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1. Introduction 
  

With recent advances of computer and network technologies, many emerging 
services such as teleconference, video on demand, distance education, etc., require the 
network to deliver information to multiple destinations. In a connection oriented packet 
switched network, point-to-point (unicast) connections may be used to transmit 
information from a source to a set of destinations by establishing point-to-point 
connections from the source to each of the destinations. To send a packet to the set of 
destinations, the source makes copies of the packet and transmits one copy to each of the 
destinations. This may result in sending two or more copies of the same packet on a 
single communication link. Obviously, the bandwidth of the communication link can be 
used more efficiently by eliminating extra copies of the same packet. Thus, it is desirable 
to setup a point-to-multipoint (multicast) connection to transmit the packet through a tree 
shaped path and make copies of the packet only at branching nodes in order to make 
efficient use of the network resources. A packet switched network is said to have 
multicast capability if it can establish a point-to-multipoint connection to deliver a packet 
to a group of destinations. It is important for broadband networks to have multicast 
capability to support these emerging services.  

For a service to take advantage of the multicast capability, a multicast connection 
must be established before information can be delivered from a source node to multiple 
destinations. The set of nodes consisting of the source node and the destination nodes is 
called the multicast group. It is desirable to use as little network resources as possible to 
set up the multicast connection for a multicast group. The amount of resources required 
by the connection is affected by the route for the multicast connection. The problem of 
determining the route for a multicast connection is known as the multicast routing 
problem. 

The problem of finding an optimal multicast tree in a point to point network 
translates to the Steiner Problem in graphs. Since the Steiner problem is NP complete, 
heuristic approaches are required for path setup. The problem takes a new dimension in 
Wide Area Networks, where centralized algorithms are not feasible, and distributed 
schemes are needed. It is also desirable that node participation for path setup is limited to 
nodes directly involved in the multicast. An additional requirement that comes from the 
nature of the applications such as videoconferencing that use the multicast support from 
the network is that of bounded end-to-end delays along any path from the source to each 
destination in the multicast tree. We present here a heuristic algorithm that ensures delay 
bounds, is distributed, and produces trees that are only slightly more expensive than those 
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produced by centralized algorithms. Further, we examine the degradation in performance 
in case of changing delays along network links (where QoS guarantees on delay are not 
available), and propose ways of making the tree adaptive to these changes. This dynamic 
routing approach minimizes resource reservation demands and also makes changing 
multicast groups permissible. 

As multimedia data transfer capability in networks becomes increasingly 
available, applications such as video conferencing and distance education are gaining 
popularity. Multicast support is currently available from networks, but the current 
schemes are concerned only with connectivity, not optimality, and do not provide QoS 
(Quality of Service) guarantees such as delay bounds and jitter control that are needed for 
such applications. The bandwidth savings obtained from the use of multicast trees can be 
maximized by using optimal tree setup algorithms. Future networks will require such 
schemes to be integrated at lower layers in the protocol stack. 

The problem of finding an optimal multicast tree has been shown to be equivalent 
to the NP-complete Steiner tree problem in graphs. For a large sized network explicitly 
finding this optimal tree is prohibitively expensive. Heuristic algorithms for setting up 
multicast trees have been proposed by various authors.  

The multicast path setup schemes can also be categorized on the basis of QoS 
guarantees they provide. Again, most of the centralized and distributed schemes produce 
trees that are optimal only in terms of a metric on the links but  are silent in terms of 
parameters such as end-to-end delays. A centralized scheme that finds delay constrained 
multicast trees was proposed by Kompella, and a distributed version of the same was 
later given by the same authors. This delay constrained distributed scheme is based on 
pruned MSTs and suffers from the drawback mentioned above. A distributed algorithm 
that does not require MST construction and requires limited participation by nodes during 
path setup has been proposed by Bauer and Varma but it produces unconstrained trees. 

Finally, schemes can be classified as dynamic and static. Dynamic schemes allow 
for dynamically changing multicast groups with the possibility of joining and leaving an 
active multicast. These are also adaptive, i.e. they change the tree in response to changes 
in the network parameters. Static schemes, on the other hand, build a tree before the 
beginning of a multicast and the tree is used throughout the lifetime of the multicast. 
Static schemes also require strict resource reservation to be made at the time of the path 
setup. 

Heuristic algorithms for the dynamic multicast routing problem can be found in 
the specific literature The dynamic greedy algorithm proposed by Waxman takes the 
shortest path to an existing multicast tree when adding a node. The source routed shortest 
path algorithm proposed by Dear finds the shortest path to the source node when adding a 
node to the multicast group. The Geographic Spread Dynamic Multicast (GSDM) routing 
algorithm proposed by Kadirire takes the geographic spread defined in the article into 
account when adding a node. It deals with the node and the nearby nodes which are 
already in the connection at the same time. The possible routes for these nodes are 
reconsidered. Among the routes that have the minimal cost, the route with the maximal 
geographic spread is chosen and that part of the connection is re-routed if necessary.  
When removing a node, the dynamic greedy, shortest path and GSDM routing algorithms 
first mark the node “deleted”. If the node is a leaf node in the connection, the node is 
removed from the multicast group and the node and the branch of which it is a part is 
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pruned from the multicast tree. A comparison of these dynamic multicast routing 
algorithms was presented in. 

In the dynamic multicast routing problem, the members of the multicast group are 
dynamically changing. Let us take a snapshot of the multicast group and denote it by S. 
Suppose that a static multicast routing algorithm is applied to find a multicast tree for S in 
G. A good static multicast routing algorithm can generally produce better results than a 
dynamic one. This is because a dynamic multicast routing algorithm usually adds or 
removes a node based on existing connection. It does not take the multicast group as a 
whole into consideration and reconstruct the multicast tree as a static algorithm does. 
Therefore, a static multicast routing algorithm which produces near optimal results can 
serve as a reference for comparing dynamic multicast routing algorithms. The KMB 
algorithm was used as the reference algorithm since it can generally produce near optimal 
results. We also select the KMB algorithm as the reference algorithm. 

For dynamic multicast routing algorithms, re-routing a portion of the existing 
connection may reduce the cost of the multicast connection (e.g., the GSDM routing 
algorithm). However, re-routing an existing connection may require additional network 
resources such as bandwidth, buffers to keep the order and integrity of packets. Also, an 
underlying ne twork system with intentional re-routing capability is required to smoothly 
re-route existing connections. 
 
 
2. The MonALISA Services Framework 
 
2.1 Architecture  
 
 The MonALISA (Monitoring Agents in A Large Integrated Services Architecture) 
system provides a distributed monitoring service. MonALISA is based on a scalable 
Dynamic Distributed Services Architecture which is designed to meet the needs of 
physics collaborations for monitoring global Grid systems, and is implemented using 
JINI/JAVA and WSDL/SOAP technologies. The scalability of the system derives from 
the use of multithreaded Station Servers to host a variety of loosely coupled self-
describing dynamic services, the ability of each service to register itself and then to be 
discovered and used by any other services, or clients that require such information, and 
the ability of all services and clients subscribing to a set of events (state changes) in the 
system to be notified automatically. The framework integrates several existing 
monitoring tools and procedures to collect parameters describing computational nodes, 
applications and network performance. It has built- in SNMP support and network-
performance monitoring algorithms that enable it to monitor end-to-end network 
performance as well as the performance and state of site facilities in a Grid. MonALISA 
is currently running around the clock on the US CMS test Grid as well as an increasing 
number of other sites. It is also being used to monitor the performance and optimize the 
interconnections among the reflectors in the VRVS system. 
 We are developing a globally scalable ``Dynamic Distributed Services 
Architecture'' (DDSA) to serve large physics collaborations. This architecture 
incorporates many features that make it suitable for managing and optimizing workflow 
through Data Grids composed of hundreds of sites, with thousands of computing and 
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storage elements, and thousands of pending tasks, such as those foreseen by the LHC 
experiments. 

In order to scale and operate robustly in managing global, resource-constrained 
Grid systems, the DDSA framework uses a set of Station Servers, one per facility or site 
in a Grid, that host a variety of dynamic, agent-based services. The services are registered 
with, and can be mutually discovered by a lookup service, and they are notified 
automatically in case of ``events'' signaling a change of state anywhere in a large 
distributed system. This allows the ensemble of services to cooperate in real time to 
gather, disseminate, and process time-dependent  state and configuration information 
about the site facilities, networks, and many jobs running throughout the Grid. The  
monitored information is reported to higher level services, that in turn analyze the 
information, and take corrective action to improve the overall efficiency of operation of 
the Grid (through load balancing, for example) or to mitigate problems as needed. The 
DDSA framework is inherently distributed, ``loosely coupled'' and self-restarting, making 
it scalable and robust. Cooperating services and applications are able to access each other 
seamlessly, to adapt rapidly to a dynamic environment (such as worldwide-distributed 
analysis by hundreds of physicists in a major HEP experiment). The services are 
managed by an efficient multithreading engine that schedules and oversees their 
execution, such that Grid operations are not disrupted if one or more tasks (threads) are 
unable to continue. The system design also provides reliable ``nonstop'' support for large 
distributed applications under realistic working conditions, through service replication,  
and automatic re-activation of services. These mechanisms make the system robust 
against the failure or inaccessibility of multiple Grid components (when a key network 
link goes down, for example). 

A service in the DDSA framework is a component that interacts autonomously 
with other services through dynamic proxies or agents that use self-describing protocols. 
By using dedicated lookup services, a distributed services registry, and the discovery and 
notification mechanisms, the services are able to access each other seamlessly. The use of 
dynamic remote event subscription allows a service to register to be notified of a selected 
set of event types, even if there is no provider to do the notification at registration time. 
The lookup discovery service will then automatically notify all the subscribed services, 
when a new service, or a new service attribute, becomes available. The code mobility 
paradigm (mobile agents or dynamic proxies) used in the DDSA extends the remote 
procedure call and the client server approach. Both the code and the appropriate 
parameters are downloaded dynamically into the system. Several advantages of this 
paradigm are: optimized asynchronous communication and disconnected operation, 
remote interaction and adaptability, dynamic parallel execution and autonomous 
mobility. The combination of the DDSA service features and code mobility makes it 
possible build an extensible hierarchy of services capable of managing very large Grids, 
with relatively little program code. 

A prototype implementation of the DDSA was built based on JINI technology. 
The JINI architecture federates groups of devices and software components into a single, 
dynamic distributed system; functionality that the future Open Grid Services Architecture 
(OGSA) will need to include. JINI enables services to find each other on a network and 
allows these services to participate and cooperate within certain types of operations, 
while interacting autonomously with clients or other services. 
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  This architecture simplifies the construction, operation and administration of 
complex systems by:  
(1)  allowing registered services to interact in a dynamic and robust (multithreaded) way; 
(2)  allowing the system to adapt when devices or services are added or removed, with no 
user intervention;  
(3) providing mechanisms for services to register and describe themselves, so that 
services can intercommunicate and use other services without prior knowledge of the 
services' detailed implementation. 

WSDL/SOAP  was also included, bindings for all the distributed objects, in order 
to provide access to the monitoring information from other types of clients and 
to facilitate a possible future migration to the Open Grid Services Architecture. 
 An essential part of managing a global Data Grid is a monitoring system that is 
able to monitor and track the many site facilities, networks, and the many task in 
progress, in real time. The monitoring information gathered also is essential for 
developing the required higher level services, and components of the Grid system that 
provide decision support, and eventually some degree of automated decisions, to help 
maintain and optimize workflow through the Grid. Therefore was developed the agent-
based MonALISA (Monitoring Agents in A Large  Integrated Services Architecture) 
system, based on the DDSA framework. MonALISA is an ensemble of autonomous 
multi- threaded, self-describing agent-based subsystems which are registered as dynamic 
services and are able to collaborate and cooperate in performing a wide range of 
monitoring tasks in large scale distributed applications, and to be discovered and used by 
other services or clients that require such information. 

MonALISA is designed to easily integrate existing monitoring tools and 
procedures and to provide this information in a dynamic, self describing way to any other 
services or clients. MonALISA services are organized in groups and this attribute is used 
for registration and discovery. 
 
 
2.2 The Data Collection Engine  
 

The system monitors and tracks site computing farms and network links, routers 
and switches using SNMP, and it dynamically loads modules that make it capable of 
interfacing existing monitoring applications and tools (e.g. Ganglia, MRTG, Hawkeye). 
The core of the monitoring service is based on a multithreaded system used to perform 
the many data collection tasks in parallel, independently. The modules used for collecting 
different sets of information, or interfacing with other monitoring tools, are dynamically 
loaded and  executed in independent threads. In order to reduce the load on systems 
running MonALISA, a dynamic pool of threads is created once, and the threads are then 
reused when a task assigned to a thread is completed. This allows one to run concurrently 
and independently a large number of monitoring modules, and to dynamically adapt to 
the load and the response time of the components in the system. If a monitoring task fails 
or hangs due to I/O errors, the other tasks are not delayed or disrupted, since they are 
executing in other, independent threads. A dedicated control thread is used to stop 
properly the threads in case of I/O errors, and to reschedule those tasks that have not been 
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successfully completed. A priority queue is used for the tasks that need to be performed 
periodically. A schematic view of this mechanism of collecting data is shown in Figure 1. 

 
This approach makes it relatively easy to monitor a large number of 

heterogeneous nodes with different response times, and at the same time to handle 
monitored units which are down or not responding, without affecting the other 
measurements. As an example, there were monitored 500 compute nodes performing a 
request for ~200 metric values per node every 60 seconds. This provided a sustained rate 
of ~1600 metric values per second collected, using an average of 20 active threads. The 
number of threads necessary to monitor a complete site is dynamically adjusted, and very 
dependent on the response time for each node, which is related to its load as well as to the 
quality of the network connections. 

 
2.3 Data Storage 
 
 The collected values are stored in a relational database, locally for each service. 
The JDBC framework in JAVA offers the flexibility to dynamically load any driver and  
connect to virtually any relational database. A normalized scheme is used to store the 
result objects provided by the monitoring modules in indexed tables, which are 
themselves generated as needed, dynamically. As data are becoming older, we are 
compressing the values stored in the database by evaluating the mean values on larger 
time intervals and at the same time keeping the fluctuation range for each parameter. 
 
2.4 Registration and Discovery 
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 Each MonALISA service registers with a set of JINI Lookup Discovery Services 
(LUS) as part of a group, and having a set of attributes. The LUSs are also JINI services 
and each one may be registered with the other LUSs. If two LUSs have common groups 
any information related with a change of state detected for a service in the common group 
by one is replicated to the other one. In this way it is possible to build a distributed and 
reliable network for registration of services and this technology allows dynamically 
adding or removing LUSs from the system. Any service should also provide for 
registration the code base for the proxies that other services or clients need to instantiate 
for using it. This approach is used to make sure that the right proxies are used for each 
service while different versions may be used in a distributed organization at the same 
time. The registration is based on a lease mechanism that is responsible to verify 
periodically that each service is alive. In case a service fails to renew its lease, it is 
removed from the LUSs and a notification is sent to all the services or clients that 
subscribed for such events. 

Any monitor client services is using the Lookup  Discovery Services to find all the 
active MonALISA services running as part of one or several group  “communities”. It is 
possible to select the services based on a set of matching attributes. The discovery 
mechanism is used for notification when new services are started or when services are no 
longer available. The communication between interested services or clients is based on a 
remote event notification mechanism which also supports subscription. 

The client application connects directly with each service it is interested in for 
receiving monitoring information. To perform this operation, it first downloads the 
proxies for the service it is interested in from a list of possible URLs specified as an 
attribute of each service, and than it instantiate the necessary classes to communicate with 
the service. This procedure allows each service to correctly interact with other services. 

 
2.5 Predicates, Filters and Alarm Agents 
 
 The clients can get any real- time or historical data by using a predicate 
mechanism for requesting or subscribing to selected measured values. These predicates 
are based on regular expressions to match the attribute description of the measured values 
a client is interested in. They may also be used to impose additional conditions or 
constrains for selecting the values. In case of requests for historical data, the predicates 
are used to generate SQL queries into the local database. The subscription requests will 
create a dedicated thread, to serve each client. This thread will perform the matching test 
for all the predicates submitted by a client with the measured values in the data flow. The  
same thread is responsible to send the selected results back to the client as compressed 
serialized objects. Having an independent thread per client allows sending the  
information they need, fast, in a reliable way and it is not affected by communication 
errors which may occur with other clients. In case of communication problems these 
threads will try to reestablish the connection or to clean-up the subscriptions for a client 
or a service which is not anymore active. 

Monitoring data requests with the predicate mechanism is also possible using the 
WSDL/SOAP binding from clients or services written in other languages. The class 
description for predicates and the methods to be used are described in WSDL and any 
client can create dynamically and instantiate the objects it needs for communication.  
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Currently, the Web Services technology does not provide the functionality to register as a 
listener and to receive the future measurements a client may want to receive. 

Other applications or clients may also use the Agent Filters to receive the 
information they need. The Agent Filter is a java module which can be dynamically 
deployed to any MonALISA service, and is design to perform a dedicated data processing 
task on local data (by subscribing with a predicate to the data flow) and returns back the 
processed information periodically. The  MonALISA service provides the run time 
environment for these agents which must be digitally signed by a trusted certificate. As 
an example, such filters are used to compute the aggregate IO traffic in a farm, or to 
provide the number of nodes which are free. The same thread used for handling the 
predicate subscription is used for sending the filtered results back to each client. 

Dynamically loadable alarm agents, and agents able to take actions when 
abnormal behavior is detected, are currently being developed to help with managing and  
improving the working efficiency of the facilities, and the overall Grid system being 
monitored. 

 
2.6 Administration of Services 
 
 MonALISA also provides a secure mechanism (SSL with X.509 certificates) for 
dynamic configuration, using a dedicated GUI, of farms / network elements, and support 
for other higher level services that aim to manage a distributed set of facilities and/or 
optimize workflow. It allows reconfiguring any monitoring services by adding new 
nodes, network elements or clusters and at the same time to dynamically loaded into the 
system any new monitoring module as needed. It also allows stopping or suspending any 
monitoring module. Adding dynamically new monitoring modules is important for 
debugging and understanding the way certain applications perform. 

The Administration interface connects to a service using Remote Method 
Invocation over SSL. X.509 certificates for trusted administrators are imported in the 
keystore of each service and they are used to establish a SSL connection based on a client 
authentification procedure. The administrative GUI can be stated automatically from the 
global web start client if it used by a trusted administrator. When the administrator loads 
his private key into the global GUI client it automatically gets administrative rights on the 
services that imported his certificate in the trust keystore. 

 
2.7 Automatic Update for Services 
 
 MonaALISA is currently deployed on many sites and maintaining and updating 
such applications may require a significant effort. For this reason there was developed a 
mechanism in MonALISA that allows us to automatically update the monitoring service. 
A dedicated thread is used to periodically check for updates of the distribution.  
Alternatively a remote event notification can be used to notify only selected services to 
perform an update. When such an event is detected, the running service will trigger a 
restart operation. When a MonALISA service is started, it is using the web start 
mechanism to describe an application and all its dependencies and constrains into a XML 
file (jnpl). This will perform an automatic download of all the packages which were 
updated and will check all the necessary constrains to run the application. All the files 
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downloaded in this way must be digitally signed by a developer for which the certificate 
is imported in the trust keystore. This can be done when the MonALISA service is used 
for the first time. 

All the running services, as well as the services which may be stated after an 
update was done will run the last “published” version and this is done in a secure way.  
Users may start a MonALISA service with the auto update flag switch off. 

 
2.8 Monitoring Data Processing Farms  
 
 MonALISA is now deployed and operating round the clock monitoring the US 
CMS Test Grid and an increasing number of other sites. The MonALISA Web repository 
is now accumulating historical data for the US CMS Tier1 and Tier2 centers at Fermilab, 
Caltech, UCSD, and the University of Florida, as well as the production farms at CERN, 
at the Academia Sinica in Taiwan (ATLAS), and at the Polytechnic University in 
Bucharest. As an example, the number of nodes loaded on the US-CMS farms during a 
week is presented in the next figure. 
 

 
 
Figure 2: A global plot of the US-CMS farms showing the number of nodes with load 
higher than 0.5 during a period of one week. These plots are created with the web service 
repository . 

 
There are  also monitored the network traffic on the US-CERN production link, 

and the distribution of the traffic into the major networks and links with which we peer: 
EsNet, Abilene, Mren, StarTAP, the US-CERN DataTAG link, the CERN-Geant link, 
Taiwan-Chicago, and Bucharest- Budapest. In addition to the directed measurements 
performed on routers, MonALISA was interfaced to provide access to the Internet End to 
End Performance Measurements (IEPM-BW). 

There are currently monitored the batch queuing systems at CERN (LSF) and at 
Caltech (PBS). From these modules we can report the number of (selected types) jobs 
running, pending or those which exit with errors. 
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2.9 Monitoring the VRVS System 
 
 The Virtual Rooms VideoConferencing System (VRVS) is an enhanced web 
based video conferencing system which is using a set of reflectors distributed world wide 
for an efficient real-time distribution of the audio and video streams. 

For each VRVS reflector, a MonALISA service is  running using an embedded 
Database, for storing the results locally, and runs in a mode that aims to minimize the 
reflector resources it uses (typically less than 16MB of memory and practically without 
affecting the system load). Dedicated modules to interact with the VRVS reflectors were 
developed: to collect information about the topology of the system; to monitor and track 
the traffic among the reflectors and report communication errors with the peers; and to 
track the number of clients and active virtual rooms. 

In addition, overall system information is monitored and reported in real time for 
each reflector: such as the load, CPU usage, and total traffic in and out. A dedicated GUI 
for the VRVS version was developed as a java web-start client. This GUI provides real 
time information dynamically for all the reflectors which are monitored. If a new 
reflector is started it will automatically appear in the GUI and its connections to its peers 
will be shown. Filter agents to compute an exponentially mediated quality factor of each 
connection are dynamically deployed to every MonALISA service, and they report this  
information to all active clients who are subscribed to receive this information. 

It provides real-time information about the way the VRVS system is used 
(number of conferences or clients) the topological connectivity of the reflectors and the  
quality of it and system related information (IO traffic CPU load). Clients can also get 
historical data for any of these parameters. 

The subscription mechanism allows one to monitor in real time any measured 
parameter in the system as all the updates are dynamically displayed on the open 
windows. Examples of some of the services and information available, visualizing the 
number of clients and the active virtual rooms, the traffic in and out of all the reflectors, 
as well as problems such as lost packets between reflectors are presented in the next 
figure. 

In addition to dedicated monitoring modules and filters for the VRVS system, we 
developed agents able to supervise the running of the VRVS reflectors automatically. 
This will be particularly important when scaling up the VRVS system further. In case a 
VRVS reflector stops or does not answer correctly to the monitoring requests, the agent 
will try to restart it. If this operation fails twice the Agent will send an email to a list of 
administrators. These agents are the first generation of modules capable of reacting and 
taking well defined actions when errors occur in the system. These agents, capable to take 
action in the system, may be dynamically loaded. For security reasons such agents must 
be digitally signed by developers with trusted certificates, declared for each running 
service. 
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Figure 3: Monitoring the VRVS System. 

 
2.10 Existing Approach on Dynamic Routing 
 

In the current MonALISA framework, the multicast path setup is used in VRVS, a 
videoconferencing system based on a set of servers called  reflectors that route the 
audio/video streams to the participating clients, for monitoring and controlling the VRVS 
reflectors in order to enhance the quality of the service. 

A ReflRouter client was developed to provide an optimized dynamic routing of 
the videoconferencing data streams. This client requires information about the quality of 
the alternative connections in the system and it solves, in real- time, a minimum spanning 
tree problem to optimize the data flow at the global level. 

To evaluate the connection quality with possible peer reflectors there were 
developed monitoring agents performing ping like measurements using UDP packages, 
which are deployed on all the MonALISA services. These agents perform continuously 
(every 4s) such measurements and with a selected set of possible peers, which can be 
dynamically reconfigured, for each reflector.  

The reflectors and all these possible peer connections we are measuring define a 
graph (as shown in the next figure).  
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Figure 4: The graph defined by the reflectors and the peer connections. 

 
The best routing path for reapplication of the multimedia streams is defined as a 

Minimum Spanning Tree (MST). This means that we need to find the tree that contains 
all the reflectors (vertices in the graph G) for which the total connection “cost” is 
minimized: 

 
MST= min(Sum(u,v)in G  w(u,v)) 

 
 The “cost” of the connection between two reflectors (w) is evaluated using the 

UDP measurements from both sides. This cost function is build with an exponentially 
mediated RTT and if lost packages are detected or the jitter of the RTT is high the cost 
function will increase rapidly. Based on these values provided by the deployed agents, 
the MST is calculated nearly in real - time. 

There are some critical cases that must be analyzed before running the MST 
algorithm. For this, each ReflNode is checked. If a node isn’t active then it must not 
appear in the MST. Further, the tunnels that start from the inactive node must also not be 
present in the computed tree. Therefore, the next state will be set to 
MUST_DEACTIVATE. If the node is active, then each link to the other reflectors (either 
active peers or neighbor reflectors) is checked. If the peer reflector isn’t active the 
respective tunne l must not be active. 

Another problem arises when between two reflectors there is no ABPing 
information, or there is only one ABPing link. In this case, the state of the both peer links 
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depends on the current status of the peer link. If there is at least one peer link, then both 
must be activated. If none is active, then no peer link must be active. For the other cases 
the next state of a tunnel is initialized as INACTIVE, and the MST algorithm will set it as 
needed. 

For implementation, the Boruvka’s algorithm was used, as it is also appropriate 
for a parallel implementation. Once a link is part of the MST a momentum factor is 
attached to that link. This is to avoid triggering reconnections for small fluctuations in the 
system. Such cases may occur when two possible peers have very similar parameters (or 
they may be at the same location). In the figure before an example of a dynamically MST 
for connecting the VRVS reflectors was presented. 

The original Borvuka algorithm is: 
 
Given G = (V,E) 
T = graph consisting of V with no edges 
while T has < n-1 edges do 

for each connected component C of T do 
e = min cost edge (v,u) s.t. v in C and u not in C 
T := T union {e} 

 
But there can be a problem if the graph isn’t conex. In this case, there is no way to 

connect n-1 edges, so that condition is modified such that the while cycle repeats as long 
as there is at least one union made into the for cycle. In our case, while joining subtrees, 
we also mark the next state of each tunnel that is used to perform the respective joint as 
ACTIVE. 

Another modification that must be done to this algorithm is that the process is 
going to be running iterative, i.e. we compute the MST, issue commands to change the 
tree, then we compute the MST and change the tree again and so on. A problem that 
could appear is that of active links oscillation. 

 
Figure 5: Active link oscilation. 

 
For example, as in the above figures: at moment t1, the link between B and C is 

worse and therefore, is inactive; at the next moment, the link between A and C is worse 
and the algorithm would issue the commands to deactivate link A-C and activate instead 
the B-C link; but at the third moment, link between A and C is better once more than B-
C, ant the algorithm would send new commands. This would be very bad for a sys tem 
where there are live conferences ongoing. Therefore, we must take care and issue the 
commands for changing the route only when the new route is much better than the 
current route. 

This problem can be solved by setting an inertial factor for the links belonging to 
the MST. Links that are currently in the MST have an artificial cost lowered by, for 
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example 20%. It is important to give this value relative, not absolute as the cost of the 
links can vary very much – for example links between the reflectors in the same LAN 
have very low cost, compared to those separated by oceans. Using this inertial factor we 
are sure that the oscillations cannot happen very often, and that when a new link is 
chosen, it will bring an significant improvement in quality. 

It’s worth saying that this algorithm runs in O(m log n), where m is the number of 
edges and n the number of vertexes. 

This is an example of a high level service developed to optimize a real-time world 
wide distributed application and to help in operating such complex systems. These 
developments are transforming the VRVS system into a new class of large scale 
distributed systems with real time constraints. 

The MonALISA framework is a means of carrying out the development of this 
system, both in terms of its operational characteristics (heuristic, self-discovering,  
autonomous) and the relatively short development time required for implementing a 
distributed monitoring and management system of this scale and complexity. 
 
 
3. Our Contribution 
 
 
 The major disadvantage of the existing approach, as most of the existing schemes, 
is that of being centralized, i.e. they assume that information about each link in the 
network is available at one node. While the centralized schemes are fast and produce 
cheap trees, the requirement of all information to be present at one node is problematic in 
large sized networks as the overhead to collect and store the data is prohibitive. Among 
the distributed schemes that are available, many are based on the distributed minimum 
spanning tree algorithms, and work by first finding the MST of the whole network and 
then pruning off all edges and leaves that are not involved in the multicast. These, 
however, require participation of all the nodes in the network, and have an unsatisfactory 
theoretical upper bound on competitiveness. 
 The scheme we propose is distributed and produces delay constrained trees that 
are little more expensive than those produced by centralized Steiner heuristics. An 
extension to this scheme makes it adaptive to changing delays along links and permits 
dynamic joins and leaves. The scheme requires very little information in addition to that 
which is already maintained in routing tables for current protocols. 
 
3.1 Problem Formulation 
 
 The delay constrained multicast path setup problem in a network can be 
formulated as follows. The network is modeled as a graph G(V,E) with cost and delay 
functions defined on the links. The capacities of the links are assumed to be fixed and  
known. The cost metric on the links could be any combination of monetary cost and 
network related parameters. 
 
INPUTS : 
C(e)  : C : E → N, gives cost of edge e 
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D(e)  : D : E → N, gives the delay on e 
s  : Source node 
S  : Set of destinations 
∆  : Max. permissible delay from 

  source to destination. ∆ ∈ N 
 
OUTPUT: 
T, a tree rooted at s spanning all nodes in S. 
 
CONSTRAINT 
Σ D(e) < ∆     ∀ v ∈ Σ 
e ∈P(s,v) 
where P(s,v) is the set of edges along the path from 
source s to destination v. 
 
OBJECTIVE 
Minimize:   Σ   C(e) . 
      e ∈ T 
 
 Using the above formulation, the proposed algorithm computes the (static) 
multicast tree. In the extension of the algorithm where dynamically changing link delays 
and multicast groups are permitted, the formulation is different in that the delay function 
D(e) and the set S are also functions of the (wall clock) time. D(e) is then not a specified 
function, but is calculated using a statistical model of the link.  
 
4. The Distributed Delay Constrained Multicast Algorithms 
 
 Establishing a multicast tree in a point­to­point network of  switch nodes, can be 
modeled as the NP­complete Steiner problem in networks. In this  chapter, we introduce 
and evaluate two distributed algorithms for  finding multicast trees in point­to­point data 
networks.  

 
The first  algorithm is based on Steiner heuristics, the  shortest path heuristic 

(SPH) and the Kruskal­based shortest  path heuristic (K­SPH), and have the advantage 
that only the  multicast members and nodes in the neighborhood of the multicast tree 
need to participate in the execution of the algorithm.  We compare this algorithm by 
simulation against the second one, a baseline  algorithm, the pruned minimum 
spanning­tree heuristic, which  is the basis of many previously published algorithms for 
finding  multicast trees. We compare the competitiveness of the two and decide which 
one to use for implementation and integration in MonALISA framework according to the 
found results.  

 
4.1 The Steiner Heuristics Algorithm 
 
 Multicasting is likely to take an increasingly important role  in data networks in 
the future. Previous authors have established that the multicast tree problem can be 
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modeled as the Steiner problem in networks, referred to hereafter as  the SPN, and that 
finding explicit solutions in large networks is  prohibitively expensive. A number of 
good, inexpensive, centralized heur istics exist for the SPN and have been reviewed  
extensively elsewhere. Most of the algorithms proposed in the literature for SPN are 
serial in nature.  

 
However, a few distributed heuristics exist in the literature. Many of these 

algorithms are based on reducing the SPN  to the minimum spanning tree problem, 
referred to here as the  MST, and use a distributed minimum spanning tree algorithm  
such as the one described by Gallager, Humblet, and Spira. A Steiner tree is created by 
pruning the minimum spanning tree of unnecessary leaves and branches. Distributed 
Steiner heur istics based on a minimum spanning tree algorithm suffer from two 
drawbacks: first, all the  nodes in the network must participate in the execution of the  
algorithm. This may be impractical in a large network with  sparse multicast groups. 
Second, the theoretical upper bound  on competitiveness of a pruned MST tree to that of 
an optimal  Steiner tree has been shown to be s + 1, where s is the number  of 
non­multicast nodes. Here competitiveness is defined to  be the ratio of the sum of the 
heuristic tree's edge weights to  that of an optimal tree. Thus the competitiveness of a 
multicast tree decreases with the size of the multicast group. In  comparison, the 
equivalent theoretical upper bound for shortest  path heuristic competitiveness for the 
Steiner tree problem is 2, regardless of the multicast group size. Our empirical evidence  
suggests that pruned MST heuristics often produce solutions of inferior quality to those 
produced by shortest path Steiner heuristics.  

 
In this chapter, we present two distributed algorithms for the Steiner problem in 

networks. The algorithms are based on the shortest path heuristic (SPH) and the 
Kruskal­based shortest path heuristic (K­SPH). We provide analytical bounds for their 
message and convergence time complexities and compare their simulation results against 
those from a pruned MST algorithm.  

 
We choose the distributed MST algorithm due to Gallager, Humblet, and Spira as 

our baseline algorithm for comparison. This algorithm is perhaps the simplest of all 
pruned MST algorithms, yet produces Steiner trees that are representative of other, more 
elaborate pruned MST heuristics. The distributed heuristics are compared on the basis of 
three criteria: competitiveness, the number of messages exchanged, and convergence 
time.  

 
The distributed heuristics have the advantage that the algorithm is initiated by 

only the multicast members and requires the participation of only nodes in the 
neighborhood of the multicast tree, instead of all the nodes in the network as required by 
the pruned MST approach. However, limiting the execution of the algorithm to a subset 
of the network nodes results in a substantial increase in the number of messages 
generated in our algorithms, with a corresponding increase in convergence time.  
  

Before continuing, we make the following basic definitions and notations. Z is the 
set of multicast destinations, S is the set of non­multicast nodes V - Z, P ij is the shortest 
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path between nodes i and j, d ij is the distance of the shortest path between nodes i and j, 
and C t is the cost of tree t (the sum of t's edge weights). Graph distances will be defined 
as follows: the distance between two nodes is the distance of the shortest path between 
them. Likewise, the distance between a node and a tree is the distance of the shortest path 
between the node and any node in the tree. Finally, the distance between two trees is the 
distance of the shortest among all paths between any node in one tree and any node in the 
other tree. We append the weight of an edge or path with the index of its destination node 
in determining shortest paths so that, in case of a tie, the actions of the individual nodes 
would be consistent. Since we do not allow multiple edges between node pairs, this 
ensures  that all the nodes select the same edge or path, given the same set of edge 
weights.  

 
To be suitable for distributed implementation, a heuristic must satisfy four 

criteria. It must (i) use the existing routing information available at each node in the 
network, (ii) use minimal computational and network resources, (iii) require a minimum 
of coordination between neighbors, and (iv) limit itself to nodes directly involved in the 
multicast. Of the centralized heuristics evaluated, we chose two heuristics for distributed 
implementation: SPH and K­SPH.  

 
Distributed heuristics SPH and K­SPH are designed to run as asynchronous, 

independent processes running one per node in a network. Each distributed heuristic 
assumes that the routing tables in each node are up­to­date; no topology changes occur 
during the execution of the  algorithm; the network is connected; every node has a unique 
index; each multicast member has knowledge of the indices of all other multicast 
members; and each multicast member is able to determine the distance to every other 
node from its routing table.  

 
Heuristic SPH is inherently a serial algorithm, since there is only one subtree 

expanding itself at any time during the execution of the algorithm and nodes must join 
the tree serially. Heuristic K­SPH, on the other hand, allows many of the join operations 
to proceed in parallel. The latter, however, is substantially more difficult to parallelize 
because of the significant amount of coordination that may be needed while combining 
subtrees. In the following, we present distributed K­SPH first, followed by a similar 
distributed implementation of SPH. 

 
4.1.1 Distributed Heuristic K­SPH  
 

Like its centralized version, distributed K­SPH starts with a forest of Z multicast 
members (Z­nodes) and connects them pairwise into successively larger subtrees until a 
single multicast tree remains or no further connections are possible. We refer to the 
subtrees during the execution of the algorithm as fragments. Thus, at the beginning of the 
algorithm, there are Z fragments, each a trivial subtree consisting of one Z­node.  

 
At any instant during the execution of the algorithm, each node in the network is 

either part of a fragment or has not been yet been included in the multicast tree. Note that 
every Z­node is always a fragment node and every non­member node (S­node) is initially 
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a non­fragment node. When two fragments merge, the nodes in both fragments and the 
nodes in the path connecting them become the fragment nodes of the new, merged 
fragment.  

 
Each fragment has a fragment leader coordinating the activities of the fragment. 

This fragment leader is the fragment Z­node with the lowest index. Each fragment leader 
executes the same finite state machine shown in the next figure.  

 

 
 

Figure 6: The finite state machine for fragment leaders. 
 

Other fragment node executes a simplified version of the leader's finite state 
machine. Initially, each multicast member is the leader of its own one­node fragment; 
when two fragments merge, leadership is assigned to the fragment leader with the lower 
index. To identify fragments uniquely, each fragment has the same index as its leader and 
each fragment node is aware of its fragment index.  

 
During the execution of the algorithm, each fragment, guided by its leader, 

attempts to merge with its closest neighboring fragment. This is accomplished in two 
steps: a discovery step and a connection step. During the discovery step, the leader 
gathers and updates its information on other fragments and graph nodes. Based on the 
information gathered, it determines the closest fragment to merge with. During the 
connection step, it communicates with the closest neighbor fragment's leader, requesting 
a merge. This closest fragment leader is simply the Z­node with the same index as the 
closest fragment. If accepted, the leader with the lowest index attempts to connect the two 
fragments. Regardless of the outcome (the request is rejected, the subtrees are connected, 
or the connection attempt fails), the cycle repeats until the algorithm terminates.  

 
Distributed K­SPH processes running on each node rely on shortest path 

information available at its node, as well as information maintained by the fragment 
leaders. The shortest path information stored at each node is the distance, next hop and 
next­to­last hop of the shortest path to other nodes. This path information is similar to 
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that stored by distance­vector routing protocols and may already be available in each 
node's routing tables. If so, distributed K­SPH may use the existing tables, avoiding 
unnecessary extra storage at each node. If not, this information may be derived using a 
distance vector routing algorithm. The next­to­last hop table allows distributed K­SPH 
processes to derive the entire shortest path between nodes by recursively considering the 
path. Each node also stores the index of its fragment. Initially, only multicast nodes have 
a fragment index (its own index). Each leader maintains additional shortest path 
information for its fragment. This information augments the shortest path information at 
each node. For example, the leader stores only the distance, and the head and tail of the 
shortest path between its fragment and every other fragment. The additional details 
necessary to build the path between fragments is stored at the head of the path, a node in 
the leader's subtree (Note that the shortest path between fragments need not start or end at 
a leader node).  

 
When distributed K­SPH starts, each Z­node, the leader of its own trivial 

one­node fragment, already knows its distance to every other fragment as provided by the 
initial distance tables and no discovery step is necessary. Instead, each distributed K­SPH 
leader starts with the connection step, described as follows.  
 
The connection step  
 

During the connection step, each leader attempts to connect its fragment with the 
closest fragment, known as its preferred fragment. It does so by sending a merge request 
message to the leader of the preferred fragment (That is, the Z­node with the same index 
as the preferred fragment). A leader receives one of three responses to its request: accept, 
reject, or busy. We consider each response in turn below. The busy response occurs when 
a fragment's request arrives at its preferred fragment while the latter is in its discovery 
step described below. While in the discovery step, a leader cannot accept or reject merge 
requests, as it is in the process of updating its information. Instead, the busy response is 
sent. When the requesting leader receives the busy response, it repeats its request in the 
hopes or reaching its preferred fragment after its discovery step. A leader will repeat its 
connection request until it receives either an accept or reject response.  

 
When a leader receives a connection request from a fragment other than its 

preferred fragment, it returns a reject message. This message forces the requesting 
fragment into a discovery step to find another preferred fragment. If a former leader node  
receives a connection request from any fragment, it returns a reject message since a 
connection is no longer possible to the old fragment.  

 
When two fragments exchange merge requests with one another, each responds 

by returning an accept message. Once an accept message is sent, the fragment may not 
leave the connect step or accept a request from another fragment until the connection 
attempt completes. Of the two leaders in a connection attempt, only the leader with the 
lower index acts, while the leader with the higher index waits passively for the result of 
the connection attempt. This is because if the connection attempt succeeds, the leader 
with the lower index becomes the leader of the new, merged fragment. The leader with 
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the lower index initiates a connection attempt by sending a message to the head of the 
shortest path between the two fragments, a node in its fragment. In its message to the 
head of the shortest path, the leader specifies the tail of the shortest path, a node in the 
other fragment. Upon receiving the connect message, the head node sends a connect 
message along its shortest path to the tail node.  

 
When two fragments A and B merge the shortest path used to join them must 

have its head in one fragment, its tail in the other, and pass through only non­fragment 
nodes.  

 
The connect message may either reach the target fragment or be blocked; 

blocking occurs when the message reaches a node in a third fragment before reaching the 
target fragment. In either case, a status message returns to the head of the shortest path.  

 
Consider the case of a successful connection first. In this case, the connect 

message travels down the shortest path, reserving intermediate nodes in the path as part 
of the new fragment, until it reaches a node in the target fragment. It is possible that the 
first node reached in the target fragment is not the specified tail. This occurs when the 
leader's shortest­path information for other fragments is stale and an intermediate node in 
the selected path is already part of the other fragment. The connect message stops at the 
first node in the target fragment it reaches and sends a status message back along the 
shortest path to the head of shortest path. Each reserved, non­fragment node along the 
path receives the status message, includes it self in the new, merged fragment, and passes 
the status message along the path. The head of the shortest path forwards the status 
message to its leader, now the leader of the new, merged fragment. This completes the 
connection step and the leader enters the discover step described below.  
Now consider the case of an unsuccessful connection. In this case, the shortest path 
between the fragments is blocked. This occurs because a node in the shortest path, the 
blocked node, has become part of a third fragment. When the connect message reaches 
the blocked node, the blocked node returns a status message along the shortest path to the 
head of the path. As each intermediate node receives the status message, it removes its 
reservation from the new fragment, becoming an non­fragment node once again. The 
head of the shortest path forwards the status message to the leader. The leader informs the 
other fragment leader of the connection failure by sending a reject message. This 
completes the connection step. Both leaders then enter the discover step described below.  

 
States request, wait and connect in the figure before comprise the connection step.  

 
The discovery step  
 

The discovery step accomplishes three tasks:  
 
(1) it informs every node in the fragment of its new fragment index;  
(2) it gathers fragment information about nodes close to the fragment; 
(3) it refreshes its information on shortest paths to other fragments.  
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Each fragment leader achieves these tasks by performing a multicast on its 
fragment rooted at itself. In the multicast message, the leader includes the fragment 
index, the distance to the preferred fragment and shortest paths to other fragments. As 
each node in the fragment receives the multicast, it updates its fragment index, queries 
nearby nodes and passes the multicast message to its children. Only those nodes that lie 
within the distance from this fragment to the preferred fragment are queried for fragment 
index information. The objective of queries to nearby nodes is to find fragment nodes 
closer than those already known by the leader. Fragment B's leader believes that fragment 
C is the closest fragment. Dur ing fragment B's discovery step, it instructs fragment nodes 
to query those nodes closer than fragment C.  

 
This distance is the distance between node 3, the head of the path to fragment C, 

and node 4, its tail, and is marked by the dotted circles around each of fragment B's 
nodes. Since nodes 1 and 2 fall within one such circle, they receive queries and fragment 
B's leader discovers the closer fragment A. Queries could be sent to all nodes in the 
graph, but are limited to nodes within a small distance for two reasons:  

• a set distance avoids broadcast storms  
• new shortest paths discovered should be shorter than those already 

available.  
 

The discovery step is implement by state flood­to­N in the figure above. 
  

4.1.2 Distributed SPH  
 

The distributed shortest path heuristic is a special case of distributed K­SPH 
described in the previous section. In distributed SPH, any one of the multicast members 
may act as the source of the multicast, referred to here simply as the source node. In 
contrast to distributed K­SPH, only one fragment, the source fragment grows, connecting 
multicast members to itself until all the multicast members are part of the same fragment. 
The heuristic terminates when a single tree remains.  

 
In SPH, the preferred fragment of every fragment is always the source fragment. 

The sole exception, of course, is the source fragment itself which prefers its closest 
fragment. Using the same connection step outlined for heuristic K­SPH, the source 
fragment merges with its closest fragment. As the source fragment grows, it uses the 
same discovery step to determine the new, closest fragment. The source fragment never 
changes its index. This preserves the source fragment's original index so that non­source 
fragments never need to change their preferred fragment index. As a consequence, 
non­source fragments do not enter the discovery phase. In all other respects, distributed  
SPH is very similar to distributed K­SPH.  
 
4.1.3 Message and convergence bounds   
 

Bounds for messages passed and convergence time are summarized in the next 
tables. 
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Messages bounds for distributed heuristics K­SPH, SPH  

and Fixup. 
 

 
Convergence­time bounds for distributed heuristics K­  

SPH, SPH and Fixup. 
 
 
The distributed versions of SPH and K­SPH provide inferior solutions compared 

to their centralized versions because of the lack of global topology information in each 
node in the former. However, the degradation in the competitiveness was small in our test 
networks. In fact, the competitiveness produced by distributed K­SPH was often superior 
to that of centralized SPH.  

 
The pruned minimum spanning tree algorithm, on the other hand, requires 

participation from every node of the network, a condition difficult to satisfy in practice in 
a large wide­area network.  

 
Viewed from the perspective of convergence­time, however, the pruned MST 

heuristic enjoys an advantage over shortest path heuristics SPH and K­SPH. The 
convergence time for the solutions produced by pruned MST algorithm fell well within a 
much narrower range as compared to the results for distributed K­SPH and SPH.  

 
On comparing the SPH and K­SPH algorithms, it is interesting to observe that the 

algorithms had the same level of communication complexity in terms of the number of 
messages generated, yet the range of convergence times produced by K­SPH was 
significantly tighter. This is primarily due to the disparate approaches used by the 
algorithms in growing the multicast tree. Distributed SPH grows the tree by adding one 
multicast member at a time to the source fragment, concentrating much of the work at the 
source, while distributed K­SPH allows multiple fragments of the tree to combine in 
parallel. This allows distributed K­SPH to provide lower convergence times without 
increasing the number of messages substantially.  

 
Because the convergence times for distributed K­SPH are higher than those of the 

pruned MST algorithm by as much as 10 times, we shall use this second one, presented as 
follows in our implementation for the MonALISA framework. 
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4.2 The Pruned Minimum Spanning-Tree Heuristic 
 
 

The distributed multicast tree setup algorithm has three distinct phases. Phase 1 is 
a ‘Tree Construction’ phase, Phase 2 is a ‘Tree Repair’ phase. At the end of Phase 2, the 
tree setup is complete and the multicast session can begin. Phase 3 of the algorithm 
handles changes in link parameters and/or changes in the multicast group, and may be 
invoked at any point during the lifetime of a multicast. 
 
 
 
4.2.1 Phase 1: Tree Construction 
 
 Given the multicast group and the cost and delay functions on the edges, this 
phase constructs a tree rooted at the source and spanning all destination nodes. The tree 
construction can be done using the distributed Highly Asynchronous MST Algorithm. 
 

4.2.1.1 A highly asynchronous minimum spanning tree 
 

We present a distributed protocol for obtaining a minimum spanning tree in an 
asynchronous network. We assume that each edge has a distinct weight associated with it. 
When the protocol terminates, each node knows which edges incident on it are in the 
minimum spanning tree.  
 

This protocol maintains a spanning forest of trees (referred to as fragments), each 
of which is a subtree of the MST. Fragments are merged over their minimum weight 
outgoing edges until a single fragment that spans the entire network remains. In order to 
keep the message complexity low, each fragment has a level number associated with it 
which is a measure of the number of nodes in the fragment.  
 

We present a protocol, CompMST, which requires O(min (N, (D+d) log N) time 
and O(E+N log N/log log N) messages where D is the maximum degree of a node and d 
is the diameter of the MST. To arrive at this protocol we first present a protocol Async. In 
Async, a fragment does not wait for another fragment to reach a particular level before it 
can combine with it. The protocol takes at most O(min(N,(D+d)log N) time and O(N2) 
messages. The features of  Async and those from the other protocol are combined to 
obtain CompMST. The requirement of balanced growth is relaxed and a fragment at level 
l has to wait for a neighbour fragment to reach a level greater or equal to l – log l before 
combining with it. The CompMST protocol behaves like the classic protocol when the 
fragment size is small and like Async when the fragment size reaches N/log N. 
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Problem formulation 
 

The network is modeled like an undirected graph with N nodes and E edges. All 
nodes are assumed to have distinct identities. We assume that all the edges have distinct 
weights and each process knows the weight of all edges incident on it. The nodes 
communicate via messages. Messages are not lost and they arrive at their destination 
within finite but unpredictable time. Further, messages sent over an edge arrive in the 
order in which they are sent. On the initiation of the protocol, we assume that each 
process knows the weight of each edge incident on it. On the termination of the protocol, 
each node knows which edges incident on it belong to the minimum spanning tree. 
 

The protocol maintains a forest of rooted trees (referred to as fragments). The root 
of the fragment is the root of the corresponding tree and the root’s identity is used to 
identify the fragment. The best edge of a fragment is the minimum weight edge among all 
edges leading out of the fragment.  
 

Each fragment has a level number associated with it. Fragments containing only a 
single node are at level 0. When two fragments at level l merge, a new fragment at level 
l+1 is created. For such a level numbering scheme, it can be shown that a fragment with 
the level number l contains at least 2l nodes. Therefore, the level number of a fragment 
cannot exceed log N. The level of a node is the level number of the fragment to which it 
belongs. 
 
A node may be in one of the following states: 

• the initial state Sleeping (a node is in this state until it starts executing the 
protocol) 

• the state Find while participating in a fragment’s search for its best edge 
• the state Found at other times. 

 
The algorithm starts with each node as a separate fragment. Fragments are merged 

iteratively on the best edges and the algorithm terminates when only one fragment which 
spans the entire network remains. In each iteration, a fragment determines its best edge 
and combines it with the fragment at the other end of the edge. When two fragments 
having the same best edge, e, combine to form a new fragment, the node with the larger 
identity among the two end-points of e becomes the new root of the combined fragment.  
 

Each node i keeps the identity of edges incident on it sorted according to their 
weights in a list. The node picks each time the first edge from this list and sends a test 
message to the other end of the edge with its fragment identity and level number. When 
node j receives a test message from node i, it behaves as follows: 

• If the fragment identity of j agrees to that of i, then i and j belong to the same 
fragment and therefore j responds by sending the reject message. When a reject 
message is received the current edge is deleted from the list and the process 
repeats with the next edge in the list.  

• If the fragment identities of i and j are different and the level number of j is 
greater than or equal to that of i, it sends an accept message to i.  
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• Otherwise j delays the response until its level number becomes at least as large as 
that of i. 

 

A minimum spanning tree protocol  
 

In this section we describe the Async protocol. Each iteration is executed in two 
phases. In the first phase, the fragment identity is propagated to all sites in the fragment. 
After this phase is over, the root initiates the second phase for finding the best edge. 
 

First-phase The root of a fragment initiates the first phase by sending an initiate1 
message with the fragment identity (which is the identity of the root) as a parameter to its 
children. On receiving the message initiate1 a node updates its fragment identity and 
propagates initiate1 to its children. When the initiate1 message reaches a leaf node, it 
sends a finish message to its parent. An intermediate site waits for a finish message from 
all children before sending a finish message to its parent. When the root receives the 
finish message from all children, it knows that all nodes in the fragment know the current 
fragment identity. The root initiates the second phase. 

 
Second phase The root of a fragment initiates the second phase by sending initiate2 to its 
children. In this phase the best edge of the fragment is found. A node sends a test 
message over an edge to ascertain that the edge is outgoing. However, the reply to a test 
message is not delayed (because if the receiving node is in the same fragment, then it 
must know the correct fragment identity since the first phase of the iteration has 
completed). After a node has determined its local best edge it propagates this edge weight 
towards the root using report messages. The root picks the edge with the minimum 
weight among the local best edges and sends a change-root message to the node in the 
fragment with this as an incident edge. This node becomes the new root of the fragment 
and sends a connect message over the best edge in an attempt to combine with the 
fragment at the other end. 
 

Consider the case when a connect message from a site i in fragment F reaches a site j, 
which is in fragment G. We have the following cases: 

• if j receives initiate1 and has not sent a finish message, then j treats (i,j) as an edge 
of the fragment and sends initiate1 to i. Further, site j waits for a finish message 
from i before sending its finish message. In this case, nodes in F are absorbed in G 
as a part of the current iteration of G 

• if j has already sent its finish message then the response to the connect message is 
delayed. If (i,j) is also the best edge of G then G will also send a connect message 
over this edge and F and G will merge ending the iteration. The node with the 
larger identity among the two end-points of the best edge will become the new 
root of the combined fragment and will initiate the next iteration. Otherwise when 
j gets initiate1 message during the first phase of the next iteration, it will send an 
initiate1 message to i and as a result F will be absorbed as a part of that iteration. 
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Hence, fragments are absorbed only while a site is executing the first phase and no 
new sites are added to a fragment while in the second phase. 
 

The composite protocol 
 

CompMST behaves like the protocol presented in the literature when the fragment 
size is small and like Async when the fragment size becomes large. In contrast to Async, 
the level numbers are explicitly stored by the sites and we require that the response to a 
test message sent by a node i at a level l to a node j to be delayed only if the level number 
of j is less than l-log l. Since log l increases with l, the protocol becomes more 
asynchronous as l increases. In CompMST the level number of a fragment is proportional 
to the amount of time it has to wait before updating its level number. The changes 
required to Async to obtain this behaviour are explained in the following: 
 
First-Phase The initiator site sends initiate1 message to its children with its current level 
number and the fragment identity. On receiving initiate1 a site updates its level number 
and fragment identity and propagates initiate1 to its children. The number of nodes are 
counted while propagating the finish(count) messages, where count is the number of 
nodes in the subtree rooted at the node sending the message. A leaf sends a finish(1) 
message to its parent. After site i has received a finish(countm) message from each child 
m, it sums up the counts received from the children, adds one to it and sends the resulting 
number in a finish message to its parent. The first phase terminates after the initiator 
receives a finish message from each child. Let M be the sum of the counts received from 
the children by the initiator. The initiator then updates its level number to log(M+1). This 
may be greater than the level number previously stored in the initiator due to fragments 
absorbed during this first phase.  
 
Second Phase is modified as follows. The initiator propagates its new level number in 
the initiate2 messages and sites update their level numbers on receiving this message. The 
level number of a node is included in the test message sent by it. If a node j receives a test 
message from a node with level l and j’s fragment identity differs from the one received 
then the response is delayed by j until its level number becomes at least l- log l. 
 

In addition, we use a protocol Update which allows a node to update the level 
number and fragment identity of the nodes in its fragment. The initiator site starts the 
protocol by sending the update message to its children with the fragment identity and 
level number in it. On receiving update(level,id), site i updates its level number and 
fragment identity and propagate the update message to its children. 
 

Consider the case when a connect message from i in fragment F at level li is received 
by a node j in fragment G at level lj. If j has already sent a connect message to i (so that 
both F and G have the same best edge) then F and G are merged. If j>i then j becomes the 
root of the combined fragment and initiates a new iteration. Otherwise, i becomes the 
new root. If j has not sent a connect message to i then j behaves as follows: 

• li > lj  
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 In this case, site j delays response to the connect message until its level becomes 
at least li (the connect message is then handled as described in case 2 below) or it sends a 
connect message to i (in this case the fragments are merged as described above) 

• li <= lj  
 a. Site j has received the initiate1 and has not sent the finish message: 
 In this case site j propagates initiate1 to i and waits for a finish message from i 
before sending a finish message to its parent. Thus F is absorbed in G and nodes in F 
participate in the current iteration of the protocol in G). The number of nodes in F are 
therefore inceluded in updating the number of G. 
 
 b. Site j has sent the finish message and li < lj – log lj  
 In this case since j has already sent the finish message, the nodes in F will not be 
included in updating the level number of G. Therefore, we require that i counts the 
number of nodes in F and reports that count to j before the connect message is processed 
by j. To do this, j sends a message to i instructing it to count the number of nodes, and 
temporarily refrains from sending a report message to its parent in G if it has not already 
sent it. Let C be the fragment rooted at i after the completion of first-phase and count be 
the number of nodes in C which is reported to i when first phase completes. 

• if log (count) >=lj  then site i decides to keep C distinct from G. It notifies j of 
this fact so that j can resume execution of the second phase in G. In addition, site i 
updates its level to log(count) and initiates Update to update the level number of 
the nodes in C 
• if log(count) < lj  then G absorbs C. In this case, i notifies j of its decision to 
get absorbed and then updates its fragment identity to G and level number to lj 
Further it initiates Update to update the level number and fragment identity for 
the nodes in its subtree. If j has not already sent the report message then nodes in 
C participate in the second phase of the current iteration of G. When j receives 
initiate2 it propagates it to i and waits for a report message from i before sending 
its own report message.  

 
 c. Site j has sent the finish message and lj >= li >=lj –log lj  
 

In this case nodes in F cannot participate in the current iteration of G. As the 
previous site i updates its fragment identity to i and initiates first-phase. However, site j 
does not refrain from sending messages to its parent while counting is in progress. After 
the first phase is over, sit ei update its level number to max(lj, log (count)) where count is 
the number of nodes reported to i when the first phase complets. Site i then initiates the 
update procedure of the level number of nodes in its fragment. 
 
 
4.2.1.2 Optimizing the Tree  
 

 The Async MST results in a multicast tree which minimizes a metric, i.e. it can 
be used to form a tree that is a minimum cost tree or a minimum delay tree. Two separate 
approaches can be adopted for optimizing (or meeting the bound on) the parameter not 
already optimized : 
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(a) Cost First Heuristic (CFH) : which optimizes the cost using Async MST and then 
'repairs' the tree wherever delay bounds are violated. 
(b) Delay First Heuristic (DFH) : which first obtains the minimum delay tree using 
Async MST and then attempts to reduce the cost by making changes wherever delays are 
unnecessarily small. 
  

The two methods can be expected to give different cost-competitiveness and 
differ in their running complexities. The cost- first heuristic, while can be expected to give 
lower cost trees, may result in too much modification to ensure delay bounds, which may 
reduce its cost-competitiveness. The delay-first heuristic ignores the costs at the first step, 
but needs fewer modifications since the delay bounds have already been met. DFH will 
never cause a total degeneration of the tree built by the Async MST. CFH, on the other 
hand, may lead to this situation if modifications of the tree are unable to guarantee delay 
bounds. Our experiments with the two approaches show that DFH gives better overall 
results, and hence CFH is not explored further. 
 
 
 
 
4.2.2 Phase 2: Tree Repair 
 
 Phase 2 begins when the source s sends a DISCOVER_DELAY packet to all its 
children using the tree setup in phase 1. As this packet trickles down and reaches a node 
v, the node v and the packet is marked with the delay encountered on the path from s to v. 
Each node stores this ‘delay mark’. 
   
 Next, all destination nodes whose marked delay exactly matches with the delay 
bound, send a NO_CHANGE packet upwards to their parents. As soon as a 
NO_CHANGE packet travels over a link, the link is declared permanent, which means 
that this link will not be removed from the tree. The packet is forwarded upwards till the 
source.  
 

The leaf nodes that have delays marked smaller than the delay bound (no leaf 
node can have a mark larger than the bound since this is a minimum delay tree, else it is 
impossible to meet the delay bound in the network), calculate the SLACK (= delay bound 
-delay mark), and send a SLACK_PACKET upwards to their parents. This packet 
contains the sender’s index, as well as the slack. As soon as the packet reaches a node 
(other than the originator) which is also a multicast member, the links from the originator 
to this node are discarded, and the links that come within slack plus delay of the 
discarded link's are considered for inclusion. These are discovered by a localized flooding 
to neighbours. If more than one links meet the criteria, the cheapest are chosen. Delay 
marks are revised, and according to new marked delays, links may get declared 
permanent. However, it may happen that no cheaper paths with delays within slack 
amount of the delay on current links can be found. In that case, the packet is sent further 
up and the cycle repeats. In case of new links being found, the balance slack, if any, is 
sent further up.  
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This method tries to achieve cost reduction by changes in levels closest to the leaf 

nodes whenever possible. This strategy is useful since the closer we are to the source, the 
larger is the number of destinations receiving the packets from the link, which makes the 
possibility of changing that link without disrupting the whole tree very small. Keeping 
the minimum delay links near the source is also desirable for adaptability of the tree 
(phase 3). It is thus a trade-off between the amount of modification and the cost. It is to 
be noted that the original links are discarded but not forgotten, as these may be required 
in the next phase. 
 
4.2.3 Phase 3: Tree Adaptation 
 
 The third phase of the algorithm is invoked in two situations, when the delays 
along links change or when a node joins or leaves a multicast. If the delay on a link (that 
is a part of the tree) changes, the node receiving packets from that link sends a 
DISCOVERY-REQUEST packet to its parent. The parent marks the link on which this 
packet is received and forwards the packet upwards, till the packet reaches the source. 
The source then sends the DISCOVER_DELAY packet, and phase 2 is repeated in the 
partial tree formed by the marked links. 
 In this phase, the new situation that can occur is that of negative SLACK values. 
These are handled differently. The first node to receive a SLACK_PACKET carrying a 
negative value removes the link along which the packet was received, thus breaking the 
tree into two subtrees. The links that were obtained through K-SPH in phase 1 are now 
brought back into the tree to connect the two subtrees via the shortest delay path. The 
discover delay and slack-reduction steps are repeated till slack values become positive. It 
may be noted that positive slack values are handled just as in phase 2. 
 Dynamic joins and leaves are handled using a Weighted Greedy Approach and 
then running phase 2 on the partial tree consisting of new links. The performance of this 
scheme is better than the weighted greedy approach because of the cost reduction 
achieved by phase 2, while it retains the simplicity as re-optimization is built into the 
algorithm itself. 
 
 

5. A Genetic Algorithm for Steiner Tree Optimization with Multiple Constraints 
Using Prüfer Number 

 Besides the heuristic approach we can use genetic algorithms which find the 
solution more rapidly, but not always the optimized solution. 

5.1 Problem formulation 
 

A network is modeled as a directed, connected graph G = (V, E), where V is a 
finite set of vertices (network nodes) and E is the set of edges (network links) 
representing connection of these vertices. Let n = card (V) be the number of network 
nodes and l =card (E) be the number of network links. The link e = (u, v) from node u ∈V 
to node v∈V implies the existence of a link e ' = (v, u) from node v to node u. Three non-
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negative real value functions are associated with each link e (e∈E): cost C(e):E? R+, 
delay D(e):E? R+, and available bandwidth B(e):E? R+. The link cost function, C(e), 
may be either monetary cost or any measure of the resource utilization, which must be 
optimized. The link delay, D(e), is considered to be the sum of switching, queuing, 
transmission , and propagation delays. The link bandwidth, B(e), is the residual 
bandwidth of the physical or logical link. The link delay and bandwidth functions, D(e) 
and B(e), define the criteria that must be constrained (bounded). Because of the 
asymmetric nature of the communication networks, it is often the case that C(e) ?  C(e '), 
D(e) ?  D(e '), and B(e) ?  B(e '). A multicast tree T(s, M) is a sub-graph of G spanning the 
source node s ∈V and the set of destination nodes M ∈V-{s}. Let m =card(M) be the 
number of multicast destination nodes. We refer to M as the destination group and 
{s} ∪ M the multicast group. In addition, T(s, M) may contain relay nodes (Steiner 
nodes), that is, the nodes in the multicast tree but not in the multicast group. Let PT(s, d) 
be a unique path in the tree T from the source node s to a destination node d ∈M.  

 
The total cost of the tree T(s, M) is defined as the sum of the cost of all links in 

that tree and can be given by 
  C (T(s,M))= ∑

∈ ),(

)(
MsTe

eC  

The total delay of the path PT(s,d) is defined as the sum of the delay of all links 
along PT(s,d) 
  D (PT  (s,d))= ∑

∈ ),(

)(
dsPe T

eD  

The bottleneck bandwidth of the path PT(s,d) is defined as the minimum available 
residual bandwidth at any link along the path: 
  B(PT(s,d))= min {B(e), ),( dsPe T∈ } 

Let d∆ be the delay constraint and Bd the bandwidth constraint of the destination 
node d. The bandwidth delay-constrained least-cost multicast problem is defined as 
minimization of C(T(s,M)) subject to 
  MddsPD dT ∈∀∆≤)),((   
  MdBdsPB dT ∈∀≤)),((   
 
 

5.2 Genetic algorithms  
 
Genetic algorithms are the most widely known types of evolutionary computation 
methods today. In general, a genetic algorithm has five basic components 
 

1. An encoding method, that is a genetic representation (genotype) of the solutions 
to the program 

2. A way to create an initial population of individuals (chromosomes) 
3. An evaluation function, rating solutions in terms of their fitness and a selection 

mechanism 
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4. The genetic operators (crossover and mutation) that alter the genetic composition 
of offspring during reproduction 

5. Values for the parameters of genetic algorithm 
 
A general structure of the genetic algorithm is as follows: 
 
Procedure: Genetic Algorithms 
Begin 
t := 0; 
initialize P(t); {P(t) is the population of individuals in generation t} 
evaluate P(t); 
While (not termination condition) do 
Begin 

recombine P(t) to yield C(t); {creation of offspring C(t) by means of genetic operators} 
evaluate C(t); 
select P(t + 1) from P(t) and C(t); 
t := t + 1; 

End 
End 
  

The general structure of a genetic algorithm 
 

5.3 Genotype: modified Prufer numbers  
 

A spanning tree T has n nodes, n=3, and its Prüfer number, P(T), is an n-2 digit 
number. Encoding of the Steiner tree by the Prüfer number is more difficult than 
encoding of the spanning tree. 
 

Special difficulty arises because: 
• The Steiner trees contain a variable number of nodes in the range from m+1 to n, and 
their associated Prüfer numbers include between m-1 and n-2 digits. 
• In the spanning case, the set of eligible nodes for consideration in decoding algorithm is 
the set of all nodes that are not appeared in the Prüfer number. In the Steiner case, this 
rule is not applicable. 
 

We adopt the encoding/decoding algorithms of the Prüfer numbers to be suitable 
for the Steiner tree problems. The next two figures show these algorithms, which convert 
a Steiner tree to its associated Prüfer number and vice versa. Let i be the lowest 
numbered leaf (node of degree 1) in T and j be the predecessor of i. The Prüfer number is 
built up by appending j to the right of P(T) and removing i and the edge (i, j) from T. 
Thus i is no longer considered at all and if i was the only successor of j, then j has 
become a leaf. This process is repeated, until only two nodes remain in T to be 
considered. Thus, P(T) is built and read from left to right. Let P be the set of nodes that 
are part of the Prüfer number, P(T). In our modified Prüfer number decoding algorithm 
(see Figure 3), we consider that the set of eligible nodes, R, be all nodes in the multicast 
group, {s} ∪ M, that are not member of P, i.e., R=({s} ∪ M)n P'. 
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Figure 7: The Prufer and modified Prufer number decoding algorithm. 

 
The Prüfer encoding establishes a one-to-one correspondence (non-redundancy 

property) between k-node trees and the set of all string of k-2 digits. This means that we 
can use only (k-2)-digit permutation (short encoding property) to uniquely represent a 
tree where each digit is an integer between 1 to k inclusive. The transformation back and 
forth between edges and Prüfer numbers can be carried out in O(n log n) with the aid of a 
heap. 
 

5.3 The pre-processing phase 
 

Before starting the genetic algorithm, we can remove all the links, which their 
bandwidth are less than the minimum of all required thresholds (Min {Bd | ∀ d∈M}). If 
in the refined graph, the source node and all the destination nodes are not in a connected 
sub-graph, this topology does not meet the bandwidth constraint. In this case, the source 
should negotiate with the related application to relax the bandwidth bound. On the other 
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hand, if the source node and all the destination nodes are in a connected sub-graph, we 
will use this sub-graph as the network topology in our GA-based algorithms. 
 

5.4 The initial population  
 
Random individual creation algorithm: In this algorithm, a linked list is constructed 
from the source node s to one of the destination nodes. Then, the algorithm continues 
from one of the unvisited destinations and at each node the next unvisited node is 
randomly selected until one of the nodes in the previous sub-tree (the tree that is 
constructed in the previous step) is visited. The algorithm terminates when all destination 
nodes have been mounted to the tree.  
 
Procedure: random individual creation 
Begin 
n := 1; 
First := True; 
While (n<=Number of Destinations) do 
Begin 

Initialize the n-th link list; 
If (First) then 

Current-node := Source 
Else 

Current-node := One of unvisited Destinations; 
GTM := Temporary matrix of the network  graph; 
Add the Current-node to the n-th link list; 
Link-list-comp := False; 
While (Not Link-list-comp) do 
Begin 

k := Number of connected nodes to the Current-node in GTM; 
If (k=0) then 
Begin 

Remove the Current-node in the n-th link list; 
Remove the link between the Current-node and the previous node in 
Gold; 
Current-node := previous node in the n-th link list; 
GTM := Gold  

End 
Else 
Begin 

i := a random natural number in interval [1,k]; 
Add the i-th node to the n-th link list; 
Gold := GTM; 
Remove all links to  the Current-node in GTM; 
Current-node := the i-th node; 
If (First) then 

If (Current-node is one of the destinations) then 
Begin 

Link-list-comp := True; 
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Make an individual by n-th link list; 
n := n+1; 
First := False; 
Mark the found destination as a visited destination 

End 
Else 

If (the Current-node is a node in one of the previous link lists(for 
example j -th link list)) then 

{ if the Current-node has a connection to the source node, this 
link has higher priority} 

Begin 
n-th link list := j -th link list from the source node to 
found position + Inverse (n_th link list); 
Link-list-comp := True; 

     Add the n-th link list to the individual; 
n := n+1; 
Mark this destination as a visited destination 

End 
End {Else} 

End {inner while} 
End {outer while} 
End {procedure} 
 
  

5.5 The fitness function 
 

We define the fitness function for each individual, the tree T(s, M), using the 
penalty technique, as follows: 
 

 
 
where a is a positive real coefficient, f(z) is the penalty function and ? is the degree of 
penalty (? is considered equal to 0.5). 
 

5.6 Selection 
 

The selection process used here is based on spinning the roulette wheel pop-size 
times, and each time a single chromosome is selected as a new offspring. The probability 
Pi that a parent Ti is selected is given by: 
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Where F(Ti) is the fitness of the Ti individual. 
 

5.7 Crossover  
 

The algorithm uses two crossover schemes for recombination of two individuals, 
which represent Steiner trees: 

 
Crossover I: Let {PF(s, d1), PF(s, d2), …, PF(s, dm)} be the set of paths from the source 
node s to all destination nodes in TF and {PM(s, d1), PM(s, d2), …,  PM(s, dm)} be the 
same set in TM. Since, we have found these paths for all individuals in the current 
population for calculating the fitness function of them, the algorithm will not be complex.  
 

A fitness function for the path P(s, di) based on the total cost, the total delay and 
the minimum bandwidth of the path using the penalty technique, is defined as follows: 

 

 
where a is a positive real coefficient, f(z) is the penalty function and ? is the degree of 
penalty (? is considered equal to 0.5). According to the crossover probability of Pc, two 
multicast trees TF(s,M) and TM(s, M) are selected as parents and the crossover operation 
produce an offspring TO(s, M). Each individual may be recombined with its right 
individual and its left individual through the crossover operator. For each destination 
node di, we compute the fitness of PM(s, di) and PF(s, di) and select the better path. 
 
Procedure: The crossover operator 
Begin 

For i:=1 to m do { m is the number of destination nodes} 
If F(PM(s, di)) > F(PF(s, di)) then 

PO(s, di) := PM(s, di) 
Else 

PO(s, di) := PF(s, di); 
Current-tree := PO(s, d1); 
For i:=2 to m do 
Begin 

Previous-node := s; 
Start-node := s; 
Current-node := The second node in the PO(s, di); 
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New-link := False; 
While (Previous-node <> di) do 
Begin 

If the Current-node does not exist in the current-tree then 
Begin 

Add the link between the Current-node and the Previous node to 
the current-tree; 
New-link := True; 

End 
Else 
Begin 

If the New-link = True then 
Remove all link from Start-node to the Previous-node in PO(s, 
di) in the current-tree; 
Start-node := Current-node 
New-link := False; 

End 
Previous-node := Current-node; 
If there is another node in PO(s, di) then 

Current-node := the next node in the PO(s, di) 
End 

End 
End 
 
Crossover II: In this scheme, it is used a simple one-point crossover. The constructed 
offspring do not necessarily represent Steiner trees. Then, the effective and fast check and 
recovery algorithm proposed in Q. Zhang, Y.W. Lenug, "An orthogonal genetic 
algorithm for multimedia multicast routing" is used to connect the separate sub-trees in 
the offspring and also connecting the absent nodes of multicast group to the final tree. 
 

5.8 Mutation 
 

There are two following algorithms for mutation operator: 
 
Mutation I: The mutation procedure randomly selects a subset of nodes and breaks the 
multicast tree into some separate sub-trees by removing all the links that are incident to 
the selected nodes. Then, the effective and fast check and recovery algorithm is used to 
connect the separate sub-trees and also connecting the  absent nodes of multicast group to 
the final tree. 
 
Mutation II: According to the mutation probability Pm, the mutation procedure randomly 
selects an infeasible chromosome from one of the following class (If the first class is 
empty, a chromosome is selected from the second class and so on) 
 
• Class 1: The chromosomes, which do not satisfy the delay and the bandwidth 
constraints. 
•  Class  2:   The chromosomes, which do not satisfy the delay constraint. 
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•  Class  3:   The chromosomes, which do not satisfy the bandwidth constraint. 
 

If all chromosomes in the current population satisfy both of the QoS constraints, 
we exit from the mutation procedure. Then, we select only the paths that satisfy both of 
the QoS constraints in the selected chromosome.  
6. Implementation 

 
The implementation of the algorithms uses the existing framework, namely the 

JINI network technology. 
 

6.1 JINI 
 

The Jini system architecture consists of three categories: programming model, 
infrastructure, and services. The original Jini Architecture Specification defines these 
categories as follows:  

The infrastructure is the set of components that enables building a federated Jini 
system, while the services are the entities within the federation. The programming model 
is a set of interfaces that enables the construction of reliable services, including those 
that are part of the infrastructure and those that join into the federation.  
 

Originally, the programming model defined models for leasing, event notification, 
and transactions. The basic infrastructure consisted of the discovery/join protocol and the 
lookup service. Previous versions of the starter kit delivered implementations of the 
following Jini technology-enabled services (Jini services):  

§ Lookup Service (reggie)  
§ Transaction Manager Service (mahalo)  
§ Lease Renewal Service (norm)  
§ Event Mailbox Service (mercury)  
§ Lookup Discovery Service (fiddler)  

 
 
6.1.1 Discovery and Join 
 

Entities that wish to start participating in a distributed system of JiniTM 
technology-enabled services and/or devices, known as a djinn, must first obtain 
references to one or more Jini lookup services. The protocols that govern the acquisition 
of these references are known as the discovery protocols. Once these references have 
been obtained, a number of steps must be taken for entities to start communicating 
usefully with services in a djinn; these steps are described by the join protocol.  

Terminology  
A host is a single hardware device that may be connected to one or more 

networks. An individual host may house one or more JavaTM virtual machines1 (JVM).  

Throughout this document we make reference to a discovering entity, a joining 
entity, or simply an entity.  
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§ A discovering entity is simply one or more cooperating objects in 
the Java programming language on the same host that are about to 
start, or are in the process of, obtaining references to Jini lookup 
services.  

§ A joining entity comprises one or more cooperating objects in the 
Java programming language on the same host that have just 
received a reference to the lookup service and are in the process of 
obtaining services from, and possibly exporting them to, a djinn.  

§ An entity may be a discovering entity, a joining entity, or an entity 
that is already a member of a djinn; the intended meaning should 
be clear from the context.  

§ A group is a logical name by which a djinn is identified.  
 

Since all participants in a djinn are collections of one or more objects in the Java 
programming language, this document will not make a distinction between an entity that 
is a dedicated device using Jini technology or something running in a JVM that is hosted 
on a legacy system. Such distinctions will be made only when necessary.  

Host Requirements  
Hosts that wish to participate in a djinn must have the following properties:  

§ A functioning JVM, with access to all packages needed to run 
software written to the Jini specifications  

§ A properly configured network protocol stack  
 

The properties required of the network protocol stack will vary depending on the 
network protocol(s) being used. Throughout this document we will assume that IP is 
being used, and highlight areas that might apply differently to other networking 
protocols.  

Protocol Overview  
There are three related discovery protocols, each designed with different 

purposes:  

§ The multicast request protocol is employed by entities that wish to 
discover nearby lookup services. This is the protocol used by 
services that are starting up and need to locate whatever djinns 
happen to be close. It can also be used to support browsing of local 
lookup services.  

§ The multicast announcement protocol is provided to allow lookup 
services to advertise their existence. This protocol is useful in two 
situations. When a new lookup service is started, it might need to 
announce its availability to potential clients. Also, if a network 
failure occurs and clients lose track of a lookup service, this 
protocol can be used to make them aware of its availability after 
network service has been restored.  
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§ The unicast discovery protocol makes it possible for an entity to 
communicate with a specific lookup service. This is useful for 
dealing with non- local djinns and for using services in specific 
djinns over a long period of time.  

 

The discovery protocols require support for multicast or restricted-scope 
broadcast, along with support for reliable unicast delivery, in the transport layer. The 
discovery protocols make use of the Java platform's I/O libraries to exchange information 
in a platform-independent manner.  

Discovery in Brief  

Groups  
A group is an arbitrary string that acts as a name. Each lookup service has a set of 

zero or more groups associated with it. Entities using the multicast request protocol 
specify a set of groups they want to communicate with, and lookup services advertise the 
groups they are associated with using the multicast announcement protocol. This allows 
for flexibility in configuring entities: instead of maintaining a set of URLs for specific 
lookup services that needs to be updated if any of the services change address, an entity 
can use a set of group names.  

Although group names are arbitrary strings, it is recommended that DNS-style 
names (for example, "eng.sun.com") be used to avoid name conflicts. One group name, 
represented by the empty string, is predefined as the public group. Unless otherwise 
configured, lookup services should default to being members of the public group, and 
discovering entities should attempt to find lookup services in the public group.  

The Multicast Request Protocol  
The multicast request protocol, shown in the next figure, proceeds as follows:  

1. The entity that wishes to discover a djinn establishes a TCP-based 
server that accepts references to the lookup service. This server is 
an instance of the multicast response service.  

2. Lookup services listen for multicast requests for references to 
lookup services for the groups they manage. These listening 
entities are instances of the multicast request service. This is not an 
RMI-based service;  

3. The discovering entity performs a multicast that requests 
references to lookup services; it provides a set of groups in which 
it is interested, and enough information to allow listeners to 
connect to its multicast response server.  

4. Each multicast request server that receives the multicast checks if 
it is a member of a group specified in the request; if it is, it 
connects to the multicast response server described in the request, 
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and uses the unicast discovery protocol to pass an instance of the 
lookup service's implementation of 
net.jini.core.lookup.ServiceRegistrar.  

At this point, the discovering entity will have obtained one or more remote 
references to lookup services.  

 
Figure 8: The Multicast Request Protocol 

The Multicast Announcement Protocol  
The multicast announcement protocol follows these steps:  

1. Interested entities on the network listen for multicast 
announcements of the existence of lookup services. If an 
announcement of interest arrives at such an entity, it uses the 
unicast discovery protocol to contact the given lookup service.  

2. Lookup services prepare to take part in the unicast discovery 
protocol (see below) and send multicast announcements of their 
existence at regular intervals.  

The Unicast Discovery Protocol  
The unicast discovery protocol works as follows:  

1. The lookup service establishes a TCP-based server, on which it 
listens for incoming connections. When a connection is made by a 
client, the lookup service reads in request data sent by the client; if 
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the request is acceptable, the lookup service responds by sending 
an object that implements the net.jini.core.lookup.ServiceRegistrar 
interface over the connection.  

2. An entity that wishes to contact a particular lookup service uses 
known host and port information to establish a connection to that 
service. It sends a discovery request and, if the request is accepted, 
receives a ServiceRegistrar object in response.  

6.1.2 Entry 

Entries are designed to be used in distributed algorithms for which exact-match 
lookup semantics are useful. An entry is a typed set of objects, each of which may be 
tested for exact match with a template.  

Operations  
A service that uses entries will support methods that let you use entry objects. In 

this document we will use the term "operation" for such methods. There are three types of 
operations:  

§ Store operations--operations that store one or more entries, usually 
for future matches.  

§ Match operations--operations that search for entries that match one 
or more templates.  

§ Fetch operations--operations that return one or more entries.  
It is possible for a single method to provide more than one of the operation types. 

For example, consider a method that returns an entry that matches a given template. Such 
a method can be logically split into two operation types (match and fetch), so any 
statements made in this specification about either operation type would apply to the 
appropriate part of the method's behavior.  

Serializing Entry Objects  
Entry objects are typically not stored directly by an entry-using service (one that 

supports one or more entry operations). The client of the service will typically turn an 
Entry into an implementation-specific representation that includes a serialized form of the 
entry's class and each of the entry's fields. (This transformation is typically not explicit 
but is done by a client-side proxy object for the remote service.) It is these 
implementation-specific forms that are typically stored and retrieved from the service. 
These forms are not directly visible to the client, but their existence has important effects 
on the operational contract. The semantics of this section apply to all operation types, 
whether the above assumptions are true or not for a particular service.  

Each entry has its fields serialized separately. In other words, if two fields of the 
entry refer to the same object (directly or indirectly), the serialized form that is compared 
for each field will have a separate copy of that object. This is true only of different fields 
of an entry; if an object graph of a particular field refers to the same object twice, the 
graph will be serialized and reconstituted with a single copy of that object.  
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A fetch operation returns an entry that has been created by using the ent ry type's 
no-arg constructor, and whose fields have been filled in from such a serialized form. 
Thus, if two fields, directly or indirectly, refer to the same underlying object, the fetched 
entry will have independent copies of the original underlying object.  

This behavior, although not obvious, is both logically correct and practically 
advantageous. Logically, the fields can refer to object graphs, but the entry is not itself a 
graph of objects and so should not be reconstructed as one. An entry (relative to the 
service) is a set of separate fields, not a unit of its own. From a practical standpoint, 
viewing an entry as a single graph of objects requires a matching service to parse and 
understand the serialized form, because the ordering of objects in the written entry will be 
different from that in a template that can match it.  

The serialized form for each field is a java.rmi.MarshalledObject object instance, 
which provides an equals method that conforms to the above matching semantics for a 
field. Marsha lledObject also attaches a codebase to class descriptions in the serialized 
form, so classes written as part of an entry can be downloaded by a client when they are 
retrieved from the service. In a store operation, the class of the entry type itself is also 
written with a MarshalledObject, ensuring that it, too, may be downloaded from a 
codebase.  

Generally speaking, storing a remote reference to a non-persistent remote object 
in an entry is risky. Because entries are stored in serialized form, entries stored in an 
entry-based service will typically not participate in the garbage collection that keeps such 
references valid. However, if the reference is not persistent because the referenced server 
does not export persistent references, that garbage collection is the only way to ensure the 
ongoing validity of a remote reference. If a field contains a reference to a non-persistent 
remote object, either directly or indirectly, it is possible that the reference will no longer 
be valid when it is deserialized. In such a case the client code must decide whether to 
remove the entry from the entry-fetching service, to store the entry back into the service, 
or to leave the service as it is.  

In the Java(TM) 2 Platform, activatable object references fit this need for 
persistent references. If you do not use a persistent type, you will have to handle the 
above problems with remote references. You may choose instead to have your entries 
store information sufficient to look up the current reference rather than putting actual 
references into the entry.  

Templates and Matching  
Match operations use entry objects of a given type, whose fields can either have 

values (references to objects) or wildcards (null references). When considering a template 
T as a potential match against an entry E, fields with values in T must be matched exactly 
by the value in the same field of E. Wildcards in T match any value in the same field of 
E.  

The type of E must be that of T or be a subtype of the type of T, in which case all 
fields added by the subtype are considered to be wildcards. This enables a template to 
match entries of any of its subtypes. If the matching is coupled with a fetch operation, the 
fetched entry must have the type of E.  
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The values of two fields match if MarshalledObject.equa ls returns true for their 
MarshalledObject instances. This will happen if the bytes generated by their serialized 
form match, ignoring differences of serialization stream implementation (such as 
blocking factors for buffering). Class version differences that change the bytes generated 
by serialization will cause objects not to match. Neither entries nor their fields are 
matched using the Object.equals method or any other form of type-specific value 
matching.  

You can store an entry that has a null-valued field, but you cannot match 
explicitly on a null value in that field, because null signals a wildcard field. If you have a 
field in an entry that may be variously null or not, you can set the field to null in your 
entry. If you need to write templates that distinguish between set and unset values for that 
field, you can (for example) add a Boolean field that indicates whether the field is set and 
use a Boolean value for that field in templates.  

6.1.3 Distributed Leasing 

The purpose of the leasing interfaces is to simplify and unify a particular style of 
programming for distributed systems and applications. This style, in which a resource is 
offered by one object in a distributed system and used by a second object in that system, 
is based on a notion of granting a use to the resource for a certain period of time that is 
negotiated by the two objects when access to the resource is first requested and given. 
Such a grant is known as a lease and is meant to be similar to the notion of a lease used in 
everyday life. As in everyday life, the negotiation of a lease entails responsibilities and 
duties for both the grantor of the lease and the holder of the lease. Part of this 
specification is a detailing of these responsibilities and duties, as well as a discussion of 
when it is appropriate to use a lease in offering a distributed service.  

There is no requirement that the leasing notions defined in this document be the 
only time-based mechanism used in software. Leases are a part of the programmer's 
arsenal, and other time-based techniques such as time-to-live, ping intervals, and keep-
alives can be useful in particular situations. Leasing is not meant to replace these other 
techniques, but rather to enhance the set of tools available to the programmer of 
distributed systems.  

Leasing and Distributed Systems  
Distributed systems differ fundamentally from non-distributed systems in that 

there are situations in which different parts of a cooperating group are unable to 
communicate, either because one of the members of the group has crashed or because the 
connection between the members in the group has failed. This partial failure can happen 
at any time and can be intermittent or long- lasting.  

The possibility of partial failure greatly complicates the construction of 
distributed systems in which components of the system that are not co- located provide 
resources or other services to each other. The programming model that is used most often 
in non-distributed computing, in which resources and services are granted until explicitly 
freed or given up, is open to failures caused by the inability to successfully make the 
explicit calls that cancel the use of the resource or system. Failure of this sort of system 
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can result in resources never being freed, in services being delivered long after the 
recipient of the service has forgotten that the service was requested, and in resource 
consumption that can grow without bounds.  

To avoid these problems, we introduce the notion of a lease. Rather than granting 
services or resources until that grant has been explicitly cancelled by the party to which 
the grant was made, a leased resource or service grant is time based. When the time for 
the lease has expired, the service ends or the resource is freed. The time period for the 
lease is determined when the lease is first granted, using a request/response form of 
negotiation between the party wanting the lease and the lease grantor. Leases may be 
renewed or cancelled before they expire by the holder of the lease, but in the case of no 
action (or in the case of a network or participant failure), the lease simply expires. When 
a lease expires, both the holder of the lease and the grantor of the lease know that the 
service or resource has been reclaimed.  

Although the notion of a lease was originally brought into the system as a way of 
dealing with partial failure, the technique is also useful for dealing with another problem 
faced by distributed systems. Distributed systems tend to be long- lived. In addition, since 
distributed systems are often providing resources that are shared by numerous clients in 
an uncoordinated fashion, such systems are much more difficult to shut down for 
maintenance purposes than systems that reside on a single machine.  

As a consequence of this, distributed systems, especially those with persistent 
state, are prone to accumulations of outdated and unwanted information. The 
accumulation of such information, which can include objects stored for future use and 
subsequently forgotten, may be slow, but the trend is always upward. Over the 
(comparatively) long life of a distributed system, such unwanted information can grow 
without upper bound, taking up resources and compromising the performance of the 
overall system.  

A standard way of dealing with these problems is to consider the cleanup of 
unused resources to be a system administration task. When such resources begin to get 
scarce, a human administrator is given the task of finding resources that are no longer 
needed and deleting them. This solution, however, is error prone (since the administrator 
is often required to judge the use of a resource with no actual evidence about whether or 
not the resource is being used) and tends to happen only when resource consumption has 
gotten out of hand.  

When such resources are leased, however, this accumulation of out-of-date 
information does not occur, and resorting to manual cleanup methods is not needed. 
Information or resources that are leased remain in the system only as long as the lease for 
that information or resource is renewed. Thus information that is forgotten (through 
either program error, inadvertence, or system crash) will be deleted after some finite time. 
Note that this is not the same as garbage collection (although it is related in that it has to 
do with freeing up resources), since the information that is leased is not of the sort that 
would generally have any active reference to it. Rather, this is information that is stored 
for (possible) later retrieval but is no longer of any interest to the party that originally 
stored the information.  
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This model of persistence is one that requires renewed proof of interest to 
maintain the persistence. Information is kept (and resources used) only as long as 
someone claims that the information is of interest (a claim that is shown by the act of 
renewing the lease). The interval for which the resource may be consumed without a 
proof of interest can vary, and is subject to negotiation by the party storing the 
information (which has expectations for how long it will be interested in the information) 
and the party in which the information is stored (which has requirements on how long it 
is willing to store something without proof that some party is interested).  

The notion of persistence of information is not one of storing the information on 
stable storage (although it encompasses that notion). Persistent information, in this case, 
includes any information that has a lifetime longer than the lifetime of the process in 
which the request for storage originates.  

Leasing also allows a form of programming in which the entity that reserves the 
information or resource is not the same as the entity that makes use of the information or 
resource. In such a model, a resource can be reserved (leased) by an entity on the 
expectation that some other entity will use the resource over some period of time. Rather 
than having to check back to see if the resource is used (or freed), a leased version of 
such a reservation allows the entity granted the lease to forget about the resource. 
Whether used or not, the resource will be freed when the lease has expired.  

Leasing such information storage introduces a programming paradigm that is an 
extension of the model used by most programmers today. The current model is essentially 
one of infinite leasing, with information being removed from persistent stores only by the 
active deletion of such information. Databases and filesystems are perhaps the best 
known exemplars of such stores--both hold any information placed in them until the 
information is explicitly deleted by some user or program.  

Goals and Requirements  
The requirements of this set of interfaces are:  

§ To provide a simple way of indicating time-based resource 
allocation or reservation  

§ To provide a uniform way of renewing and cancelling leases  
§ To show common patterns of use for interfaces using this set of 

interfaces  

6.1.4 Distributed Events 

The purpose of the distributed event interfaces specified is to allow an object in 
one JavaTM virtual machine (JVM) to register interest in the occurrence of some event 
occurring in an object in some other JVM, perhaps running on a different physical 
machine, and to receive a notification when an event of that kind occurs.  

Distributed Events and Notifications  
Programs based on an object that is reacting to a change of state somewhere 

outside the object are common in a single address space. Such programs are often used 
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for interactive applications in which user actions are modeled as events to which other 
objects in the program react. Delivery of such local events can be assumed to be well 
ordered, very fast, predictable, and reliable. Further, the entity that is interested in the 
event can be assumed to always want to know about the event as soon as the event has 
occurred.  

The same style of programming is useful in distributed systems, where the object 
reacting to an event is in a different JVM, perhaps on a different physical machine, from 
the one on which the event occurred. Just as in the single-JVM case, the logic of such 
programs is often reactive, with actions occurring in response to some change in state that 
has occurred elsewhere.  

A distributed event system has a different set of characteristics and requirements 
than a single-address-space event system. Notifications of events from remote objects 
may arrive in different orders on different clients, or may not arrive at all. The time it 
takes for a notification to arrive may be long (in comparison to the time for computation 
at either the object that generated the notification or the object interested in the 
notification). There may be occasions in which the object wishing the event notification 
does not wish to have that notification as soon as possible, but only on some schedule 
determined by the recipient. There may even be times when the object that registered 
interest in the event is not the object to which a notification of the event should be sent.  

Unlike the single-address-space notion of an event, a distributed event cannot be 
guaranteed to be delivered in a timely fashion. Because of the possibilities of network 
delays or failures, the notification of an event may be delayed indefinitely and even lost 
in the case of a distributed system.  

Indeed, there are times in a distributed system when the object of a notification 
may actively desire that the notification be delayed. In systems that allow object 
activation (such as is allowed by Java Remote Method Invocation (RMI) in the Java 2 
SDK, v1.2.2), an object might wish to be able to find out whether an event occurred but 
not want that notification to cause an activation of the object if it is otherwise quiescent. 
In such cases, the object receiving the event might wish the notification to be delayed 
until the object requests notification delivery, or until the object has been activated for 
some other reason.  

Central to the notion of a distributed notification is the ability to place a third-
party object between the object that generates the notification and the party that 
ultimately wishes to receive the notification. Such third parties, which can be strung 
together in arbitrary ways, allow ways of off- loading notifications from objects, 
implementing various delivery guarantees, storing of notifications until needed or desired 
by a recipient, and the filtering and rerouting of notifications. In a distributed system in 
which full applications are made up of components assembled to produce an overall 
application, the third party may be more than a filter or storage spot for a notification; in 
such systems it is possible that the third party is the final intended destination of the 
notification.  

Goals and Requirements  
The requirements of this set of interfaces are to:  
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§ Specify an interface that can be used to send a notification of the 
occurrence of the event  

§ Specify the information that must be contained in such a 
notification  

In addition, the fact that the interfaces are designed to be used by objects in 
different virtual machines, perhaps separated by a network, imposes other requirements, 
including:  

§ Allowing various degrees of assurance on delivery of a notification  
§ Support for different policies of scheduling notification  
§ Explicitly allowing the interposition of objects that will collect, 

hold, filter, and forward notifications  
 
6.1.5 Transaction 
 

Transactions are a fundamental tool for many kinds of computing. A transaction 
allows a set of operations to be grouped in such a way that they either all succeed or all 
fail; further, the operations in the set appear from outside the transaction to occur 
simultaneously. Transactional behaviors are especially important in distributed 
computing, where they provide a means for enforcing consistency over a set of operations 
on one or more remote participants. If all the participants are members of a transaction, 
one response to a remote failure is to abort the transaction, thereby ensuring that no 
partial results are written.  

Traditional transaction systems often center around transaction processing 
monitors that ensure that the correct implementation of transactional semantics is 
provided by all of the participants in a transaction. Our approach to transactional 
semantics is somewhat different. Within our system we leave it to the individual objects 
that take part in a transaction to implement the transactional semantics in the way that is 
best for that kind of object. What the system primarily provides is the coordination 
mechanism that those objects can use to communicate the information necessary for the 
set of objects to agree on the transaction. The goal of this system is to provide the 
minimal set of protocols and interfaces that allow objects to implement transaction 
semantics rather than the maximal set of interfaces, protocols, and policies that ensure the 
correctness of any possible transaction semantics. So the completion protocol is separate 
from the semantics of particular transactions.  

The two-phase commit protocol defines the communication patterns that allow 
distributed objects and resources to wrap a set of operations in such a way that they 
appear to be a single operation. The protocol requires a manager that will enable 
consistent resolution of the operations by a guarantee that all participants will eventually 
know whether they should commit the operations (roll forward) or abort them (roll 
backward). A participant can be any object that supports the participant contract by 
implementing the appropriate interface. Participants are not limited to databases or other 
persistent storage services.  

Clients and servers will also need to depend on specific transaction semantics. 
The default transaction semantics for participants is also defined in this document.  
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The two-phase commit protocol presented here, while common in many 
traditional transaction systems, has the potential to be used in more than just traditional 
transaction processing applications. Since the semantics of the individual operations and 
the mechanisms that are used to ensure various properties of the meta-operation joined by 
the protocol are left up to the individual objects, variations of the usual properties 
required by transaction processing systems are possible using this protocol, as long as 
those variances can be resolved by this protocol. A group of objects could use the 
protocol, for example, as part of a process allowing synchronization of data that have 
been allowed to drift for efficiency reasons. While this use is not generally considered to 
be a classical use of transactions, the protocol defined here could be used for this 
purpose. Some variations will not be possible under these protocols, requiring 
subinterfaces and subclasses of the ones provided or entirely new interfaces and classes.  

Because of the possibility of application to situations that are beyond the usual 
use of transactions, calling the two-phase commit protocol a transaction mechanism is 
somewhat misleading. However, since the most common use of such a protocol is in a 
transactional setting, and because we do define a particular set of default transaction 
semantics, we will follow the usual naming conventions used in such systems rather than 
attempting to invent a new, parallel vocabulary.  

The classes and interfaces defined by this specification are in the packages 
net.jini.core.transaction and net.jini.core.transaction.server. In this document you will 
usually see these types used without a package prefix; as each type is defined, the 
package it is in is specified.  

Model and Terms  
A transaction is created and overseen by a manager. Each manager implements 

the interface TransactionManager. Each transaction is represented by a long identifier 
that is unique with respect to the transaction's manager.  

Semantics are represented by semantic transaction objects, such as the ones that 
represent the default semantics for services. Even though the manager needs to know 
only how to complete transactions, clients and participants need to share a common view 
of the semantics of the transaction. Therefore clients typically create, pass, and operate on 
semantic objects that contain the transaction identifier instead of using the transaction's 
identifier directly, and transactable services typically accept parameters of a particular 
semantic type, such as the Transaction interface used for the default semantics.  

As shown in the next figure, a client asks the manager to create a transaction, 
typically by using a semantic factory class such as TransactionFactory to create a 
semantic object. The semantic object created is then passed as a parameter when 
performing operations on a service. If the service is to accept this transaction and govern 
its operations thereby, it must join the transaction as a participant. Participants in a 
transaction must implement the TransactionParticipant interface. Particular operations 
associated with a given transaction are said to be performed under that transaction. The 
client that created the transaction might or might not be a participant in the transaction.  
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Figure 9: Transaction Creation and Use 

 
A transaction completes when any entity either commits or aborts the transaction. 

If a transaction commits successfully, then all operations performed under that 
transaction will complete. Aborting a transaction means that all operations performed 
under that transaction will appear never to have happened.  

Committing a transaction requires each participant to vote, where a vote is either 
prepared (ready to commit), not changed (read-only), or aborted (the transaction should 
be aborted). If all participants vote "prepared" or "not changed," the transaction manager 
will tell each "prepared" participant to roll forward, thus committing the changes. 
Participants that voted "not changed" need do nothing more. If the transaction is ever 
aborted, the participants are told to roll back any changes made under the transaction.  

 

6.1.6 Lookup Service 

The JiniTM lookup service is a fundamental part of the federation infrastructure for 
a djinn, the group of devices, resources, and users that are joined by the Jini technology 
infrastructure. The lookup service provides a central registry of services available within 
the djinn. This lookup service is a primary means for programs to find services within the 
djinn, and is the foundation for providing user interfaces through which users and 
administrators can discover and interact with services in the djinn.  

Although the primary purpose of this specification is to define the interface to the 
djinn's central service registry, the interfaces defined here can readily be used in other 
service registries.  

The Lookup Service Model  
The lookup service maintains a flat collection of service items. Each service item 

represents an instance of a service available within the djinn. The item contains the RMI 
stub (if the service is implemented as a remote object) or other object (if the service 
makes use of a local proxy) that programs use to access the service, and an extensible 
collection of attributes that describe the service or provide secondary interfaces to the 
service.  
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When a new service is created (for example, when a new device is added to the 
djinn), the service registers itself with the djinn's lookup service, providing an initial 
collection of attributes. For example, a printer might include attributes indicating speed 
(in pages per minute), resolution (in dots per inch), and whether duplex printing is 
supported. Among the attributes might be an ind icator that the service is new and needs 
to be configured.  

An administrator uses the event mechanism of the lookup service to receive 
notifications as new services are registered. To configure the service, the administrator 
might look for an attribute that provides an applet for this purpose. The administrator 
might also use an applet to add new attributes, such as the physical location of the service 
and a common name for it; the service would receive these attribute change requests from 
the applet and respond by making the changes at the lookup service.  

Programs (including other services) that need a particular type of service can use 
the lookup service to find an instance. A match can be made based on the specific data 
types for the JavaTM programming language implemented by the service as well as the 
specific attributes attached to the service. For example, a program that needs to make use 
of transactions might look for a service that supports the type 
net.jini.core.transaction.server.TransactionManager and might further qualify the match 
by desired location.  

Although the collection of service items is flat, a wide variety of hierarchical 
views can be imposed on the collection by aggregating items according to service types 
and attributes. The lookup service provides a set of methods to enable incremental 
exploration of the collection, and a variety of user interfaces can be built by using these 
methods, allowing users and administrators to browse. Once an appropriate service is 
found, the user might interact with the service by loading a user interface applet, attached 
as another attribute on the item.  

If a service encounters some problem that needs administrative attention, such as 
a printer running out of toner, the service can add an attribute that indicates what the 
problem is. Administrators again use the event mechanism to receive notification of such 
problems.  

 

6.2 Jabber vs. Proxy Communication 

 For the implementation of the message communication we took into consideration 
2 approaches: Jabber framework and Proxy communication. 

6.2.1 Jabber 
 
 Jabber is a set of streaming XML protocols and technologies that enable any two 
entities on the Internet to exchange messages, presence, and other structured information 
in close to real time. The first Jabber application is an instant messaging (IM) network 
that offers functionality similar to legacy IM services such as AIM, ICQ, MSN, and 
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Yahoo. However, Jabber is more than just IM, and Jabber technologies offer several key 
advantages: 

• Open -- the Jabber protocols are free, open, public, and easily understandable; in 
addition, multiple implementations exist for clients, servers, components, and 
code libraries. 

• Standard -- the Internet Engineering Task Force (IETF) has formalized the core 
XML streaming protocols as an approved instant messaging and presence 
technology under the name of XMPP, and the XMPP specifications are moving 
forward rapidly within the IETF's standards process. 

• Proven -- the first Jabber technologies were developed by Jeremie Miller in 1998 
and are now quite stable; hundreds of developers are working on Jabber 
technologies, there are tens of thousands of Jabber servers running on the Internet 
today, and millions of people use Jabber for IM. 

• Decentralized -- the architecture of the Jabber network is similar to email; as a 
result, anyone can run their own Jabber server, enabling individuals and 
organizations to take control of their IM experience. 

• Secure -- any Jabber server may be isolated from the public Jabber network (e.g., 
on a company intranet), and robust security using SASL and TLS has been built 
into the core XMPP specifications. 

• Extensible -- using the power of XML namespaces, anyone can build custom 
functionality on top of the core protocols; to maintain interoperability, common 
extens ions are managed by the Jabber Software Foundation. 

• Flexible -- Jabber applications beyond IM include network management, content 
syndication, collaboration tools, file sharing, gaming, and remote systems 
monitoring. 

• Diverse -- a wide range of companies and open-source projects use the Jabber 
protocols to build and deploy real- time applications and services; you will never 
get "locked in" when you use Jabber technologies. 

Jabber uses a client-server communication. We prefer OpenIm, on open source 
implementation for the server because of its key features, useful for our algorithms: 
stability, modularity - component oriented using Apache Avalon Merlin manager 
(integration with LDAP or DB can be easily done via users-manager and storage API), 
most of classical IM functions are supported: message, presence, roster, subscription, 
vCard, offline storage, oob (lan file transfer), browse and search, server to server 
communications, secure connections via SSL, message logger and recorder (for statistic 
usage or supervision). 

6.2.2 Proxy Service 

 This service intermediates communication between MonALISA Service and its 
clients. It registers as a Jini client being, in this way, found by clients. It also finds farms 
in given lookup services and connects with them. Clients send request messages to the 
known proxy, which forwards them to the specified farm. 

This service was introduced because of the following reasons: 
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• it limits the number of TCP connections to farms. Without this proxy, every 
client starts its TCP connection with every found farm. With a big number 
of clients, a farm could be overloaded. But having a number of proxy 
services, the number of farm clients is much greater 

• the number of messages between farms and clients decreases. For example, 
without this proxy, every client received from every farm the same filter 
messages, but on its TCP connection. Using the proxy service, this kind of 
messages are transmitted only between the farms and the proxy service and 
then spread by it to all known clients interested in those filters. 

• the MonALISA service can now run behind a firewall without any 
problem. If the proxy cannot connect to the found farm, then the farm 
initiates the TCP connection with the proxy announcing its presence. 

These proxy services run on different machines and register with known lookup 
services. The client finds these services and, getting the proxys attributes, makes a 
decision on which to choose. After choosing one, the communication with farms is 
intermediated by this one. 

If the connection with the chosen proxy has died, the client tries to find another 
one and initiates a new dialog with farms through the new one. 

 

6.2.3 Solution 

Although Jabber offers many enhancements and it already has the infrastructure 
for message communication we chose to use the proxies for the communication in order 
to use the already existing TCP connections between the proxy and the farms. Each 
Jabber server would connect through TCP to each farm and thus the number of 
connections to the farms for a wide large netowork would increase dramatically. 

We also studied the possibility of installing a Jabber Server on each Proxy but this 
would end up in one connection to the proxy, so the clients would be hidden and not 
directly accesible to the jabber server as the protocols ensures. In this case we should 
have changed the source code of OpenIm in order to make the clients transparent to the 
Jabber Server using just one connection to the Proxy; this would imply a greater number 
of messages in the network, suplimentary traffic over the network, thus not a reliable 
solution. 

Instead we use the proxy for routing the message. To achieve this we had to 
modify the classes assuring the communication protocol between farms and proxies in 
MonALISA and introduce our own type of message: monMessageMulticast, which is an 
implementation of the monMessage interface.  
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6.3 Implementation Aspects 

The implementation of the presented algorithms was focused on two main 
directions: communication architecture and the development of the K-SPH algorithm.  

 

6.3.1 Message Communication Arhitecture  

 During this stage we were concerned with the integration of the message 
communication of the algorithm in the existing MonALISA framework, namely to make 
possible the communication between farms, as in the existing stage the communication is 
possible only between farms and proxy. 

 To achieve this we developed specific types of messages (monMessageMulticast) 
derived from the existent interfaces and enriched the proxy implementation with new 
message listeners in order to route corectly the new types of messages. 
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Figure 10:  Components of lia.Monitor.monitor package which needed updates. 

 

 We also added a pool of messages in the DataCache, which are then routed using 
the appropiate listeners.  

 

6.3.2 Multicast Algorithm Implementation 

 The development of the K-SPH algorithm in Java follows the steps presented in 
section 4: discovery and connection. First we need a synchronizing step in order to wait 
for all the farms to be online and start the agorithm. 

 We use two major listeners: 

- for the messages inside a fragment 

- for the messages outside a fragemnt (interfragment communication) 

and take the appropiate decisions considering the type of message arrived as mentioned 
in the algorithm description. 

 The algorithm ends when no best farm to connect to is found, thus we have only 
one fragment which is the multicast tree. The farms are anounced by an appropiate 
message about the algorithm’s termination.  
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Figure 11: Comparative dependecies representations of the multicast and D MST 
implementations.   

 

 

 

7. Conclusions  

 

 We compare our algorithms by execution against the baseline  algorithm, the 
pruned minimum spanning­tree heuristic, which is the basis of many algorithms for 
finding multicast trees. We analyze the competitiveness (the ratio of the sum of the 
heuristic tree's edge weights to that of the best solution found) of the heuristic  algorithms 
upon the pruned MST. 

To evaluate the distributed heuristics presented in the Section 4.1, we 
implemented the algorithms and performed extensive executions on different generated 
test networks used by MonALISA. We choose the distributed MST algorithm as our 
baseline algorithm to compare the results. This algorithm was used to produce a 
minimum spanning tree of the network graph, which was then pruned to obtain a Steiner 
tree. We chose this MST algorithm as our baseline algorithm because the majority of 
previous distributed algorithms reviewed find multicast trees are based on finding 
minimal spanning trees. This algorithm differs from the heuristic algorithm, distributed 
K­SPH , in the fact that all the network nodes must participate in the execution of the 
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algorithm in the former, while only the multicast members and nodes in the vicinity of 
the multicast tree being set up execute the algorithm in the latter.  

This section summarizes the execution results and compares the algorithms in 
terms of their convergence time, competitiveness, and the number of messages 
exchanged.  

 

7.1 Evaluation Methodology  

Each algorithm was run on a total of test networks. The test networks have 10% 
or 30% of its nodes in the multicast group because multicast applications running on such 
a WAN are likely to involve only a minority of nodes in the network.  

We performed different executions on each generated graph by varying the 
multicast group size in diffenret ways.The nodes in a multicast group were chosen 
randomly in each case. The random numbers were chosen from a uniform distribution.  

 

7.2 Metrics Tested  

The metrics we use for comparison are the competitiveness, convergence time, 
and messages passed. Competitiveness is the ratio of heuristic tree cost Ct to that of the 
best solution Cbest found by any heuristic. To determine the best solution, we considered 
solutions produced by the distributed heuristics described in this diploma paper as well as 
serial heuristics described in other articles. We use the best heuristic solution found for 
each test network rather than an optimal solution because explicit algorithms to find 
optimal solutions are prohibitively expensive on large networks.  

The convergence time was found by measuring the elapsed time in the simulated 
network from the start of simulation to the time at which the last message reaches its 
destination. Since message­passing delays are likely to dominate over processing delays 
on the convergence time of the algorithm in a wide­area network, we considered only the 
former in computing the simulation time.  

We used the distance between two nodes as the delay to pass a message between 
them. Messages passed is the total number of messages passed between nodes before 
convergence. 

  

7.3 Simulation Results  

Having described the algorithms and the simulation environment, we now turn to 
the results of our simulations.  

The distributed versions of K­SPH provide inferior solutions compared to their 
centralized versions because of the lack of global topology information in each node in 
the former. However, the degradation in the competitiveness was small in our test 
networks. In fact, the competitiveness produced by distributed K­SPH was often superior 
to that of centralized SPH.  
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When comparing the competitiveness, heuristics K­SPH consistently 
outperformed the pruned MST heuristic, in both centralized and distributed cases. This 
result is consistent with the known theoretical upper bounds on the heuristics. It has been 
shown that cost of a solution produced by K­SPH is within twice the cost of an optimal 
solution. In contrast, the ratio between a solution produced by pruning a minimum 
spanning tree and an optimal solution can be as large as the number of non­multicast 
nodes. In our case, the cost of pruned MST solutions was rarely worse than twice that of 
the best solution found, but was often significantly worse than that produced by shortest 
path heuristics.  

We found that 90% of the solutions produced by distributed K­SPH were within 
4% of the best in terms of their cost. In comparison, when the best 90% of the solutions 
produced by the pruned MST algorithm were considered, some of the solutions had costs 
as high as 50% more than that of the optimal algorithm. Thus, if competitiveness is the 
most important criterion in the choice of the algorithm, distributed K­SPH is the heuristic 
of choice.  

Heuristic K­SPH also enjoys the advantage that it doesn’t require the participation 
of all the nodes in the network. Only the nodes in the multicast tree and within its 
neighborhood need to participate in the execution of the algorithm. The pruned minimum 
spanning tree algorithm, on the other hand, requires participation from every node of the 
network, a cond ition difficult to satisfy in practice in a large wide­area network. 
However, limiting the execution of the algorithm to a subset of the network nodes results 
in a substantial increase in the number of messages generated in our algorithms, with a 
corresponding increase in convergence time. This convergence time may be reduced by 
streamlining our algorithms. 

Viewed from the perspective of convergence­time, however, the pruned MST 
heuristic enjoys an advantage over shortest path heuristics K­SPH. The convergence time 
for the solutions produced by pruned MST algorithm fell well within a much narrower 
range as compared to the results for distributed K­SPH.  

Distributed K­SPH allows multiple fragments of the tree to combine in parallel. 
This allows distributed K­SPH to provide lower convergence times without increasing 
the number of messages substantially. Even though the convergence times for distributed 
K­SPH are higher than those of the pruned MST algorithm by as much as 10 times, we 
believe that the former can be brought down by careful optimization of distributed 
K­SPH.  

  

7.4 Concluding Remarks  

In this paper we introduced the distributed heuristics based on shortest path 
Steiner hueristics, and evaluated their performance relative to to a baseline pruned 
minimum spanning­tree heuristic. The primary advantage of our distributed algorithms 
over previous algorithms is that they require participation from only the nodes in the 
multicast tree and within their neighborhood.  
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The heuristics developed are an improvement over existing distributed Steiner 
heuristics based on the minimum spanning tree for two reasons: they produce solutions of 
superior quality in most cases and requires the participation of only a subset of network 
nodes. Our results show that the competitiveness of the solutions produced by our 
algorithms were, on the average, at least 25 percent better in comparison to those 
produced by the pruned spanning­tree approach. In addition, the competitiveness found 
by our algorithms in almost all cases was within 10% of the best solution found by any of 
the Steiner heuristics considered, including both centralized or distributed algorithms. 

 

 

8. Future Work 

 We are working on optimizig the current implementation of the algorithm, 
especially trying to accelerate the convergence time and reduce the number of message 
exchanged. We also continue to add a monitoring tool for the multicast and a specifing 
logging interface in order to make the results more visible and reusable. 

 The goal of the project is to integrate the multicast and MST agents in a more 
generic agent communication platform developed for the future versions of MonALISA. 

 Also, we are working on a distributed version of the presented genetic algorithm. 

  

I would like to thank Mr. Valentin Cristea and Mr. Iosif Legrand who coordinated 
scientificaly this work and also Mihaela Toarta, Ramiro Voicu, and Catalin Carstoiu for 
their continous support along the development of this diploma project.     
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Appendix 

 

Appendix 1: monAgentMessage.java 

 

/* 

 * Created on Jun 11, 2004 

 * 

 * To change the template for this generated file go to 

 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments 

 */ 

package lia.Monitor.monitor; 

 

import net.jini.core.lookup.ServiceID; 

/** 

 * @author ceainegru 

 * 

 * To change the template for this generated type comment go to 

 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments 

 */ 

public abstract class monAgentMessage implements java.io.Serializable{ 

 public ServiceID fromFarmServiceID=null; 

 public ServiceID toFarmServiceID=null; 

 public abstract ServiceID getDestinationServiceID(); 

 public abstract ServiceID getSourceServiceID(); 

 public monAgentMessage(){ 

 } 

  

} 
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Appendix 2:  monMessageMulticast.java 

 

/* 

 * Created on Jun 16, 2004 

 * 

 * To change the template for this generated file go to 

 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments 

 */ 

package lia.Monitor.monitor; 

 

import net.jini.core.lookup.ServiceID; 

import lia.Monitor.monitor.monAgentMessage; 

 

 

/** 

 * @author ceainegru 

 * 

 * To change the template for this generated type comment go to 

 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments 

 */ 

public class monMessageMulticast extends monAgentMessage implements  
java.io.Serializable{ 

  public ServiceID fromFarmServiceID; 

  public ServiceID toFarmServiceID; 

  public ServiceID fragmentLeader; 

  public ServiceID bestFarmLeader; 

  public Double bestFarmValue; 

  

   

  //constructori 

  public monMessageMulticast(){ 

   

  } 

   

  public monMessageMulticast(ServiceID fromFarmServiceID, ServiceID 
toFarmServiceID,ServiceID bestFarmLeader,Double bestFarmValue){ 

    this.fromFarmServiceID = fromFarmServiceID; 
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    this.toFarmServiceID = toFarmServiceID; 

    this.bestFarmLeader=bestFarmLeader; 

    this.bestFarmValue=bestFarmValue; 

  } 

   

  public monMessageMulticast(ServiceID fromFarmServiceID, ServiceID 
toFarmServiceID){ 

   this.fromFarmServiceID = fromFarmServiceID; 

   this.toFarmServiceID = toFarmServiceID; 

  } 

 

  public monMessageMulticast(ServiceID fromFarmServiceID,ServiceID 
toFarmServiceID,ServiceID fragmentLeader){ 

   this.fromFarmServiceID=fromFarmServiceID; 

   this.toFarmServiceID=toFarmServiceID; 

   this.fragmentLeader=fragmentLeader; 

  } 

 

 

  public ServiceID getDestinationServiceID(){ 

   return toFarmServiceID; 

  } 

 

  public ServiceID getSourceServiceID(){ 

   return fromFarmServiceID; 

  }  

  

  public ServiceID getFragmentLeader(){ 

   return fragmentLeader; 

  } 

   

  public ServiceID getBestFarmLeader(){ 

   return bestFarmLeader; 

  } 

   

  public double getBestFarmValue(){ 

   return bestFarmValue.doubleValue(); 

  }} 
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Appendix 3:  FarmAgentMulticast.java  

 

/* 

 * Created on Jun 17, 2004 

 * 

 * To change the template for this generated file go to 

 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments 

 */ 

package lia.Monitor.FarmAgents; 

 

 

import java.util.Hashtable; 

import java.util.Vector; 

import net.jini.core.lookup.ServiceID; 

import net.jini.discovery.LookupDiscoveryManager; 

import java.util.logging.Logger; 

import java.util.logging.Level; 

import java.util.Comparator; 

import java.util.Collections; 

 

import lia.Monitor.DataCache.ProxyWorker; 

import lia.Monitor.monitor.FarmMessagesListener; 

import lia.Monitor.JiniSerFarmMon.RegFarmMonitor; 

import lia.Monitor.JiniSerFarmMon.MLLUSHelper; 

import lia.Monitor.monitor.monPredicate; 

import lia.Monitor.DataCache.Cache; 

import lia.Monitor.monitor.ExtendedResult; 

import lia.Monitor.monitor.monMessage; 

import lia.Monitor.monitor.monMessageMulticast; 

 

 

 

/** 

 * @author ceainegru 

 * 

 * To change the template for this generated type comment go to 

 * Window&gt;Preferences&gt;Java&gt;Code Generation&gt;Code and Comments 
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 */ 

public class FarmAgentMulticast { 

 /** Logger Name */ 

 private static final transient String COMPONENT ="lia.Monitor.FarmAgents"; 

 /** The Logger */ 

 private static final transient Logger logger = Logger.getLogger(COMPONENT); 

   

  

 private  LookupDiscoveryManager  ldm ; 

  

 //obiect folosit pentru a rezolva IP sau numele host-ul unei ferme cu ServiceID-ul 
corespunzator aceesteia  

 private MLLUSHelper resolver; 

  

 //obiect ce contine pool-ul de mesaje care ajung pe proxy si care realizeaza 
interogarile si 

 //actualizarile bazei de date folosind predicatele cu care se inscriu clientii  

 protected Cache dataStore; 

  

 protected RegFarmMonitor host ; 

  

 //ID-ul fermei curente  

 protected ServiceID hostServiceID ; 

 

 //vectorul fermelor cu care suntem conectati 

 protected  Vector farmsVector;  

  

 //leaderul fragmentului 

 protected ServiceID fragmentLeader; 

 //parintele nodului curent in fragment  

 protected ServiceID parent; 

  

 //worker folosit pentru comunicatia cu proxy  

 protected ProxyWorker proxyWorker; 

  

 //starea algoritmului 

 protected int state; 

 private final int NOT_STARTED=-1; 

 private final int CONNECTING=1; 

 private final int DISCOVERY=2; 
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 private final int FINISHED=3; 

  

 //vector de sincronizare 

 protected Vector sync; 

  

 //legaturile cu fermele care fac parte din arborele de multicast 

 protected Vector MulticastFarmList; 

 protected Hashtable farms; 

 //id-ul fermei din alt fragment cu care incercam unirea 

 protected ExtendedResult bestFarmRes; 

 protected ServiceID bestFarm; 

 //delay-ul gasit pentru aceasta ferma 

 protected double bestFarmValue; 

  

 //contor al mesajelor primite de la copii 

 private int count; 

  

 //listener pentru mesajele de sincronizare 

 protected SyncFarmMessagesListener syncListener; 

 //listener pentru mesajele exterioare fragmentului  

 protected OutFragmentFarmMessagesListener outListener; 

 //listener pentru mesajele interioare fragmentului 

 protected InFragmentFarmMessagesListener inListener; 

  

 //constructor 

 public FarmAgentMulticast(){ 

  farmsVector = new Vector();  

  MulticastFarmList = new Vector(); 

  sync=new Vector(); 

  state=NOT_STARTED; 

  farms=new Hashtable(); 

 } 

  

 //functie care realizeaza procesarie initiale 

 public void init(LookupDiscoveryManager ldm, RegFarmMonitor host, ServiceID 
hostServiceID){ 

   this.ldm=ldm; 

   this.host=host; 

   this.hostServiceID=hostServiceID; 

   this.dataStore=(Cache) host.dataStore; 
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   outListener=new OutFragmentFarmMessagesListener();   

   inListener=new InFragmentFarmMessagesListener(); 

   syncListener= new SyncFarmMessagesListener(); 

    

   //demareaza thread-ul pentru sincronizare 

   syncListener.start(); 

    

   dataStore.setInFragmentListener(inListener); 

   dataStore.setOutFragmentListener(outListener); 

   dataStore.setSyncListener(syncListener); 

  } 

  

 //functie ce realizeaza trimiterea unui mesaj monMessageMulticast de tipul 

 //indicat de tag folosind  

 //functiile de comunicatie definite de proxyWorker, mesajul fiind impachetat 

 //intr-un mesaj generic de tip monMessage (care contine ca si obiect in campul 

 //tag.ident mesajul monMessageMulticast propriu-zis) 

 private void sendMessage(monMessageMulticast Mmsg,String tag){ 

  logger.log(Level.INFO,"send message "+tag+" to 
"+Mmsg.getDestinationServiceID());  

  monMessage msg=new monMessage(tag,Mmsg,null); 

  proxyWorker.getProxyTCPClientWorker().sendMessage(msg); 

    

 } 

  

  

 //thread ce asigura sincronizarea initiala a fermelor. Aceasta este necesara 
deoarece fermele apar 

 //la momente diferite in retea iar algoritmul trebuie sa isi inceapa executia in 
momentul cand toate 

 //cunosc existenta celorlalte 

 private class SyncFarmMessagesListener extends Thread implements 
FarmMessagesListener{ 

   

   private boolean stop=false; 

    

   public synchronized void notify(monMessage msg){ 

    monMessageMulticast Mmsg=(monMessageMulticast)msg.ident; 

    if(msg.tag.compareTo("SYNC")!=0) 

      logger.log(Level.INFO,"received "+msg.tag+" 
from "+Mmsg.getSourceServiceID()+" fragmentLeader="+fragmentLeader); 
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    //la primirea unui mesaj de tip SYNC... 

    if(msg.tag.equals("SYNC")){ 

     if(state==NOT_STARTED){ 

       //daca ferma e in starea initiala 
mesajul e adaugat in pool-ul de mesaje de tip sync 

       dataStore.addSyncFarmMessage(msg); 

        
 //logger.log(Level.INFO,"Synced delayed "+MSTmsg.getSourceServiceID()); 

     } 

     else 

      if(!isSynced(Mmsg.getSourceServiceID())){ 

         

        //altfel se trimite reply 
pentru a confirma sincronizarea cu ferma ce a trimis initial sync 

        //si aceasta este adaugata in 
vectorul de ferme cu care s-a sincronizate deja 

       
 sendSync(Mmsg.getSourceServiceID()); 

       
 sync.add(Mmsg.getSourceServiceID()); 

        //
 logger.log(Level.INFO,"Synced with "+MSTmsg.getSourceServiceID()); 

      } 

    } 

   } 

   

     //threadul ruleaza pana se realizeaza sincronizarea cu toate fermele -> 
stop 

   public void run(){ 

      logger.log(Level.INFO,"Synchronizing process 
started!"); 

      while(!stop){     

       for(int 
i=0;i<dataStore.getSyncFarmMessagesNumber();i++){ 

       
 notify(dataStore.getSyncFarmMessage()); 

       } 

       try{ 

        Thread.sleep(1000); 

       } 

       catch(Exception e){ 

        e.printStackTrace(); 

       } 

      } 
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   } 

   

   public void finishIt(){ 

     stop=true; 

     logger.log(Level.INFO,"Synchronizing process 
succedeed!"); 

   } 

 } 

  

 //functie ce rezolva ID-ul unui ferme dintr-un Extend Result folosind MLUSHelper 

 private ServiceID getFarmServiceID(ExtendedResult res){ 

   return resolver.getServiceIDfromFarm(res.NodeName); 

  } 

   

 //comparator pentru ID-urile fermelor, util in algoritm in momentul unirii a doua 
fragmente: 

 //decizia de unire si noul lider al fragmentului format sunt liderul cu indexul 
mai mic  

 private int compareServiceIDs(ServiceID sid1,ServiceID sid2){ 

  return sid1.toString().compareTo(sid2.toString()); 

 }  

  

 //functie ce testeaza daca ferma este sincronizata cu ferma pasata ca argument 
(daca se gaseste 

 //in vectorul sync)  

 protected boolean isSynced(ServiceID sid){ 

  for(int i=0;i<sync.size();i++) 

   if(compareServiceIDs(sid,(ServiceID)sync.elementAt(i))==0) 

     return true; 

  return false; 

 } 

  

 //functie ce interogheaza baza de date pentru rezultate despre starea conexiunilor 

 //folosind ABPing in predicatul monPredicate;  

 protected void getData(){    

   String[] params=new String[1]; 

   params[0]=new String("RTime"); 

   //se citesc datele din ultimul minut, care se stocheaza in vectorul 
results 

   Vector results=dataStore.select(new monPredicate("*","ABPing","*",-
60000,-1,params,null)); 

  // logger.log(Level.INFO,"ABPing no. of results="+results.size()); 
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   for(int i=results.size()-1;i>=0;i--){ 

    //numele fermei e rezolvat din rezultatul interogarii 
(ExtendedResult) in ServiceID 

    //folosind MLUSHelper si rezultatul adugat in vectorul de 
ferme 

    ExtendedResult res=(ExtendedResult)results.elementAt(i); 

    if(resolver.getServiceIDfromFarm(res.NodeName)!=null) 

     if(!farms.containsKey(res.NodeName)){ 

      farms.put(res.NodeName,res); 

      farmsVector.add(res); 

     } 

   } 

    

   //odata informat asupra valorilor legaturilor adiacente se trece in 
etapa de DISCOVERY 

   state=DISCOVERY; 

   //si incepe sincronizarea cu celelalte ferme 

   sync(); 

   

   for(int i=0;i<farmsVector.size();i++) 

    //rezultatele primite de la ABPing sunt sortate pentru a se 
putea alege mereu bestPath    

    Collections.sort(farmsVector,new Comparator(){ 

     public int compare(Object o1,Object o2){ 

      ExtendedResult res1=(ExtendedResult)o1; 

      ExtendedResult res2=(ExtendedResult)o2; 

      if(res1.param[0]==res2.param[0]) 

       return 
res1.NodeName.compareTo(res2.NodeName); 

      if(res1.param[0]>res2.param[0]) 

       return 1; 

      return -1; 

     } 

   }); 

  // logger.log(Level.INFO,"After sorting the data no. of 
results="+unusedFarmList.size()); 

  // for(int i=0;i<unusedFarmList.size();i++) 

  // 
 logger.log(Level.INFO,((ExtendedResult)unusedFarmList.elementAt(i)).NodeName+"="+(
(ExtendedResult)unusedFarmList.elementAt(i)).param[0]); 

  } 

  

 //in update() liderul isi instiinteaza copii la unirea cu alt fragment despre 
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schimbarea liderului 

 //si deci a indexului fragemntului  

 private void update(){ 

  state=DISCOVERY; 

  count=0; 

   

  bestFarm=null;//cea mai buna ferma gasita 

  bestFarmValue=Double.MAX_VALUE;//valoarea delay-ului pentru aceasta 

   

  logger.log(Level.INFO,"Entering Discovering Step..."+MulticastFarmList); 

  for(int i=0;i<MulticastFarmList.size();i++){ 

   logger.log(Level.INFO,"UPDATE "+MulticastFarmList.elementAt(i)); 

   logger.log(Level.INFO,"PARENT "+parent); 

   if(parent!=null){ 

   
 if(compareServiceIDs(parent,(ServiceID)MulticastFarmList.elementAt(i))!=0){ 

     monMessageMulticast up=new 
monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i),fragmentLeade
r); 

     sendMessage(up,"UPDATE"); 

     count++; 

    } 

   } 

   else{ 

    monMessageMulticast up=new 
monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i),fragmentLeade
r); 

    sendMessage(up,"UPDATE"); 

    count++; 

   } 

  } 

  discovery(); 

 } 

  

 //in etapa de discovery fiecare nod cauta cea mai buna ferma din fragmentele 
adiacente cu care sa se uneasca 

 //folosind rezultatele furnizate de ABPing 

 private void discovery(){ 

    

   if(farmsVector.size()>0){ 

    bestFarmRes=(ExtendedResult)farmsVector.remove(0); 
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 bestFarm=resolver.getServiceIDfromFarm(bestFarmRes.NodeName); 

    bestFarmValue=bestFarmRes.param[0]; 

    logger.log(Level.INFO,"Best farm="+bestFarm); 

   } 

    

   best(); 

 } 

  

 //se porneste agentul dupa ce se instantiaza rezolverul si proxyWorkerul 

 public void doWork(){ 

  resolver=MLLUSHelper.getInstance(); 

  proxyWorker=dataStore.getProxyWorker(); 

  wakeup(); 

 } 

  

 //se trimite parintelui cea mai buna ferma gasita 

 private void best(){ 

  logger.log(Level.INFO,"Count="+count+" parent="+parent); 

  if(count==0 && parent != null){ 

   monMessageMulticast mcast=new 
monMessageMulticast(hostServiceID,parent,bestFarm,new Double(bestFarmValue)); 

   sendMessage(mcast,"BEST");  

  } 

 } 

  

 //la pronirea agentului se citesc datele si se intra direct in etapa de conectare 
(se considera ca initial, prin citirea datelor 

 //din baza de date s-a facut etapa de discovery) 

 private void wakeup(){ 

   fragmentLeader=hostServiceID; 

    

   getData(); 

      

   logger.log(Level.INFO,"Starting MULTICAST..."); 

    

  
 bestFarm=getFarmServiceID((ExtendedResult)farmsVector.elementAt(0)); 

   bestFarmValue=((ExtendedResult)farmsVector.elementAt(0)).param[0]; 

   farmsVector.remove(0); 

    

   state=CONNECTING; 
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   //algoritmul debuteaza cu trimiterea unui mesaj de tip connnect 
catre un fragment preferat 

   monMessageMulticast Mmsg=new 
monMessageMulticast(hostServiceID,bestFarm,fragmentLeader); 

   sendMessage(Mmsg,"CONNECT"); 

   logger.log(Level.INFO,"Entering Connection Step..."); 

    

  } 

  

   //sincronizarea dureaza pana cand ferma ia cunostinta de toate celelalte ferme = 
schimba mesaje 

   //SYNC cu toate, deci pana cand vectorul sync ajunge la dimensiunea vectorului 
de ferme 

  private void sync(){ 

   while(sync.size()!=farmsVector.size()){ 

    for (int i=0;i<farmsVector.size();i++){ 

      ServiceID 
crtFarmSID=getFarmServiceID((ExtendedResult)farmsVector.elementAt(i)); 

      if(!isSynced(crtFarmSID)) 

       sendSync(crtFarmSID); 

      try{ 

         Thread.sleep(500); 

      } 

      catch(Exception e){ 

         e.printStackTrace(); 

      } 

    } 

    try{ 

     Thread.sleep(1000); 

    } 

    catch(Exception e){ 

     e.printStackTrace(); 

    } 

   } 

   syncListener.finishIt(); 

  } 

  

 protected void sendSync(ServiceID sid){ 

  monMessageMulticast syncMmsg=new monMessageMulticast(hostServiceID,sid); 

  sendMessage(syncMmsg,"SYNC"); 
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 } 

  

 //listenerul pentru mesajele externe fragmentului  

 private class OutFragmentFarmMessagesListener  implements FarmMessagesListener{ 

   

  public synchronized void notify(monMessage msg){ 

   monMessageMulticast mcast=(monMessageMulticast)msg.ident; 

   logger.log(Level.INFO,"received message"+msg.tag+" from 
"+mcast.getSourceServiceID()+" fragmentLeader="+fragmentLeader); 

    

   if(msg.tag.compareTo("CONNECT")==0){ 

    //la primirea unui connect, conform algoritmului,daca nodul 
nu este leader trimite REJECT (doar liderul  

    //ia decizii de unire)  

    if(compareServiceIDs(hostServiceID,fragmentLeader)!=0){ 

     monMessageMulticast reject=new 
monMessageMulticast(hostServiceID,mcast.getSourceServiceID()); 

     sendMessage(reject,"REJECT"); 

    } 

    else{ 

     //daca este lider dar nu este in starea  de 
conectare raspunde cu BUSY 

     if(state==DISCOVERY){ 

      monMessageMulticast busy=new 
monMessageMulticast(hostServiceID,mcast.getSourceServiceID()); 

      sendMessage(busy,"BUSY"); 

     } 

     //daca cel ce a cerut connect nu este cel preferat 
de lider (in urma etapei de discovery) ii timite 

     //de asemenea reject 

     else{ 

     
 if(compareServiceIDs(bestFarm,mcast.getSourceServiceID())!=0){ 

       monMessageMulticast reject=new 
monMessageMulticast(hostServiceID,mcast.getSourceServiceID()); 

       sendMessage(reject,"REJECT"); 

      } 

      //altfel inseamna ca cei doi lideri se 
prefera reciproc deci se vor uni (ii confirma celuilalt printr-un accept) 

      //si isi instiineaza copii despre aceasta 
(schimbarea frament liderului si implicit a indexului fragmentului) 

      else{ 

       monMessageMulticast accept=new 
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monMessageMulticast(hostServiceID,mcast.getSourceServiceID()); 

       sendMessage(accept,"ACCEPT"); 

       MulticastFarmList.add(bestFarm); 

       logger.log(Level.INFO,"Add in 
MulticastTree "+bestFarm); 

      
 if(compareServiceIDs(hostServiceID,mcast.getSourceServiceID())<0) 

        update(); 

      } 

     } 

    } 

   } 

   else 

   if(msg.tag.compareTo("REJECT")==0){ 

    //la primirea unui reject nodul readauga ferma preferata in 
lista de ferme pentru a o include in etapa 

    //urmatore de discovery in care intra din nou 

    farmsVector.add(bestFarmRes); 

    discovery(); 

   } 

   else 

   if(msg.tag.compareTo("ACCEPT")==0){ 

    //la primirea unui accept compara id-urile propriu si al 
frgamentului preferat pentru a vedea care 

    //devine lider (cel cu id-ul mai mic) 

   
 if(compareServiceIDs(hostServiceID,mcast.getSourceServiceID())>0){ 

     parent=mcast.getSourceServiceID(); 

    } 

   } 

   else 

   //la primirea mesajului de busy continua etapa de conectare 
trimitand un mesaj de connect urmatoare ferme 

   //preferae din vectorul sortat de preferinte 

   if(msg.tag.compareTo("BUSY")==0){ 

    monMessageMulticast connect=new 
monMessageMulticast(hostServiceID,mcast.getSourceServiceID()); 

    sendMessage(connect,"CONNECT"); 

   } 

    

  } 
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 } 

  

 //listener pentru mesajele din interiorul fragmentului 

 private class InFragmentFarmMessagesListener  implements FarmMessagesListener{ 

   

  public synchronized void notify(monMessage msg){ 

   monMessageMulticast mcast=(monMessageMulticast)msg.ident; 

   logger.log(Level.INFO,"received message "+msg.tag+" from 
="+mcast.getSourceServiceID()+" fragmentLeader ="+mcast.getFragmentLeader()); 

    

   if(msg.tag.compareTo("UPDATE")==0){ 

    //la prmirea unui mesaj de update se actualizeaza liderul 
fragemntului si parintele curent  

    fragmentLeader=mcast.getFragmentLeader(); 

    parent=mcast.getSourceServiceID(); 

    update(); 

   } 

   else 

   if(msg.tag.compareTo("BEST")==0){ 

    count--; 

     

    //la primirea unei ferme preferae pentru unire se 
actualizeaza daca este cazul 

    //ferma actuala preferata 

    if(mcast.getBestFarmValue()<bestFarmValue){ 

      

     bestFarm=mcast.getBestFarmLeader(); 

     bestFarmValue=mcast.getBestFarmValue(); 

    } 

     

    //daca s-au primit mesaje de la toti fii 

    if(count==0){ 

     //se reintra in etapa de conectare  

     state=CONNECTING; 

     //daca nu este radacina, trimite mesaj mai sus cu 
ferma preferata 

     if(parent!=null){ 

      monMessageMulticast best=new 
monMessageMulticast(hostServiceID,parent,bestFarm,new Double(bestFarmValue)); 

      sendMessage(best,"BEST"); 

     } 
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     //altfel este radacina si ia decizia de unire 

     else{ 

      //daca nu s-a mai gasit o cea mai buna ferma 
inseamna ca algoritmul s-a incheiat si se anunta toate nodurile 

      if(bestFarm==null){ 

      
 logger.log(Level.INFO,"MCast="+MulticastFarmList); 

       for(int 
i=0;i<MulticastFarmList.size();i++){ 

        monMessageMulticast 
finish=new monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i)); 

        sendMessage(finish,"FINISH"); 

       } 

        

      } 

      else{ 

       //trimite connect fermei preferate in 
urma etapei de discovery 

       monMessageMulticast connect=new 
monMessageMulticast(hostServiceID,bestFarm); 

       sendMessage(connect,"CONNECT"); 

      } 

     } 

    } 

   } 

    

   else 

    

   //s-a primit finish, algorimtul s-a incheiat, mesajul este trimis 
mai departe memebrilor arborelui de multicast 

   if(msg.tag.equals("FINISH")){ 

    logger.log(Level.INFO,"MCAST="+MulticastFarmList); 

    for(int i=0;i<MulticastFarmList.size();i++){ 

    
 if(compareServiceIDs(parent,(ServiceID)MulticastFarmList.elementAt(i))!=0){ 

      monMessageMulticast finish=new 
monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i)); 

      sendMessage(finish,"FINISH"); 

     } 

    } 

     

   } 
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  } 

 } 

    

} 

 

 

 

 
  

 

 

 

 

 

 
 
 
 

 
 

 
 
 
  
 
 
 
 
   
 
 
 
  

 
 
 

  
 


