farms the proxy forwards to 
them and the result messages are sent back to the clients by using the Proxy service. The 
communication between the clients and the proxy and from the Proxy to the farms is 
done using TCP connections that are reliable. The use of proxy brings the following 
advantages: 
 

• the use of Proxy reduces the number of TCP connections over the Internet. A 
farm has connections with each Proxy and not with all the clients. In this way a 
farm doesn’t uses a large number of threads as it would be the case when for each 
client a new connection would have been established 

• by using a proxy even the farms that are behind a firewall can work; the farm 
connects to the Proxy and the messages sent by clients to the Proxy arrive to the 
farm  

 
Being connected to all the proxies simultaneously, communication problems with a 
certain proxy allow the other proxies to use the farm. 
 
The distributed algorithms presented in this paper are running on farms as agents. They 
are started when a farm is launched in execution. As a distributed algorithm the nodes on 
which it runs need to communicate with each other in order to exchange the necessary 
information to build the minimum spanning tree or the multicast tree. In the current 
framework the communication between farms was not possible. As presented before in 
the current VRVS system the minimum spanning tree was computed in a centralized 
version that implied for a node (farm) to be aware of all the structure of the network in 
order to compute the tree. Therefore there was no need for communication between the 
nodes in establishing the minimum spanning tree. 
 
The first target of the implementation was to enable the farms to communicate between 
them when running the algorithm. Working in such a complex application such a change 
of the general architecture implied a lot of work in understanding precisely the use of 
each class and the relations between them. 
 
The main modifications were done in all the classes of the Proxy service and in the Data 
Cache Service of the farm.  
 
In the diagrams below is presented a schema about how the clients and the farms interact 
through the ProxyService represented here as a cloud, the UML of the Data Cache of the 
farm and the architecture of the Proxy Service. 
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The UML diagram below represents the Proxy Service. We had to modify the function 
that was responsible for routing the messages received from the farms to the clients in 
order to route also the messages from one farm to another. 
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In the UML diagram below the Data Cache Service architecture is presented.  
The Cache uses a ProxyWorker : 

• to verify the connections with the existing Proxy Services 

• to establish connections with newly registered Proxy Services using a 
tcpClientWorker 

• to send to each proxy a configuration update of a farm 

• to send to each proxy a new result from the farm 
 
The ProxyWorker is important for our algorithm because it gives us the list of available 
proxies. These proxies are used for communication with the other nodes. When requested 
the ProxyWorker returns a connection to a ProxyService in order for the agent that runs 
the algorithm to send a message to another agent that runs on another farm (node) using 
the ProxyService as a router for the messages. One of the available Proxies is returned by 
the getProxyTCPClientWorker() method. The messages must arrive from one agent to 
another and we are not concerned by the ProxyService that is used for routing purposes. 
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The tcpClientWorker class has been modified in order to filter the messages from other 
farms. The agent that runs the algorithm register with the DataCache with 3 listener 
classes: one class used for synchronizing in the initial step the nodes that are involved in 
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the algorithm (SyncFarmMessagesListener), one class used for the messages that are 
received by a node from other nodes that belong to other fragments 
(OutFragmentFarmMessagesListener) and one class for the messages that are exchanged 
within the same fragment (InFragmentFarmMessagesListener). Each of this listeners 
implement the same interface FarmMessagesListener. The DataCache notifies each 
listener when a message of the specific type for each listener is received. Each listener 
implements in the notify method specific action for each type of message according to the 
algorithms described in the previous chapters. 
 
For these agents that run on each farm a new package was developed. For each algorithm 
an agent class has been implemented. Each agent class implements the same interface 
FarmAgentInterface in order to have a common base for other algorithm that will be 
developed in the future. In the UML diagram below the structure of this distributed MST 
is presented. 
 
For the messages that are used in these algorithms a new class was developed 
monMessageMST implementing the new interface for messages between farm agents 
monAgentMessage.
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The data that is used in this algorithm is the one that is given by the ABPing module. In 
the configuration file of this module the list of adjacent farms for one farm is specified as 
a list like in the example below: 
 
wn1.rogrid.pub.ro  141.85.99.170 vrvs.co.pub.ro 141.85.99.136 
141.85.99.170       wn1.rogrid.pub.ro  vrvs.co.pub.ro 
vrvs.co.pub.ro      141.85.99.170         wn1.rogrid.pub.ro 
141.85.99.136   wn1.rogrid.pub.ro 
 
For the algorithm the RTime value is extracted from the database. The formula behind 
this parameter is presented below: 
 

 
This formula is flexible enough to permit calculating any kind of quality, based on RTT, 
Packet Loss and Jitter. The values obtained by pinging peers are: 

• rtt – the round trip time for packets to travel to the peer and back; 

• loss – percent, ranging from 0 to 1 of lost packets sent to the peer; 

• jitter – sum of the variations of rtt for a set of samples, divided by the average rtt 
and number of samples 

The list of available peers for each reflector and the *_COEF coefficients should be 
highly configurable to allow easy reconfiguration. To reach this goal, the configuration 
file is the same for all reflectors, each one knowing to extract only the information that is 
needed. The coefficients must be the same for all reflectors in order to obtain comparable 
RTime qualities. 
 
The configuration list is loaded at start from a URL configured in the Monalisa service 
and then it is checked periodically for changes. 
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Conclusions 
 
The algorithms implemented are going to be used in the VRVS system by specifying in 
the configuration file the one that is to be used. This approach offers a bigger flexibility 
and offers the possibility for further extensions. The algorithms can be extended to the 
case of oscillating links, etc. The presented genetic algorithm will also be implemented in 
a distributed version. 
 
Working for this diploma project has offered me the opportunity to do a research looking 
for a better solution than the one that existed in the beginning and also to face the 
difficulties of adapting the theoretical model to the existing framework and especially the 
difficulties of debugging the algorithm in a real distributed environment. I consider that 
this has been one of the most interesting experiences I have ever had combining in a 
unique way the skills of a software developer with the work of a researcher. Both the 
research and development parts are equally interesting each one having its strong points. 
 
I would also like to thank my coordinators Mr. Valentin CRISTEA and Mr. Iosif 
LEGRAND, to Mrs. Mihaela TOARTA, Mr. Catalin CARSTOIU and Mr. Ramiro 
VOICU for their constant help during this period. 
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Appendix 

FarmAgentMST.java 
 
package lia.Monitor.FarmAgents; 
 
import java.util.Hashtable; 
import java.util.Vector; 
import net.jini.core.lookup.ServiceID; 
import net.jini.discovery.LookupDiscoveryManager; 
import java.util.logging.Logger; 
import java.util.logging.Level; 
import java.util.Comparator; 
import java.util.Collections; 
 
import lia.Monitor.DataCache.ProxyWorker; 
import lia.Monitor.monitor.FarmMessagesListener; 
import lia.Monitor.JiniSerFarmMon.RegFarmMonitor; 
import lia.Monitor.JiniSerFarmMon.MLLUSHelper; 
import lia.Monitor.monitor.monPredicate; 
import lia.Monitor.DataCache.Cache; 
import lia.Monitor.monitor.ExtendedResult; 
import lia.Monitor.monitor.monMessage; 
import lia.Monitor.monitor.monMessageMST; 
 
//class that computes a distributed minimum spanning tree 
//at the end of the algorithm each node running this algorithm knows the adjacent edges that are in the MST 
public class FarmAgentMST { 
 /** Logger Name */ 
 private static final transient String COMPONENT = 
  "lia.Monitor.FarmAgents"; 
 /** The Logger */ 
 private static final transient Logger logger = Logger.getLogger(COMPONENT); 
  
 private  LookupDiscoveryManager  ldm ; 
  
 //used to translate a farm name to its ServiceID 
 private MLLUSHelper resolver; 
  
 //algorithm states 
 private final int NOT_STARTED=-1; 
 //the current node is searching for its best outgoing edge 
 private final int FINDING=0; 
 //the current node has sent the report message with its best outgoing edge 
 private final int FOUND=1; 
 //the current node has received the INITIATE1 message in the 2nd phase of the algorithm 
 private final int INITIATE=2;  
 //the current node has sent the FINISH message with the number of nodes in his subtree in the 2nd phase of 
the algorithm 
 private final int FINISH=3; 
 //the algorithm has finished 
 private final int END=9;  
 //the state of the algorithm 
 private int state; 
  
 //the phases of the algorithm 
 private final int PHASE1=1; 
 private final int PHASE2=2; 
 //the phase of the algorithm 
 private int phase; 
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 //the class that launches this agent 
 private RegFarmMonitor host ; 
 //the dataStore of the current farm 
 private Cache dataStore; 
 //the ServiceID of the farm 
 private ServiceID hostServiceID ; 
  
 //hash the associates to each farm's ServiceID a FarmInfo object 
 private Hashtable farms; 
 //vector containing the unused farms sorted according to the value returned by ABPing for that farm 
 private  Vector unusedFarmList;  
  
 //the root of the fragment the current node belongs to 
 private ServiceID fragmentRoot; 
 //the fragment's level 
 private int fragmentLevel; 
 //the level of the fragment the current node wants to connect to (2nd phase of the algorithm) 
 private int otherFragmentLevel; 
 //the syncListener is used to synchronize the current farm with the others according to the ABPingConfig file 
 private SyncFarmMessagesListener syncListener; 
 //these listeners are used for the messages within or from outside the fragment 
 private OutFragmentFarmMessagesListener outListener; 
 private InFragmentFarmMessagesListener inListener; 
 //the farms that belong to the current's node part of the MST 
 private Vector MSTFarmList; 
  
 //a ProxyWorker keeps all the connections to all the proxies 
 //it is used to send a message 
 private ProxyWorker proxyWorker; 
  
 //keeps the number of nodes to/from which a message has been sent/received   
 private int findCount; 
 //keeps the actual number of nodes in the subtree rooted at the current node 
 private int findCountTotal; 
 //the ServiceID of the parent node 
 private ServiceID inBranch; 
 //the ServiceID of the best farm discovered by the current node 
 private ServiceID bestFarm; 
 //the ABPing value for the bestFarm 
 private double bestFarmValue; 
 //the path to the bestFarm from the current node (used in the changeRoot procedure) 
 private Vector bestFarmPath; 
 //the ServiceID of the current best farm of the node 
 private ServiceID testFarm; 
 //the ABPing value for the testFarm 
 private double testFarmValue; 
 //the vector with the farms the current node has already synced with 
 protected Vector sync; 
  
 //class containg the farm's name and the ABPing value 
 private class FarmInfo{ 
   private String farmName; 
   private double avgABPingValue; 
    
   public FarmInfo(String name,double value){ 
    this.farmName=name; 
    this.avgABPingValue=value; 
   } 
 
   public String getFarmName(){ 
    return farmName; 
   } 
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   public double getAvgABPingValue(){ 
    return avgABPingValue; 
   } 
    
   public void setAvgABPingValue(double value){ 
    avgABPingValue=value; 
   } 
 
   public String toString(){ 
    String temp=new String("["+farmName+" = "+avgABPingValue+"]"); 
    return temp; 
   } 
 } 
  
 //class used for synchronizing with the other farms 
 private class SyncFarmMessagesListener implements FarmMessagesListener{ 
     
  public synchronized void notify(monMessage msg){ 
   monMessageMST MSTmsg=(monMessageMST)msg.ident; 
   if(msg.tag.equals("SYNC")){ 
    //if the algorithm has not started for the current node the message is delayed 
    if(state==NOT_STARTED){ 
      dataStore.addSyncFarmMessage(msg); 
      //logger.log(Level.INFO,"Synced delayed 
"+MSTmsg.getSourceServiceID()); 
    } 
    else 
     //if the farm is not synchronized with the farm from which it has 
received the sync message 
     //then it sends a sync message, it adds the farm to the current list of 
farms the node has already synced with 
     //and it mediates his ABPing value for that node with the value 
received from the other node 
     if(!isSynced(MSTmsg.getSourceServiceID())){   
     
      
 sendSync(MSTmsg.getSourceServiceID(),getFarmABPingValue(MSTmsg.getSourceServiceID())); 
       sync.add(MSTmsg.getSourceServiceID()); 
      
 avgABPingValue(MSTmsg.getSourceServiceID(),MSTmsg.getABPingValue()); 
       // logger.log(Level.INFO,"Synced with 
"+MSTmsg.getSourceServiceID()); 
     } 
   } 
  }   
   
 } 
  
 //class used to handle the messages received from another fragment 
 private class OutFragmentFarmMessagesListener  implements FarmMessagesListener{ 
   
  public synchronized void notify(monMessage msg){ 
   //the MST message  
   monMessageMST MSTmsg=(monMessageMST)msg.ident; 
   logger.log(Level.INFO,"< "+msg.tag+" from 
"+getFarmName(MSTmsg.getSourceServiceID())+" myLevel="+fragmentLevel+" 
myFragmentRoot="+getFarmName(fragmentRoot)); 
   //CONNECT message 
   if(msg.tag.equals("CONNECT")){     
    logger.log(Level.INFO,"CONNECT from level="+MSTmsg.getLevel()+" 
fragmentRoot="+getFarmName(MSTmsg.getFragmentRoot())); 
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    if(phase==PHASE1){ 
     //if the other fragment's level is smaller than our fragment level  
     if(MSTmsg.getLevel()<fragmentLevel){ 
      //we have a submission from the other fragment 
      logger.log(Level.INFO,"SUBMISSION from 
"+getFarmName((ServiceID)MSTmsg.getSourceServiceID())); 
      //if the farm is still in the unusedFarmList we remove it 
since it will already be in our MST 
      if(getFarmIndex(MSTmsg.getSourceServiceID())!=-1){ 
      
 MSTFarmList.add(getFarmServiceID((ExtendedResult)unusedFarmList.remove(getFarmIndex(MSTmsg.get
SourceServiceID())))); 
       logger.log(Level.INFO,"Added in MST 
"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1))); 
      } 
      else 
       //if the farm that has done the submission was our 
testFarm we add the farm in our MST 
      
 if(compareServiceIDs(testFarm,MSTmsg.getSourceServiceID())==0){ 
       
 MSTFarmList.add(MSTmsg.getSourceServiceID()); 
        logger.log(Level.INFO,"Added in MST 
"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1)));    
    
       } 
      //we are sending the INITIATE message along with our 
fragmentLevel and fragmentRoot 
      monMessageMST initiateMSTmsg=new 
monMessageMST(hostServiceID,MSTmsg.getSourceServiceID(),new Integer(fragmentLevel),fragmentRoot,new 
Integer(state)); 
      sendMessage(initiateMSTmsg,"INITIATE"); 
      //if we are in the FINDING state we also add the new 
fragment in this procedure 
      if(state==FINDING) 
       findCount++;    
   
            
       
     } 
     //if the other fragment's level >= our current level  
     else{ 
      //if the edge is not in the unusedFarmList then it is also our 
best outgoing edge  
      if(getFarmIndex(MSTmsg.getSourceServiceID())==-1){ 
       //we have an EQUIJOIN 
       //if we have a smaller ID then we become the 
new root of the fragment and we initiate another step 
      
 if(compareServiceIDs(fragmentRoot,MSTmsg.getFragmentRoot())<0){    
   
        fragmentLevel++; 
        state=FINDING; 
        logger.log(Level.INFO,"EQUI JOIN 
=>Incrementing level to "+fragmentLevel); 
        initiate(); 
       }     
   
      } 
      //the other's fragment level > our current level then the 
CONNECT message is delayed 
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      else{ 
       logger.log(Level.INFO,"CONNECT delayed"); 
       dataStore.addOutFragmentFarmMessage(msg); 
      } 
     } 
    }//end if PHASE1 
    else{ 
     //if the other fragment's level > our fragment level the CONNECT is 
delayed 
     if(MSTmsg.getLevel()>fragmentLevel){ 
      logger.log(Level.INFO,"CONNECT delayed"); 
      dataStore.addFarmMessage(msg); 
     } 
     else{ 
      //if the node is in INITIATE state then the other fragment is 
included in the current INITIATE1 step  
      if(state==INITIATE){ 
       monMessageMST initiateMsg= new 
monMessageMST(hostServiceID,MSTmsg.getSourceServiceID(),new Integer(fragmentLevel),fragmentRoot); 
       sendMessage(initiateMsg,"INITIATE1"); 
       findCount++; 
      } 
      else 
      //if the node has sent the FINISH message and the other 
fragment's level < our level - log(our level) 
      if((state==FINISH ||state==FINDING||state==FOUND) 
&& MSTmsg.getLevel()<fragmentLevel-Math.log(fragmentLevel)){ 
       monMessageMST initiateMsg=new 
monMessageMST(hostServiceID,MSTmsg.getSourceServiceID(),new Integer(fragmentLevel),fragmentRoot); 
       //we instruct the other node to do a counting of 
the nodes and to decide after that if it still wants to join 
       sendMessage(initiateMsg,"COUNT"); 
       //if the REPORT message has not been sent yet 
we wait for a decision  
       if(state==FINDING) 
        findCount++;   
     
      } 
      else 
      //if the node has sent the FINISH message  and the other 
fragment's level >= our level - log(our level) then the other fragment 
      //cannot participate in the current iteration of our fragment 
      //the joining fragment is added in the MST and it is 
instructed to start the first phase  
      if((state==FINISH ||state==FINDING||state==FOUND) 
&& fragmentLevel>=MSTmsg.getLevel() && MSTmsg.getLevel()>=(fragmentLevel-Math.log(fragmentLevel))){ 
      
 if(getFarmIndex(MSTmsg.getSourceServiceID())!=-1){ 
       
 MSTFarmList.add(getFarmServiceID((ExtendedResult)unusedFarmList.remove(getFarmIndex(MSTmsg.get
SourceServiceID())))); 
        logger.log(Level.INFO,"Added in MST 
"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1))); 
       } 
       else 
      
 if(compareServiceIDs(testFarm,MSTmsg.getSourceServiceID())==0){ 
        
 MSTFarmList.add(MSTmsg.getSourceServiceID()); 
        
 logger.log(Level.INFO,"Added in MST 
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"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1)));    
    
       } 
       monMessageMST initiateMsg=new 
monMessageMST(hostServiceID,MSTmsg.getSourceServiceID(),new Integer(fragmentLevel),fragmentRoot); 
       sendMessage(initiateMsg,"INITIATE1"); 
      } 
     } 
    }//end else PHASE2 
   }    
   else 
   if(msg.tag.equals("TEST")){ 
    logger.log(Level.INFO,"TEST from level="+MSTmsg.getLevel()+" 
fragmentRoot="+getFarmName(MSTmsg.getFragmentRoot())); 
    //if we are in the first phase of the algorithm we delay a TEST message until 
our level becomes >= then the other fragment's level 
    //if we are in the second phase of the algorithm we delay a TEST message until 
our level becomes at least the OF level - log(OF level) OF=other fragment  
    if(((phase==PHASE2&&(MSTmsg.getLevel()-
Math.log(MSTmsg.getLevel())>fragmentLevel)) 
     
 ||(phase==PHASE1&&MSTmsg.getLevel()>fragmentLevel)) 
        &&compareServiceIDs(MSTmsg.getFragmentRoot(),fragmentRoot)!=0){ 
      logger.log(Level.INFO,"TEST delayed "); 
      dataStore.addOutFragmentFarmMessage(msg); 
    }         
    else 
     //if the to fragments have the same fragment root a REJECT message 
is sent 
     //and the correspondig entry in the unusedFarmList is removed if it 
exists 
     //if this edge was our test edge we test another edge 
    
 if(compareServiceIDs(MSTmsg.getFragmentRoot(),fragmentRoot)==0){ 
      monMessageMST rejectMSTmsg=new 
monMessageMST(hostServiceID,MSTmsg.getSourceServiceID()); 
      sendMessage(rejectMSTmsg,"REJECT");  
      for(int i=0;i<unusedFarmList.size();i++){ 
       ExtendedResult 
crtRes=(ExtendedResult)unusedFarmList.elementAt(i); 
      
 if(compareServiceIDs(resolver.getServiceIDfromFarm(crtRes.NodeName),MSTmsg.getSourceServiceID())=
=0){ 
        //logger.log(Level.INFO,"Scot 
"+resolver.getServiceIDfromFarm(crtRes.NodeName)); 
        logger.log(Level.INFO,"Removing 
"+crtRes.NodeName); 
        unusedFarmList.remove(i);  
        
        break; 
       } 
      }       
      if(testFarm!=null) 
      
 if(compareServiceIDs(testFarm,MSTmsg.getSourceServiceID())==0) 
        test();    
            
            
  
     }   
     //if all the conditions are meet a ACCEPT message is sent 
     else{ 



 67 

      monMessageMST acceptMSTmsg=new 
monMessageMST(hostServiceID,MSTmsg.getSourceServiceID()); 
      sendMessage(acceptMSTmsg,"ACCEPT");  
     
     } 
   } 
   else    
   if(msg.tag.equals("ACCEPT")){ 
    //if we receive a positive answer we update the best farm or try to send a report  
    if(bestFarmValue>testFarmValue){ 
     bestFarmValue=testFarmValue; 
     bestFarm=testFarm; 
     testFarm=null; 
    }  
    report(); 
   } 
   else 
   if(msg.tag.equals("REJECT")){ 
    //if we receive a reject message that has not expired we start the testing 
procedure 
    if(compareServiceIDs(testFarm,MSTmsg.getSourceServiceID())==0) 
     test(); 
   } 
   else 
   if(msg.tag.equals("REJECTCONNECT")){ 
    //if the connect message was received in a FINDING step then the current node 
can continue 
    if(state==FINDING) 
     findCount--; 
   } 
   else 
   if(msg.tag.equals("ACCEPTCONNECT")){ 
    //we add the edge in the MST and if we are in a FINDING state we also put to 
work the joining fragment 
    if(getFarmIndex(MSTmsg.getSourceServiceID())!=-1){ 
    
 MSTFarmList.add(getFarmServiceID((ExtendedResult)unusedFarmList.remove(getFarmIndex(MSTmsg.get
SourceServiceID())))); 
     logger.log(Level.INFO,"Added in MST 
"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1))); 
    } 
    else 
    
 if(compareServiceIDs(testFarm,MSTmsg.getSourceServiceID())==0){ 
      MSTFarmList.add(MSTmsg.getSourceServiceID()); 
      logger.log(Level.INFO,"Added in MST 
"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1)));    
    
     } 
    if(state==FINDING){ 
     findCount++;      
     monMessageMST initiateMsg=new 
monMessageMST(hostServiceID,MSTmsg.getSourceServiceID(),new Integer(fragmentLevel)); 
     sendMessage(initiateMsg,"INITIATE2");   
   
    } 
   } 
  } 
     
   
 } 
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 //class that handles messages within the fragment  
 private class InFragmentFarmMessagesListener implements FarmMessagesListener{ 
   
  public void notify(monMessage msg){ 
    
   monMessageMST MSTmsg=(monMessageMST)msg.ident; 
   logger.log(Level.INFO,"< "+msg.tag+" from 
"+getFarmName(MSTmsg.getSourceServiceID())+" myLevel="+fragmentLevel+" 
myFragmentRoot="+getFarmName(fragmentRoot)); 
   if(msg.tag.equals("INITIATE")){ 
    //upon receiving an INITIATE message the node's 
fragmentLevel,fragmentRoot,inBranch and state are updated 
    //and this message is also sent to all its children 
     
    fragmentLevel=MSTmsg.getLevel(); 
    fragmentRoot=MSTmsg.getFragmentRoot(); 
    inBranch=MSTmsg.getSourceServiceID(); 
    state=MSTmsg.getState();     
    //logger.log(Level.INFO,"state="+state); 
    initiate();    
   } 
   else 
   if(msg.tag.equals("INITIATE1")){ 
    //similar to the initiate message but for the 2nd phase of the algorithm 
    phase=PHASE2; 
    fragmentLevel=MSTmsg.getLevel(); 
    fragmentRoot=MSTmsg.getFragmentRoot(); 
    inBranch=MSTmsg.getSourceServiceID(); 
    initiate1(); 
   } 
   else 
   if(msg.tag.equals("FINISH")){ 
    //the number of nodes from which a finish message is expected is decremented 
    //and the total number of farms in the subtree is updated 
    findCount--; 
    findCountTotal+=MSTmsg.getFarms(); 
    //if the node is not the root of the fragment it sends the gathered information to 
its parent 
    if(compareServiceIDs(fragmentRoot,hostServiceID)!=0) 
     finish(); 
    else{ 
     //the root updates the fragment's level  
     fragmentLevel=(int)Math.log(findCountTotal+1); 
     //if in the 2nd phase of the algorithm the INITIATE message is sent 
     if(state==INITIATE) 
      initiate2(); 
     else 
     if(state==FOUND){ 
      //if in the 1st phase of the algorithm and the fragment's 
level is bigger than the level of the fragment it wants to  
      //join with it sends a REJECTCONNECT message and 
starts a new iteration 
      if(fragmentLevel>=otherFragmentLevel){ 
       monMessageMST rejectMsg=new 
monMessageMST(hostServiceID,bestFarm); 
       sendMessage(rejectMsg,"REJECTCONNECT"); 
       initiate1(); 
      } 
      else 
      if(fragmentLevel<otherFragmentLevel){ 
       //it sends a ACCEPTCONNECT message and 
updates its level, root and MST list and starts the update procedure 
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       monMessageMST connectMsg=new 
monMessageMST(hostServiceID,bestFarm,new Integer(fragmentLevel)); 
      
 sendMessage(connectMsg,"ACCEPTCONNECT"); 
       fragmentRoot=bestFarm; 
       fragmentLevel=otherFragmentLevel; 
       MSTFarmList.add(bestFarm); 
       update(); 
      } 
     } 
    }      
   } 
   else 
   if(msg.tag.equals("UPDATE")){ 
    //upon receiving a UPDATE message the information is updating and sent to all 
the subtree 
    fragmentLevel=MSTmsg.getLevel(); 
    fragmentRoot=MSTmsg.getFragmentRoot(); 
    inBranch=MSTmsg.getSourceServiceID(); 
    update(); 
   } 
   else 
   if(msg.tag.equals("INITIATE2")){ 
     //the node updates its level and starts the procedure initiate2 
     fragmentLevel=MSTmsg.getLevel(); 
     initiate2(); 
   } 
   else 
   if(msg.tag.equals("REPORT")){  
    //upon receiving a REPORTmessage the node checks if it is from its subtree 
    boolean fromSons=false; 
    if(inBranch==null) 
      fromSons=true; 
    else 
     if(compareServiceIDs(MSTmsg.getSourceServiceID(),inBranch)!=0) 
      fromSons=true; 
    if(fromSons){ 
     //decrements the number of nodes from which it waits for a report  
     //and updates the number of nodes in its subtree 
     findCount--; 
     findCountTotal+=MSTmsg.getFarms();     
     //if the report actually contains an edge the bestFarm is updated 
     if(MSTmsg.getBestFarmPath()!=null) 
      if(MSTmsg.getBestFarmValue()<bestFarmValue){ 
       bestFarmValue=MSTmsg.getBestFarmValue(); 
       bestFarm=MSTmsg.getDestinationServiceID();  
       bestFarmPath=MSTmsg.getBestFarmPath(); 
           
      } 
     //if the current node is not the root of the fragment the report is sent to 
its parent 
     if(compareServiceIDs(fragmentRoot,hostServiceID)!=0) 
      report(); 
     else       
      if(findCount==0){ 
       //if the root has received all the reports and the 
bestFarm==Double.MAX_VALUE 
       //then the algorithm is finished  
       //the root displays its MST edges and sents this 
info to all its children 
       if(Math.abs(Double.MAX_VALUE-
bestFarmValue)<1.0){ 
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        state=END; 
        logger.log(Level.INFO,"ALGORITHM 
FINISHED!!!"); 
        for(int i=0;i<MSTFarmList.size();i++){ 
        
 logger.log(Level.INFO,"edge="+getFarmName((ServiceID)MSTFarmList.elementAt(i))); 
         monMessageMST 
endMsg=new monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i)); 
        
 sendMessage(endMsg,"END"); 
        }    
     
       } 
       else{ 
        //if a best edge has been found but the 
reports show that a bigger number of nodes than the one estimated by the level 
        //the initiate step is repeated 
        state=FOUND; 
       
 if(findCountTotal>=Math.pow(2,fragmentLevel)){       
        
 while(findCountTotal>=Math.pow(2,fragmentLevel)) 
          fragmentLevel++; 
         state=FINDING;  
       
         initiate(); 
        }    
     
        else    
     
         changeRoot(); 
       }     
  
     } 
    } 
    else 
     if(state==FINDING) 
      dataStore.addFarmMessage(msg); 
   } 
   else 
   if(msg.tag.equals("CHANGEROOT")){ 
    //as the changeroot message trickles down the tree to the specified edge the 
parent -son relation is changed 
    //and when it arrives to the specified node that one sends the CONNECT 
message 
    if(MSTmsg.getBestFarmPath().size()==0){  
     if(phase==PHASE1){ 
      MSTFarmList.add(bestFarm); 
      logger.log(Level.INFO,"Added in MST 
"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1))); 
     } 
     monMessageMST connectMSTmsg=new 
monMessageMST(hostServiceID,bestFarm); 
     sendMessage(MSTmsg," CONNECT"); 
    } 
    else 
     changeRoot(); 
   } 
   else 
   if(msg.tag.equals("END")){ 
    //each node sends the message to all children and shows the edges in the MST 
    logger.log(Level.INFO,"ALGORITHM FINISHED"); 
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    for(int i=0;i<MSTFarmList.size();i++){ 
     
 logger.log(Level.INFO,"edge="+getFarmName((ServiceID)MSTFarmList.elementAt(i))); 
     
 if(compareServiceIDs(MSTmsg.getSourceServiceID(),(ServiceID)MSTFarmList.elementAt(i))!=0){ 
       monMessageMST endMsg=new 
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i)); 
       sendMessage(endMsg,"END");  
      } 
    }  
   }  
   else 
   if(msg.tag.equals("COUNT")){ 
    //the root keeps the other fragment's level and each node sends to all children 
the count message 
    if(compareServiceIDs(hostServiceID,fragmentRoot)==0) 
     otherFragmentLevel=MSTmsg.getLevel();   
   
    count(); 
   } 
  }   
 } 
  
  
 //constructor of the class 
 public FarmAgentMST(){ 
  unusedFarmList=new Vector(); 
  farms= new Hashtable();   
  MSTFarmList=new Vector(); 
  sync=new Vector(); 
  state=NOT_STARTED; 
  phase=PHASE1; 
 } 
  
//returns the serviceID of a farm from the ABPing result 
 private ServiceID getFarmServiceID(ExtendedResult res){ 
  return resolver.getServiceIDfromFarm(res.NodeName); 
 } 
  
 //compares 2 serviceID as strings and returns this value 
 private int compareServiceIDs(ServiceID sid1,ServiceID sid2){ 
  return sid1.toString().compareTo(sid2.toString()); 
 } 
  
 //initialization of the variables 
 public void init(LookupDiscoveryManager ldm, RegFarmMonitor host, ServiceID hostServiceID){ 
  this.ldm=ldm; 
  this.host=host; 
  this.hostServiceID=hostServiceID; 
  this.dataStore=(Cache) host.dataStore; 
  //the listeners are registered with the dataStore 
  outListener=new OutFragmentFarmMessagesListener();   
  inListener=new InFragmentFarmMessagesListener(); 
  syncListener= new SyncFarmMessagesListener();   
  dataStore.setInFragmentListener(inListener); 
  dataStore.setOutFragmentListener(outListener); 
  dataStore.setSyncListener(syncListener); 
 } 
  
 //verifies if a farm given by its serviceID is synced with our farm 
 private boolean isSynced(ServiceID sid){ 
  int i;   
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  for(i=0;i<sync.size();i++) 
  if(compareServiceIDs(sid,(ServiceID)sync.elementAt(i))==0) 
    return true; 
  return false; 
 } 
  
 //sends a SYNC message containing our ABPing value for the destination farm 
 private void sendSync(ServiceID sid,double value){ 
  monMessageMST syncMSTmsg=new monMessageMST(hostServiceID,sid,new Double(value)); 
  sendMessage(syncMSTmsg,"SYNC");   
 } 
  
 //retrieves the ABPing values  from the database 
 private void getData(){    
  String[] params=new String[1]; 
  params[0]=new String("RTime"); 
  Vector results=dataStore.select(new monPredicate("*","ABPing","*",-60000,-1,params,null)); 
 // logger.log(Level.INFO,"ABPing no. of results="+results.size()); 
  for(int i=results.size()-1;i>=0;i--){ 
   ExtendedResult res=(ExtendedResult)results.elementAt(i); 
   ServiceID farmSID=resolver.getServiceIDfromFarm(res.NodeName); 
   if(farmSID!=null) 
    if(!farms.containsKey(farmSID)){ 
     farms.put(farmSID,new FarmInfo(res.NodeName,res.param[0])); 
     unusedFarmList.add(res); 
    } 
  } 
  logger.log(Level.INFO,"farms="+farms); 
 } 
  
 //updates the ABPing value with the value received in the SYNC message 
 private void avgABPingValue(ServiceID sid,double value){ 
  ExtendedResult res=(ExtendedResult)unusedFarmList.remove(getFarmIndex(sid)); 
  FarmInfo farmInfo=(FarmInfo)farms.get(sid); 
  res.param[0]=(res.param[0]+value)/2.0; 
  farmInfo.setAvgABPingValue(res.param[0]); 
  unusedFarmList.insertElementAt(res,0);   
 } 
  
  
 //sorts the edge acording to their ABPing values 
 private void sortData(){ 
 // logger.log(Level.INFO,"After filtering the data no. of results="+unusedFarmList.size()); 
  for(int i=0;i<unusedFarmList.size();i++) 
  //
 logger.log(Level.INFO,((ExtendedResult)unusedFarmList.elementAt(i)).NodeName+"="+((ExtendedResult)
unusedFarmList.elementAt(i)).param[0]); 
   Collections.sort(unusedFarmList,new Comparator(){ 
    public int compare(Object o1,Object o2){ 
     ExtendedResult res1=(ExtendedResult)o1; 
     ExtendedResult res2=(ExtendedResult)o2; 
     if(res1.param[0]==res2.param[0]) 
      return res1.NodeName.compareTo(res2.NodeName); 
     if(res1.param[0]>res2.param[0]) 
      return 1; 
     return -1; 
    } 
  }); 
  logger.log(Level.INFO,"After sorting the data no. of results="+unusedFarmList.size()); 
  for(int i=0;i<unusedFarmList.size();i++) 
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 logger.log(Level.INFO,((ExtendedResult)unusedFarmList.elementAt(i)).NodeName+"="+((ExtendedResult)
unusedFarmList.elementAt(i)).param[0]); 
 } 
  
 //the wakeup procedure 
 private void wakeup(){ 
  //initialization 
  fragmentLevel=0; 
  fragmentRoot=hostServiceID; 
  findCount=0; 
  //data fetching 
  getData(); 
  state=FOUND; 
  //synchronization 
  sync(); 
  sortData(); 
  testFarm=null; 
  testFarmValue=Double.MAX_VALUE; 
  MSTFarmList.add(getFarmServiceID((ExtendedResult)unusedFarmList.remove(0))); 
  logger.log(Level.INFO,"Added in MST 
"+getFarmName((ServiceID)MSTFarmList.elementAt(MSTFarmList.size()-1))); 
  monMessageMST MSTmsg=new 
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(0),new Integer(fragmentLevel),fragmentRoot); 
  sendMessage(MSTmsg,"CONNECT");  
   
 } 
  
 //SYNC messages are sent until the synchronization is done with all the other farms 
 private void sync(){ 
  while(sync.size()!=unusedFarmList.size()){ 
   for (int i=0;i<unusedFarmList.size();i++){ 
     ExtendedResult res=(ExtendedResult)unusedFarmList.elementAt(i); 
     ServiceID crtFarmSID=getFarmServiceID(res); 
     if(!isSynced(crtFarmSID)) 
      sendSync(crtFarmSID,res.param[0]); 
     try{ 
      Thread.sleep(500); 
     } 
     catch(Exception e){ 
      e.printStackTrace(); 
     } 
   } 
   try{ 
    Thread.sleep(1000); 
   } 
   catch(Exception e){ 
    e.printStackTrace(); 
   } 
  }   
  logger.log(Level.INFO,"SYNCED with the others"); 
 } 
  
 //the counting procedure sends the COUNT message to all the children 
 private void count(){ 
  findCount=0; 
  findCountTotal=0; 
  for(int i=0;i<MSTFarmList.size();i++){ 
   if(inBranch!=null){ 
    if(compareServiceIDs((ServiceID)MSTFarmList.elementAt(i),inBranch)!=0){ 
     monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
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     sendMessage(initiateMsg,"COUNT"); 
     findCount++; 
    } 
   } 
   else{ 
    monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
    sendMessage(initiateMsg,"COUNT"); 
    findCount++; 
   } 
  } 
  finish(); 
 } 
   
  
 //the update procedure sends an UPDATE message to all children but no reply is waited 
 private void update(){ 
  for(int i=0;i<MSTFarmList.size();i++){ 
   if(inBranch!=null){ 
    if(compareServiceIDs((ServiceID)MSTFarmList.elementAt(i),inBranch)!=0){ 
     monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
     sendMessage(initiateMsg,"UPDATE");    
  
    } 
   } 
   else{ 
    monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
    sendMessage(initiateMsg,"UPDATE");     
   } 
  } 
 } 
  
 //the initiate1 procedure sends the level and the root of the fragment to all children and waits for a FINISH 
message 
 //from all of them 
 private void initiate1(){ 
  state=INITIATE; 
  bestFarm=null; 
  bestFarmValue=Double.MAX_VALUE; 
  bestFarmPath=null; 
  findCount=0; 
  findCountTotal=0; 
  for(int i=0;i<MSTFarmList.size();i++){ 
   if(inBranch!=null){ 
    if(compareServiceIDs((ServiceID)MSTFarmList.elementAt(i),inBranch)!=0){ 
     monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
     sendMessage(initiateMsg,"INITIATE1"); 
     findCount++; 
    } 
   } 
   else{ 
    monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
    sendMessage(initiateMsg,"INITIATE1"); 
    findCount++; 
   } 
  } 
  finish(); 
 } 
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 //the initiate2 procedure sends the updated level to all the children and starts the testing procedure and waits 
 //a REPORT message with the best outgoing edge from all of them 
 private void initiate2(){ 
  state=FINDING; 
  findCount=0; 
  findCountTotal=0; 
  for(int i=0;i<MSTFarmList.size();i++){ 
   if(inBranch!=null){ 
    if(compareServiceIDs((ServiceID)MSTFarmList.elementAt(i),inBranch)!=0){ 
     monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
     sendMessage(initiateMsg,"INITIATE2"); 
     findCount++; 
    } 
   } 
   else{ 
    monMessageMST initiateMsg=new  
monMessageMST(hostServiceID,(ServiceID)MSTFarmList.elementAt(i),new Integer(fragmentLevel),fragmentRoot);  
    sendMessage(initiateMsg,"INITIATE2"); 
    findCount++; 
   } 
  } 
  test(); 
 } 
  
 //when the FINISH message has been received from all the children 
 //a FINISH message is also sent to the parent 
 private void finish(){ 
  if (findCount==0){    
   monMessageMST finishMsg=new monMessageMST(hostServiceID,inBranch,new 
Integer(findCountTotal+1)); 
   sendMessage(finishMsg,"FINISH"); 
   state=FINISH; 
  } 
 } 
  
 //the initiate message informs all the children of the level and the root of the fragment and upon receiving this 
 //message each node starts finding the best outgoing edge 
 //after receiving this value from all the children a report message is sent to the parent with the best outgoing 
edge 
 //in the subtree rooted at the current node 
 private void initiate(){ 
  int MSTsize=MSTFarmList.size(); 
  bestFarm=null; 
  bestFarmValue=Double.MAX_VALUE; 
  bestFarmPath=null; 
  findCount=0; 
  findCountTotal=0; 
    
  for(int i=0;i<MSTsize;i++){ 
   ServiceID crtFarmServiceID;   
   crtFarmServiceID=(ServiceID)MSTFarmList.elementAt(i); 
   if(inBranch!=null){ 
    if(compareServiceIDs(crtFarmServiceID,inBranch)!=0){ 
     monMessageMST initiateMSTmsg=new 
monMessageMST(hostServiceID,crtFarmServiceID,new Integer(fragmentLevel),fragmentRoot,new Integer(state)); 
     sendMessage(initiateMSTmsg,"INITIATE"); 
     if(state==FINDING) 
      findCount++;     
      
    }     
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   } 
   else{ 
    monMessageMST initiateMSTmsg=new 
monMessageMST(hostServiceID,crtFarmServiceID,new Integer(fragmentLevel),fragmentRoot,new Integer(state)); 
    sendMessage(initiateMSTmsg,"INITIATE"); 
    if(state==FINDING)  
     findCount++;     
     
   } 
    
  }  
  if(state==FINDING) 
   test(); 
 } 
  
 //the node takes an edge from the unusedFarmList and tests to see if it is valid 
 private void test(){     
  if(unusedFarmList.size()>0){ 
   ExtendedResult nextRes=(ExtendedResult)unusedFarmList.remove(0); 
   testFarm=getFarmServiceID(nextRes); 
   testFarmValue=nextRes.param[0]; 
   monMessageMST testMSTmsg=new monMessageMST(hostServiceID,testFarm,new 
Integer(fragmentLevel),fragmentRoot); 
   sendMessage(testMSTmsg,"TEST"); 
  } 
  else{ 
   testFarm=null; 
   //if all my edges were tested I check to see if all the reports were received 
   report(); 
  } 
 } 
  
 //the report procedure when the best outgoing edge of each node is sent back to the root 
 private void report(){  
  //logger.log(Level.INFO,"find="+findCount+" test="+testFarm);  
  //if the reports from all children have been received  
  //the report is sent to the parent 
  if(findCount==0 && testFarm==null){ 
   state=FOUND; 
    
   if(bestFarm!=null){ 
    if( bestFarmPath==null) 
     bestFarmPath=new Vector(); 
    bestFarmPath.add(hostServiceID); 
   }    
   monMessageMST reportMSTmsg=new monMessageMST(hostServiceID,inBranch,new 
Double(bestFarmValue),bestFarm,bestFarmPath,new Integer(findCountTotal+1)); 
   sendMessage(reportMSTmsg,"REPORT");    
  } 
 } 
  
 //the message is sent to the next node according to the path received in the message 
 private void changeRoot(){ 
  inBranch=(ServiceID)bestFarmPath.elementAt(bestFarmPath.size()-1);   
  bestFarmPath.remove(bestFarmPath.size()-1); 
  monMessageMST changeRootMSTmsg=new 
monMessageMST(hostServiceID,inBranch,bestFarmPath); 
  sendMessage(changeRootMSTmsg,"CHANGEROOT");  
 } 
 
 //the entry point in the algorithm that starts the node 
 public void doWork(){ 
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  proxyWorker=dataStore.getProxyWorker(); 
  resolver=MLLUSHelper.getInstance(); 
  wakeup();         
  
 }  
  
 //returns the farm's name given its ServiceID 
 private String getFarmName(ServiceID sid){ 
  if(farms.containsKey(sid))  
   return ((FarmInfo)farms.get(sid)).getFarmName(); 
  return sid.toString(); 
 }  
  
 //returns the ABPingValue for a farm given its ServiceID 
 private double getFarmABPingValue(ServiceID sid){ 
  return ((FarmInfo)farms.get(sid)).getAvgABPingValue();   
 } 
  
 //gets a farm index in the unusedFarmList using its ServiceID 
 private int getFarmIndex(ServiceID sid){ 
  for(int i=0;i<unusedFarmList.size();i++) 
  
 if(compareServiceIDs(getFarmServiceID((ExtendedResult)unusedFarmList.elementAt(i)),sid)==0) 
    return i;   
  return -1; 
 } 
  
 //sends a message using a proxy given by the ProxyWorker 
 private void sendMessage(monMessageMST MSTmsg,String tag){ 
  if(tag.compareTo("SYNC")!=0) 
   logger.log(Level.INFO,"> "+tag+" to 
"+getFarmName(MSTmsg.getDestinationServiceID()));  
  monMessage msg=new monMessage(tag,MSTmsg,null);  
  proxyWorker.getProxyTCPClientWorker().sendMessage(msg); 
  //we force the treatment of the delayed messages 
  dataStore.addFarmMessage(new monMessage("boogie",new 
monMessageMST(hostServiceID,hostServiceID),null)); 
 } 
} 
 
FarmAgentInterface.java 
 
package lia.Monitor.FarmAgents; 
 
import lia.Monitor.JiniSerFarmMon.RegFarmMonitor; 
import net.jini.core.lookup.ServiceItem; 
import net.jini.discovery.LookupDiscoveryManager; 
 
public interface FarmAgentInterface { 
 public void init(LookupDiscoveryManager ldm, RegFarmMonitor host, ServiceItem ser_host); 
 public void doWork(); 
} 
 
 
 
 
 
 
 
monMessageMST.java 
package lia.Monitor.monitor; 
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import java.util.Vector; 
import net.jini.core.lookup.ServiceID; 
import lia.Monitor.monitor.monAgentMessage; 
 
public class monMessageMST extends monAgentMessage implements  java.io.Serializable { 
 public ServiceID fromFarmServiceID; 
 public ServiceID toFarmServiceID; 
 public Integer level; 
 public Double bestFarmValue; 
 public Double ABPingValue; 
 public ServiceID bestFarm; 
 public ServiceID fragmentRoot; 
 public Integer farms; 
 public Integer state; 
 public Vector bestFarmPath; 
  
 public monMessageMST(){ 
   
 } 
 public monMessageMST(ServiceID fromFarmServiceID,ServiceID toFarmServiceID,Integer level,ServiceID 
fragmentRoot,Integer state){ 
  this.fromFarmServiceID=fromFarmServiceID; 
  this.toFarmServiceID=toFarmServiceID; 
  this.level=level; 
  this.fragmentRoot=fragmentRoot; 
  this.state=state; 
 } 
 public monMessageMST(ServiceID fromFarmServiceID,ServiceID toFarmServiceID,Integer level,ServiceID 
fragmentRoot){ 
  this.fromFarmServiceID=fromFarmServiceID; 
  this.toFarmServiceID=toFarmServiceID; 
  this.level=level; 
  this.fragmentRoot=fragmentRoot; 
 } 
  
 public monMessageMST(ServiceID fromFarmServiceID,ServiceID toFarmServiceID,Double 
ABPingValue){ 
  this.fromFarmServiceID=fromFarmServiceID; 
  this.toFarmServiceID=toFarmServiceID; 
  this.ABPingValue=ABPingValue; 
 } 
  
 public monMessageMST(ServiceID fromFarmServiceID,ServiceID toFarmServiceID){ 
  this.fromFarmServiceID=fromFarmServiceID; 
  this.toFarmServiceID=toFarmServiceID; 
 } 
 public monMessageMST(ServiceID fromFarmServiceID,ServiceID toFarmServiceID,Vector bestFarmPath){ 
  this.fromFarmServiceID=fromFarmServiceID; 
  this.toFarmServiceID=toFarmServiceID; 
  this.bestFarmPath=bestFarmPath; 
 } 
  
 public monMessageMST(ServiceID fromFarmServiceID,ServiceID toFarmServiceID,Double 
bestFarmValue,ServiceID bestFarm,Vector bestFarmPath,Integer farms){ 
  this.fromFarmServiceID=fromFarmServiceID; 
  this.toFarmServiceID=toFarmServiceID; 
  this.bestFarmValue=bestFarmValue; 
  this.bestFarm=bestFarm; 
  this.bestFarmPath=bestFarmPath; 
  this.farms=farms; 
 } 
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 public monMessageMST(ServiceID fromFarmServiceID,ServiceID toFarmServiceID,Integer farms){ 
  this.fromFarmServiceID=fromFarmServiceID; 
  this.toFarmServiceID=toFarmServiceID;   
  this.farms=farms; 
 } 
  
 public double getABPingValue(){ 
  return ABPingValue.doubleValue();    
 } 
  
 public int getState(){ 
  return state.intValue(); 
 } 
 public int getLevel(){ 
  return level.intValue(); 
 } 
 
 public ServiceID getDestinationServiceID(){ 
  return toFarmServiceID; 
 } 
 
 public ServiceID getSourceServiceID(){ 
  return fromFarmServiceID; 
 }  
  
 public ServiceID getFragmentRoot(){ 
  return fragmentRoot; 
 } 
   
 public Vector getBestFarmPath(){ 
  return bestFarmPath;  
 } 
  
 public double getBestFarmValue(){ 
  return bestFarmValue.doubleValue(); 
 } 
  
 public int getFarms(){ 
  return farms.intValue(); 
 } 
  
 public ServiceID getBestFarm(){ 
  return bestFarm; 
 } 
} 
 
 
monAgentMessage.java 
package lia.Monitor.monitor; 
 
import net.jini.core.lookup.ServiceID; 
public abstract class monAgentMessage implements java.io.Serializable{ 
 public ServiceID fromFarmServiceID=null; 
 public ServiceID toFarmServiceID=null; 
 public abstract ServiceID getDestinationServiceID(); 
 public abstract ServiceID getSourceServiceID(); 
 public monAgentMessage(){ 
 } 
} 


