
“Politehnica” University of Bucharest

The Faculty of Computer Science and Automatic Control

DIPLOMA PROJECT

Distributed Delay Constrained
Multicast Algorithms

for the MonALISA Framework

Algoritmi distribuiti de multicast
pentru mediul MonALISA

UPB Scientific Coordinator:

Prof. Dr. Eng. Valentin CRISTEA

California University of Technology Coordinator:

Dr. Iosif LEGRAND

Author:

 Alexandru COSTAN

2004

 2

Table of Contents:

1. Introduction... 4
2. The MonALISA Services Framework .. 6

2.1 Arhitecture .. 6
2.2 The Data Collection Engine .. 8
2.3 Data Storage .. 9
2.4 Registration and Discovery... 9
2.5 Predicates, Filters and Alarm Agents.. 10
2.6 Administration of Services ... 11
2.7 Automatic Update for Services... 11
2.8 Monitoring Data Processing Farms .. 12
2.9 Monitoring the VRVS System.. 13
2.10 Existing Aproach on Dynamic Routing .. 14

3. Our Contribution... 17
3.1 Problem Formulation .. 17

4. The Distributed Delay Constrained Multicast Algorithms ... 18
4.1 The Steiner Heuristics Algorithm ... 18

4.1.1 Distributed Heuristic K­SPH ... 20
4.1.2 Distributed SPH ... 24
4.1.3 Message and convergence bounds ... 24

4.2 The Pruned Minimum Spanning-Tree Heuristic ... 26
4.2.1 Phase 1: Tree Construction.. 26

4.2.1.1 A highly asynchronous minimum spanning tree 26
4.2.1.2 Optimizing the Tree .. 30

4.2.2 Phase 2: Tree Repair .. 31
4.2.3 Phase 3: Tree Adaptation... 32

5. A Genetic Algorithm for Steiner Tree Optimization with Multiple Constraints Using
Prüfer Number... 32

5.1 Problem formulation... 32
5.2 Genetic algorithms .. 33
5.3 Genotype: modified Prufer numbers... 34
5.3 The pre-processing phase.. 35
5.4 The initial population.. 36
5.5 The fitness function... 37
5.6 Selection.. 37
5.7 Crossover .. 38
5.8 Mutation.. 39

6. Implementation ... 40
6.1 JINI.. 40

6.1.1 Discovery and Join... 40
6.1.2 Entry... 44
6.1.3 Distributed Leasing .. 46
6.1.4 Distributed Events.. 48

 3

6.1.5 Transaction... 50
6.1.6 Lookup Service .. 52

6.2 Jabber vs. Proxy Communication ... 53
6.2.1 Jabber ... 53
6.2.2 Proxy Service ... 54

6.3 Solution... 55
6.2.3 Solution.. 55

6.3 Implementation Aspects.. 56
6.3.1 Message Communication Arhitecture.. 56
6.3.2 Multicast Algorithm Implementation .. 57

6.3 Implementation Aspects.. 58
7. Conclusions ... 58

7.1 Evaluation Methodology... 59
7.2 Metrics Tested... 59
7.3 Simulation Results .. 59

8. Future Work .. 61
Bibliography.. 62
Appendix... 65

Appendix 1: monAgentMessage.java ... 65
Appendix 2: monMessageMulticast.java ... 66
Appendix 3: FarmAgentMulticast.java .. 68

 4

1. Introduction

With recent advances of computer and network technologies, many emerging
services such as teleconference, video on demand, distance education, etc., require the
network to deliver information to multiple destinations. In a connection oriented packet
switched network, point-to-point (unicast) connections may be used to transmit
information from a source to a set of destinations by establishing point-to-point
connections from the source to each of the destinations. To send a packet to the set of
destinations, the source makes copies of the packet and transmits one copy to each of the
destinations. This may result in sending two or more copies of the same packet on a
single communication link. Obviously, the bandwidth of the communication link can be
used more efficiently by eliminating extra copies of the same packet. Thus, it is desirable
to setup a point-to-multipoint (multicast) connection to transmit the packet through a tree
shaped path and make copies of the packet only at branching nodes in order to make
efficient use of the network resources. A packet switched network is said to have
multicast capability if it can establish a point-to-multipoint connection to deliver a packet
to a group of destinations. It is important for broadband networks to have multicast
capability to support these emerging services.

For a service to take advantage of the multicast capability, a multicast connection
must be established before information can be delivered from a source node to multiple
destinations. The set of nodes consisting of the source node and the destination nodes is
called the multicast group. It is desirable to use as little network resources as possible to
set up the multicast connection for a multicast group. The amount of resources required
by the connection is affected by the route for the multicast connection. The problem of
determining the route for a multicast connection is known as the multicast routing
problem.

The problem of finding an optimal multicast tree in a point to point network
translates to the Steiner Problem in graphs. Since the Steiner problem is NP complete,
heuristic approaches are required for path setup. The problem takes a new dimension in
Wide Area Networks, where centralized algorithms are not feasible, and distributed
schemes are needed. It is also desirable that node participation for path setup is limited to
nodes directly involved in the multicast. An additional requirement that comes from the
nature of the applications such as videoconferencing that use the multicast support from
the network is that of bounded end-to-end delays along any path from the source to each
destination in the multicast tree. We present here a heuristic algorithm that ensures delay
bounds, is distributed, and produces trees that are only slightly more expensive than those

 5

produced by centralized algorithms. Further, we examine the degradation in performance
in case of changing delays along network links (where QoS guarantees on delay are not
available), and propose ways of making the tree adaptive to these changes. This dynamic
routing approach minimizes resource reservation demands and also makes changing
multicast groups permissible.

As multimedia data transfer capability in networks becomes increasingly
available, applications such as video conferencing and distance education are gaining
popularity. Multicast support is currently available from networks, but the current
schemes are concerned only with connectivity, not optimality, and do not provide QoS
(Quality of Service) guarantees such as delay bounds and jitter control that are needed for
such applications. The bandwidth savings obtained from the use of multicast trees can be
maximized by using optimal tree setup algorithms. Future networks will require such
schemes to be integrated at lower layers in the protocol stack.

The problem of finding an optimal multicast tree has been shown to be equivalent
to the NP-complete Steiner tree problem in graphs. For a large sized network explicitly
finding this optimal tree is prohibitively expensive. Heuristic algorithms for setting up
multicast trees have been proposed by various authors.

The multicast path setup schemes can also be categorized on the basis of QoS
guarantees they provide. Again, most of the centralized and distributed schemes produce
trees that are optimal only in terms of a metric on the links but are silent in terms of
parameters such as end-to-end delays. A centralized scheme that finds delay constrained
multicast trees was proposed by Kompella, and a distributed version of the same was
later given by the same authors. This delay constrained distributed scheme is based on
pruned MSTs and suffers from the drawback mentioned above. A distributed algorithm
that does not require MST construction and requires limited participation by nodes during
path setup has been proposed by Bauer and Varma but it produces unconstrained trees.

Finally, schemes can be classified as dynamic and static. Dynamic schemes allow
for dynamically changing multicast groups with the possibility of joining and leaving an
active multicast. These are also adaptive, i.e. they change the tree in response to changes
in the network parameters. Static schemes, on the other hand, build a tree before the
beginning of a multicast and the tree is used throughout the lifetime of the multicast.
Static schemes also require strict resource reservation to be made at the time of the path
setup.

Heuristic algorithms for the dynamic multicast routing problem can be found in
the specific literature The dynamic greedy algorithm proposed by Waxman takes the
shortest path to an existing multicast tree when adding a node. The source routed shortest
path algorithm proposed by Dear finds the shortest path to the source node when adding a
node to the multicast group. The Geographic Spread Dynamic Multicast (GSDM) routing
algorithm proposed by Kadirire takes the geographic spread defined in the article into
account when adding a node. It deals with the node and the nearby nodes which are
already in the connection at the same time. The possible routes for these nodes are
reconsidered. Among the routes that have the minimal cost, the route with the maximal
geographic spread is chosen and that part of the connection is re-routed if necessary.
When removing a node, the dynamic greedy, shortest path and GSDM routing algorithms
first mark the node “deleted”. If the node is a leaf node in the connection, the node is
removed from the multicast group and the node and the branch of which it is a part is

 6

pruned from the multicast tree. A comparison of these dynamic multicast routing
algorithms was presented in.

In the dynamic multicast routing problem, the members of the multicast group are
dynamically changing. Let us take a snapshot of the multicast group and denote it by S.
Suppose that a static multicast routing algorithm is applied to find a multicast tree for S in
G. A good static multicast routing algorithm can generally produce better results than a
dynamic one. This is because a dynamic multicast routing algorithm usually adds or
removes a node based on existing connection. It does not take the multicast group as a
whole into consideration and reconstruct the multicast tree as a static algorithm does.
Therefore, a static multicast routing algorithm which produces near optimal results can
serve as a reference for comparing dynamic multicast routing algorithms. The KMB
algorithm was used as the reference algorithm since it can generally produce near optimal
results. We also select the KMB algorithm as the reference algorithm.

For dynamic multicast routing algorithms, re-routing a portion of the existing
connection may reduce the cost of the multicast connection (e.g., the GSDM routing
algorithm). However, re-routing an existing connection may require additional network
resources such as bandwidth, buffers to keep the order and integrity of packets. Also, an
underlying ne twork system with intentional re-routing capability is required to smoothly
re-route existing connections.

2. The MonALISA Services Framework

2.1 Architecture

 The MonALISA (Monitoring Agents in A Large Integrated Services Architecture)
system provides a distributed monitoring service. MonALISA is based on a scalable
Dynamic Distributed Services Architecture which is designed to meet the needs of
physics collaborations for monitoring global Grid systems, and is implemented using
JINI/JAVA and WSDL/SOAP technologies. The scalability of the system derives from
the use of multithreaded Station Servers to host a variety of loosely coupled self-
describing dynamic services, the ability of each service to register itself and then to be
discovered and used by any other services, or clients that require such information, and
the ability of all services and clients subscribing to a set of events (state changes) in the
system to be notified automatically. The framework integrates several existing
monitoring tools and procedures to collect parameters describing computational nodes,
applications and network performance. It has built- in SNMP support and network-
performance monitoring algorithms that enable it to monitor end-to-end network
performance as well as the performance and state of site facilities in a Grid. MonALISA
is currently running around the clock on the US CMS test Grid as well as an increasing
number of other sites. It is also being used to monitor the performance and optimize the
interconnections among the reflectors in the VRVS system.
 We are developing a globally scalable ``Dynamic Distributed Services
Architecture'' (DDSA) to serve large physics collaborations. This architecture
incorporates many features that make it suitable for managing and optimizing workflow
through Data Grids composed of hundreds of sites, with thousands of computing and

 7

storage elements, and thousands of pending tasks, such as those foreseen by the LHC
experiments.

In order to scale and operate robustly in managing global, resource-constrained
Grid systems, the DDSA framework uses a set of Station Servers, one per facility or site
in a Grid, that host a variety of dynamic, agent-based services. The services are registered
with, and can be mutually discovered by a lookup service, and they are notified
automatically in case of ``events'' signaling a change of state anywhere in a large
distributed system. This allows the ensemble of services to cooperate in real time to
gather, disseminate, and process time-dependent state and configuration information
about the site facilities, networks, and many jobs running throughout the Grid. The
monitored information is reported to higher level services, that in turn analyze the
information, and take corrective action to improve the overall efficiency of operation of
the Grid (through load balancing, for example) or to mitigate problems as needed. The
DDSA framework is inherently distributed, ``loosely coupled'' and self-restarting, making
it scalable and robust. Cooperating services and applications are able to access each other
seamlessly, to adapt rapidly to a dynamic environment (such as worldwide-distributed
analysis by hundreds of physicists in a major HEP experiment). The services are
managed by an efficient multithreading engine that schedules and oversees their
execution, such that Grid operations are not disrupted if one or more tasks (threads) are
unable to continue. The system design also provides reliable ``nonstop'' support for large
distributed applications under realistic working conditions, through service replication,
and automatic re-activation of services. These mechanisms make the system robust
against the failure or inaccessibility of multiple Grid components (when a key network
link goes down, for example).

A service in the DDSA framework is a component that interacts autonomously
with other services through dynamic proxies or agents that use self-describing protocols.
By using dedicated lookup services, a distributed services registry, and the discovery and
notification mechanisms, the services are able to access each other seamlessly. The use of
dynamic remote event subscription allows a service to register to be notified of a selected
set of event types, even if there is no provider to do the notification at registration time.
The lookup discovery service will then automatically notify all the subscribed services,
when a new service, or a new service attribute, becomes available. The code mobility
paradigm (mobile agents or dynamic proxies) used in the DDSA extends the remote
procedure call and the client server approach. Both the code and the appropriate
parameters are downloaded dynamically into the system. Several advantages of this
paradigm are: optimized asynchronous communication and disconnected operation,
remote interaction and adaptability, dynamic parallel execution and autonomous
mobility. The combination of the DDSA service features and code mobility makes it
possible build an extensible hierarchy of services capable of managing very large Grids,
with relatively little program code.

A prototype implementation of the DDSA was built based on JINI technology.
The JINI architecture federates groups of devices and software components into a single,
dynamic distributed system; functionality that the future Open Grid Services Architecture
(OGSA) will need to include. JINI enables services to find each other on a network and
allows these services to participate and cooperate within certain types of operations,
while interacting autonomously with clients or other services.

 8

 This architecture simplifies the construction, operation and administration of
complex systems by:
(1) allowing registered services to interact in a dynamic and robust (multithreaded) way;
(2) allowing the system to adapt when devices or services are added or removed, with no
user intervention;
(3) providing mechanisms for services to register and describe themselves, so that
services can intercommunicate and use other services without prior knowledge of the
services' detailed implementation.

WSDL/SOAP was also included, bindings for all the distributed objects, in order
to provide access to the monitoring information from other types of clients and
to facilitate a possible future migration to the Open Grid Services Architecture.
 An essential part of managing a global Data Grid is a monitoring system that is
able to monitor and track the many site facilities, networks, and the many task in
progress, in real time. The monitoring information gathered also is essential for
developing the required higher level services, and components of the Grid system that
provide decision support, and eventually some degree of automated decisions, to help
maintain and optimize workflow through the Grid. Therefore was developed the agent-
based MonALISA (Monitoring Agents in A Large Integrated Services Architecture)
system, based on the DDSA framework. MonALISA is an ensemble of autonomous
multi- threaded, self-describing agent-based subsystems which are registered as dynamic
services and are able to collaborate and cooperate in performing a wide range of
monitoring tasks in large scale distributed applications, and to be discovered and used by
other services or clients that require such information.

MonALISA is designed to easily integrate existing monitoring tools and
procedures and to provide this information in a dynamic, self describing way to any other
services or clients. MonALISA services are organized in groups and this attribute is used
for registration and discovery.

2.2 The Data Collection Engine

The system monitors and tracks site computing farms and network links, routers
and switches using SNMP, and it dynamically loads modules that make it capable of
interfacing existing monitoring applications and tools (e.g. Ganglia, MRTG, Hawkeye).
The core of the monitoring service is based on a multithreaded system used to perform
the many data collection tasks in parallel, independently. The modules used for collecting
different sets of information, or interfacing with other monitoring tools, are dynamically
loaded and executed in independent threads. In order to reduce the load on systems
running MonALISA, a dynamic pool of threads is created once, and the threads are then
reused when a task assigned to a thread is completed. This allows one to run concurrently
and independently a large number of monitoring modules, and to dynamically adapt to
the load and the response time of the components in the system. If a monitoring task fails
or hangs due to I/O errors, the other tasks are not delayed or disrupted, since they are
executing in other, independent threads. A dedicated control thread is used to stop
properly the threads in case of I/O errors, and to reschedule those tasks that have not been

 9

successfully completed. A priority queue is used for the tasks that need to be performed
periodically. A schematic view of this mechanism of collecting data is shown in Figure 1.

This approach makes it relatively easy to monitor a large number of

heterogeneous nodes with different response times, and at the same time to handle
monitored units which are down or not responding, without affecting the other
measurements. As an example, there were monitored 500 compute nodes performing a
request for ~200 metric values per node every 60 seconds. This provided a sustained rate
of ~1600 metric values per second collected, using an average of 20 active threads. The
number of threads necessary to monitor a complete site is dynamically adjusted, and very
dependent on the response time for each node, which is related to its load as well as to the
quality of the network connections.

2.3 Data Storage

 The collected values are stored in a relational database, locally for each service.
The JDBC framework in JAVA offers the flexibility to dynamically load any driver and
connect to virtually any relational database. A normalized scheme is used to store the
result objects provided by the monitoring modules in indexed tables, which are
themselves generated as needed, dynamically. As data are becoming older, we are
compressing the values stored in the database by evaluating the mean values on larger
time intervals and at the same time keeping the fluctuation range for each parameter.

2.4 Registration and Discovery

 10

 Each MonALISA service registers with a set of JINI Lookup Discovery Services
(LUS) as part of a group, and having a set of attributes. The LUSs are also JINI services
and each one may be registered with the other LUSs. If two LUSs have common groups
any information related with a change of state detected for a service in the common group
by one is replicated to the other one. In this way it is possible to build a distributed and
reliable network for registration of services and this technology allows dynamically
adding or removing LUSs from the system. Any service should also provide for
registration the code base for the proxies that other services or clients need to instantiate
for using it. This approach is used to make sure that the right proxies are used for each
service while different versions may be used in a distributed organization at the same
time. The registration is based on a lease mechanism that is responsible to verify
periodically that each service is alive. In case a service fails to renew its lease, it is
removed from the LUSs and a notification is sent to all the services or clients that
subscribed for such events.

Any monitor client services is using the Lookup Discovery Services to find all the
active MonALISA services running as part of one or several group “communities”. It is
possible to select the services based on a set of matching attributes. The discovery
mechanism is used for notification when new services are started or when services are no
longer available. The communication between interested services or clients is based on a
remote event notification mechanism which also supports subscription.

The client application connects directly with each service it is interested in for
receiving monitoring information. To perform this operation, it first downloads the
proxies for the service it is interested in from a list of possible URLs specified as an
attribute of each service, and than it instantiate the necessary classes to communicate with
the service. This procedure allows each service to correctly interact with other services.

2.5 Predicates, Filters and Alarm Agents

 The clients can get any real- time or historical data by using a predicate
mechanism for requesting or subscribing to selected measured values. These predicates
are based on regular expressions to match the attribute description of the measured values
a client is interested in. They may also be used to impose additional conditions or
constrains for selecting the values. In case of requests for historical data, the predicates
are used to generate SQL queries into the local database. The subscription requests will
create a dedicated thread, to serve each client. This thread will perform the matching test
for all the predicates submitted by a client with the measured values in the data flow. The
same thread is responsible to send the selected results back to the client as compressed
serialized objects. Having an independent thread per client allows sending the
information they need, fast, in a reliable way and it is not affected by communication
errors which may occur with other clients. In case of communication problems these
threads will try to reestablish the connection or to clean-up the subscriptions for a client
or a service which is not anymore active.

Monitoring data requests with the predicate mechanism is also possible using the
WSDL/SOAP binding from clients or services written in other languages. The class
description for predicates and the methods to be used are described in WSDL and any
client can create dynamically and instantiate the objects it needs for communication.

 11

Currently, the Web Services technology does not provide the functionality to register as a
listener and to receive the future measurements a client may want to receive.

Other applications or clients may also use the Agent Filters to receive the
information they need. The Agent Filter is a java module which can be dynamically
deployed to any MonALISA service, and is design to perform a dedicated data processing
task on local data (by subscribing with a predicate to the data flow) and returns back the
processed information periodically. The MonALISA service provides the run time
environment for these agents which must be digitally signed by a trusted certificate. As
an example, such filters are used to compute the aggregate IO traffic in a farm, or to
provide the number of nodes which are free. The same thread used for handling the
predicate subscription is used for sending the filtered results back to each client.

Dynamically loadable alarm agents, and agents able to take actions when
abnormal behavior is detected, are currently being developed to help with managing and
improving the working efficiency of the facilities, and the overall Grid system being
monitored.

2.6 Administration of Services

 MonALISA also provides a secure mechanism (SSL with X.509 certificates) for
dynamic configuration, using a dedicated GUI, of farms / network elements, and support
for other higher level services that aim to manage a distributed set of facilities and/or
optimize workflow. It allows reconfiguring any monitoring services by adding new
nodes, network elements or clusters and at the same time to dynamically loaded into the
system any new monitoring module as needed. It also allows stopping or suspending any
monitoring module. Adding dynamically new monitoring modules is important for
debugging and understanding the way certain applications perform.

The Administration interface connects to a service using Remote Method
Invocation over SSL. X.509 certificates for trusted administrators are imported in the
keystore of each service and they are used to establish a SSL connection based on a client
authentification procedure. The administrative GUI can be stated automatically from the
global web start client if it used by a trusted administrator. When the administrator loads
his private key into the global GUI client it automatically gets administrative rights on the
services that imported his certificate in the trust keystore.

2.7 Automatic Update for Services

 MonaALISA is currently deployed on many sites and maintaining and updating
such applications may require a significant effort. For this reason there was developed a
mechanism in MonALISA that allows us to automatically update the monitoring service.
A dedicated thread is used to periodically check for updates of the distribution.
Alternatively a remote event notification can be used to notify only selected services to
perform an update. When such an event is detected, the running service will trigger a
restart operation. When a MonALISA service is started, it is using the web start
mechanism to describe an application and all its dependencies and constrains into a XML
file (jnpl). This will perform an automatic download of all the packages which were
updated and will check all the necessary constrains to run the application. All the files

 12

downloaded in this way must be digitally signed by a developer for which the certificate
is imported in the trust keystore. This can be done when the MonALISA service is used
for the first time.

All the running services, as well as the services which may be stated after an
update was done will run the last “published” version and this is done in a secure way.
Users may start a MonALISA service with the auto update flag switch off.

2.8 Monitoring Data Processing Farms

 MonALISA is now deployed and operating round the clock monitoring the US
CMS Test Grid and an increasing number of other sites. The MonALISA Web repository
is now accumulating historical data for the US CMS Tier1 and Tier2 centers at Fermilab,
Caltech, UCSD, and the University of Florida, as well as the production farms at CERN,
at the Academia Sinica in Taiwan (ATLAS), and at the Polytechnic University in
Bucharest. As an example, the number of nodes loaded on the US-CMS farms during a
week is presented in the next figure.

Figure 2: A global plot of the US-CMS farms showing the number of nodes with load
higher than 0.5 during a period of one week. These plots are created with the web service
repository .

There are also monitored the network traffic on the US-CERN production link,

and the distribution of the traffic into the major networks and links with which we peer:
EsNet, Abilene, Mren, StarTAP, the US-CERN DataTAG link, the CERN-Geant link,
Taiwan-Chicago, and Bucharest- Budapest. In addition to the directed measurements
performed on routers, MonALISA was interfaced to provide access to the Internet End to
End Performance Measurements (IEPM-BW).

There are currently monitored the batch queuing systems at CERN (LSF) and at
Caltech (PBS). From these modules we can report the number of (selected types) jobs
running, pending or those which exit with errors.

 13

2.9 Monitoring the VRVS System

 The Virtual Rooms VideoConferencing System (VRVS) is an enhanced web
based video conferencing system which is using a set of reflectors distributed world wide
for an efficient real-time distribution of the audio and video streams.

For each VRVS reflector, a MonALISA service is running using an embedded
Database, for storing the results locally, and runs in a mode that aims to minimize the
reflector resources it uses (typically less than 16MB of memory and practically without
affecting the system load). Dedicated modules to interact with the VRVS reflectors were
developed: to collect information about the topology of the system; to monitor and track
the traffic among the reflectors and report communication errors with the peers; and to
track the number of clients and active virtual rooms.

In addition, overall system information is monitored and reported in real time for
each reflector: such as the load, CPU usage, and total traffic in and out. A dedicated GUI
for the VRVS version was developed as a java web-start client. This GUI provides real
time information dynamically for all the reflectors which are monitored. If a new
reflector is started it will automatically appear in the GUI and its connections to its peers
will be shown. Filter agents to compute an exponentially mediated quality factor of each
connection are dynamically deployed to every MonALISA service, and they report this
information to all active clients who are subscribed to receive this information.

It provides real-time information about the way the VRVS system is used
(number of conferences or clients) the topological connectivity of the reflectors and the
quality of it and system related information (IO traffic CPU load). Clients can also get
historical data for any of these parameters.

The subscription mechanism allows one to monitor in real time any measured
parameter in the system as all the updates are dynamically displayed on the open
windows. Examples of some of the services and information available, visualizing the
number of clients and the active virtual rooms, the traffic in and out of all the reflectors,
as well as problems such as lost packets between reflectors are presented in the next
figure.

In addition to dedicated monitoring modules and filters for the VRVS system, we
developed agents able to supervise the running of the VRVS reflectors automatically.
This will be particularly important when scaling up the VRVS system further. In case a
VRVS reflector stops or does not answer correctly to the monitoring requests, the agent
will try to restart it. If this operation fails twice the Agent will send an email to a list of
administrators. These agents are the first generation of modules capable of reacting and
taking well defined actions when errors occur in the system. These agents, capable to take
action in the system, may be dynamically loaded. For security reasons such agents must
be digitally signed by developers with trusted certificates, declared for each running
service.

 14

Figure 3: Monitoring the VRVS System.

2.10 Existing Approach on Dynamic Routing

In the current MonALISA framework, the multicast path setup is used in VRVS, a
videoconferencing system based on a set of servers called reflectors that route the
audio/video streams to the participating clients, for monitoring and controlling the VRVS
reflectors in order to enhance the quality of the service.

A ReflRouter client was developed to provide an optimized dynamic routing of
the videoconferencing data streams. This client requires information about the quality of
the alternative connections in the system and it solves, in real- time, a minimum spanning
tree problem to optimize the data flow at the global level.

To evaluate the connection quality with possible peer reflectors there were
developed monitoring agents performing ping like measurements using UDP packages,
which are deployed on all the MonALISA services. These agents perform continuously
(every 4s) such measurements and with a selected set of possible peers, which can be
dynamically reconfigured, for each reflector.

The reflectors and all these possible peer connections we are measuring define a
graph (as shown in the next figure).

 15

Figure 4: The graph defined by the reflectors and the peer connections.

The best routing path for reapplication of the multimedia streams is defined as a

Minimum Spanning Tree (MST). This means that we need to find the tree that contains
all the reflectors (vertices in the graph G) for which the total connection “cost” is
minimized:

MST= min(Sum(u,v)in G w(u,v))

 The “cost” of the connection between two reflectors (w) is evaluated using the

UDP measurements from both sides. This cost function is build with an exponentially
mediated RTT and if lost packages are detected or the jitter of the RTT is high the cost
function will increase rapidly. Based on these values provided by the deployed agents,
the MST is calculated nearly in real - time.

There are some critical cases that must be analyzed before running the MST
algorithm. For this, each ReflNode is checked. If a node isn’t active then it must not
appear in the MST. Further, the tunnels that start from the inactive node must also not be
present in the computed tree. Therefore, the next state will be set to
MUST_DEACTIVATE. If the node is active, then each link to the other reflectors (either
active peers or neighbor reflectors) is checked. If the peer reflector isn’t active the
respective tunne l must not be active.

Another problem arises when between two reflectors there is no ABPing
information, or there is only one ABPing link. In this case, the state of the both peer links

 16

depends on the current status of the peer link. If there is at least one peer link, then both
must be activated. If none is active, then no peer link must be active. For the other cases
the next state of a tunnel is initialized as INACTIVE, and the MST algorithm will set it as
needed.

For implementation, the Boruvka’s algorithm was used, as it is also appropriate
for a parallel implementation. Once a link is part of the MST a momentum factor is
attached to that link. This is to avoid triggering reconnections for small fluctuations in the
system. Such cases may occur when two possible peers have very similar parameters (or
they may be at the same location). In the figure before an example of a dynamically MST
for connecting the VRVS reflectors was presented.

The original Borvuka algorithm is:

Given G = (V,E)
T = graph consisting of V with no edges
while T has < n-1 edges do

for each connected component C of T do
e = min cost edge (v,u) s.t. v in C and u not in C
T := T union {e}

But there can be a problem if the graph isn’t conex. In this case, there is no way to

connect n-1 edges, so that condition is modified such that the while cycle repeats as long
as there is at least one union made into the for cycle. In our case, while joining subtrees,
we also mark the next state of each tunnel that is used to perform the respective joint as
ACTIVE.

Another modification that must be done to this algorithm is that the process is
going to be running iterative, i.e. we compute the MST, issue commands to change the
tree, then we compute the MST and change the tree again and so on. A problem that
could appear is that of active links oscillation.

Figure 5: Active link oscilation.

For example, as in the above figures: at moment t1, the link between B and C is

worse and therefore, is inactive; at the next moment, the link between A and C is worse
and the algorithm would issue the commands to deactivate link A-C and activate instead
the B-C link; but at the third moment, link between A and C is better once more than B-
C, ant the algorithm would send new commands. This would be very bad for a sys tem
where there are live conferences ongoing. Therefore, we must take care and issue the
commands for changing the route only when the new route is much better than the
current route.

This problem can be solved by setting an inertial factor for the links belonging to
the MST. Links that are currently in the MST have an artificial cost lowered by, for

 17

example 20%. It is important to give this value relative, not absolute as the cost of the
links can vary very much – for example links between the reflectors in the same LAN
have very low cost, compared to those separated by oceans. Using this inertial factor we
are sure that the oscillations cannot happen very often, and that when a new link is
chosen, it will bring an significant improvement in quality.

It’s worth saying that this algorithm runs in O(m log n), where m is the number of
edges and n the number of vertexes.

This is an example of a high level service developed to optimize a real-time world
wide distributed application and to help in operating such complex systems. These
developments are transforming the VRVS system into a new class of large scale
distributed systems with real time constraints.

The MonALISA framework is a means of carrying out the development of this
system, both in terms of its operational characteristics (heuristic, self-discovering,
autonomous) and the relatively short development time required for implementing a
distributed monitoring and management system of this scale and complexity.

3. Our Contribution

 The major disadvantage of the existing approach, as most of the existing schemes,
is that of being centralized, i.e. they assume that information about each link in the
network is available at one node. While the centralized schemes are fast and produce
cheap trees, the requirement of all information to be present at one node is problematic in
large sized networks as the overhead to collect and store the data is prohibitive. Among
the distributed schemes that are available, many are based on the distributed minimum
spanning tree algorithms, and work by first finding the MST of the whole network and
then pruning off all edges and leaves that are not involved in the multicast. These,
however, require participation of all the nodes in the network, and have an unsatisfactory
theoretical upper bound on competitiveness.
 The scheme we propose is distributed and produces delay constrained trees that
are little more expensive than those produced by centralized Steiner heuristics. An
extension to this scheme makes it adaptive to changing delays along links and permits
dynamic joins and leaves. The scheme requires very little information in addition to that
which is already maintained in routing tables for current protocols.

3.1 Problem Formulation

 The delay constrained multicast path setup problem in a network can be
formulated as follows. The network is modeled as a graph G(V,E) with cost and delay
functions defined on the links. The capacities of the links are assumed to be fixed and
known. The cost metric on the links could be any combination of monetary cost and
network related parameters.

INPUTS :
C(e) : C : E → N, gives cost of edge e

 18

D(e) : D : E → N, gives the delay on e
s : Source node
S : Set of destinations
∆ : Max. permissible delay from

 source to destination. ∆ ∈ N

OUTPUT:
T, a tree rooted at s spanning all nodes in S.

CONSTRAINT
Σ D(e) < ∆ ∀ v ∈ Σ
e ∈P(s,v)
where P(s,v) is the set of edges along the path from
source s to destination v.

OBJECTIVE
Minimize: Σ C(e) .
 e ∈ T

 Using the above formulation, the proposed algorithm computes the (static)
multicast tree. In the extension of the algorithm where dynamically changing link delays
and multicast groups are permitted, the formulation is different in that the delay function
D(e) and the set S are also functions of the (wall clock) time. D(e) is then not a specified
function, but is calculated using a statistical model of the link.

4. The Distributed Delay Constrained Multicast Algorithms

 Establishing a multicast tree in a point­to­point network of switch nodes, can be
modeled as the NP­complete Steiner problem in networks. In this chapter, we introduce
and evaluate two distributed algorithms for finding multicast trees in point­to­point data
networks.

The first algorithm is based on Steiner heuristics, the shortest path heuristic

(SPH) and the Kruskal­based shortest path heuristic (K­SPH), and have the advantage
that only the multicast members and nodes in the neighborhood of the multicast tree
need to participate in the execution of the algorithm. We compare this algorithm by
simulation against the second one, a baseline algorithm, the pruned minimum
spanning­tree heuristic, which is the basis of many previously published algorithms for
finding multicast trees. We compare the competitiveness of the two and decide which
one to use for implementation and integration in MonALISA framework according to the
found results.

4.1 The Steiner Heuristics Algorithm

 Multicasting is likely to take an increasingly important role in data networks in
the future. Previous authors have established that the multicast tree problem can be

 19

modeled as the Steiner problem in networks, referred to hereafter as the SPN, and that
finding explicit solutions in large networks is prohibitively expensive. A number of
good, inexpensive, centralized heur istics exist for the SPN and have been reviewed
extensively elsewhere. Most of the algorithms proposed in the literature for SPN are
serial in nature.

However, a few distributed heuristics exist in the literature. Many of these

algorithms are based on reducing the SPN to the minimum spanning tree problem,
referred to here as the MST, and use a distributed minimum spanning tree algorithm
such as the one described by Gallager, Humblet, and Spira. A Steiner tree is created by
pruning the minimum spanning tree of unnecessary leaves and branches. Distributed
Steiner heur istics based on a minimum spanning tree algorithm suffer from two
drawbacks: first, all the nodes in the network must participate in the execution of the
algorithm. This may be impractical in a large network with sparse multicast groups.
Second, the theoretical upper bound on competitiveness of a pruned MST tree to that of
an optimal Steiner tree has been shown to be s + 1, where s is the number of
non­multicast nodes. Here competitiveness is defined to be the ratio of the sum of the
heuristic tree's edge weights to that of an optimal tree. Thus the competitiveness of a
multicast tree decreases with the size of the multicast group. In comparison, the
equivalent theoretical upper bound for shortest path heuristic competitiveness for the
Steiner tree problem is 2, regardless of the multicast group size. Our empirical evidence
suggests that pruned MST heuristics often produce solutions of inferior quality to those
produced by shortest path Steiner heuristics.

In this chapter, we present two distributed algorithms for the Steiner problem in

networks. The algorithms are based on the shortest path heuristic (SPH) and the
Kruskal­based shortest path heuristic (K­SPH). We provide analytical bounds for their
message and convergence time complexities and compare their simulation results against
those from a pruned MST algorithm.

We choose the distributed MST algorithm due to Gallager, Humblet, and Spira as

our baseline algorithm for comparison. This algorithm is perhaps the simplest of all
pruned MST algorithms, yet produces Steiner trees that are representative of other, more
elaborate pruned MST heuristics. The distributed heuristics are compared on the basis of
three criteria: competitiveness, the number of messages exchanged, and convergence
time.

The distributed heuristics have the advantage that the algorithm is initiated by

only the multicast members and requires the participation of only nodes in the
neighborhood of the multicast tree, instead of all the nodes in the network as required by
the pruned MST approach. However, limiting the execution of the algorithm to a subset
of the network nodes results in a substantial increase in the number of messages
generated in our algorithms, with a corresponding increase in convergence time.

Before continuing, we make the following basic definitions and notations. Z is the
set of multicast destinations, S is the set of non­multicast nodes V - Z, P ij is the shortest

 20

path between nodes i and j, d ij is the distance of the shortest path between nodes i and j,
and C t is the cost of tree t (the sum of t's edge weights). Graph distances will be defined
as follows: the distance between two nodes is the distance of the shortest path between
them. Likewise, the distance between a node and a tree is the distance of the shortest path
between the node and any node in the tree. Finally, the distance between two trees is the
distance of the shortest among all paths between any node in one tree and any node in the
other tree. We append the weight of an edge or path with the index of its destination node
in determining shortest paths so that, in case of a tie, the actions of the individual nodes
would be consistent. Since we do not allow multiple edges between node pairs, this
ensures that all the nodes select the same edge or path, given the same set of edge
weights.

To be suitable for distributed implementation, a heuristic must satisfy four

criteria. It must (i) use the existing routing information available at each node in the
network, (ii) use minimal computational and network resources, (iii) require a minimum
of coordination between neighbors, and (iv) limit itself to nodes directly involved in the
multicast. Of the centralized heuristics evaluated, we chose two heuristics for distributed
implementation: SPH and K­SPH.

Distributed heuristics SPH and K­SPH are designed to run as asynchronous,

independent processes running one per node in a network. Each distributed heuristic
assumes that the routing tables in each node are up­to­date; no topology changes occur
during the execution of the algorithm; the network is connected; every node has a unique
index; each multicast member has knowledge of the indices of all other multicast
members; and each multicast member is able to determine the distance to every other
node from its routing table.

Heuristic SPH is inherently a serial algorithm, since there is only one subtree

expanding itself at any time during the execution of the algorithm and nodes must join
the tree serially. Heuristic K­SPH, on the other hand, allows many of the join operations
to proceed in parallel. The latter, however, is substantially more difficult to parallelize
because of the significant amount of coordination that may be needed while combining
subtrees. In the following, we present distributed K­SPH first, followed by a similar
distributed implementation of SPH.

4.1.1 Distributed Heuristic K­SPH

Like its centralized version, distributed K­SPH starts with a forest of Z multicast
members (Z­nodes) and connects them pairwise into successively larger subtrees until a
single multicast tree remains or no further connections are possible. We refer to the
subtrees during the execution of the algorithm as fragments. Thus, at the beginning of the
algorithm, there are Z fragments, each a trivial subtree consisting of one Z­node.

At any instant during the execution of the algorithm, each node in the network is

either part of a fragment or has not been yet been included in the multicast tree. Note that
every Z­node is always a fragment node and every non­member node (S­node) is initially

 21

a non­fragment node. When two fragments merge, the nodes in both fragments and the
nodes in the path connecting them become the fragment nodes of the new, merged
fragment.

Each fragment has a fragment leader coordinating the activities of the fragment.

This fragment leader is the fragment Z­node with the lowest index. Each fragment leader
executes the same finite state machine shown in the next figure.

Figure 6: The finite state machine for fragment leaders.

Other fragment node executes a simplified version of the leader's finite state
machine. Initially, each multicast member is the leader of its own one­node fragment;
when two fragments merge, leadership is assigned to the fragment leader with the lower
index. To identify fragments uniquely, each fragment has the same index as its leader and
each fragment node is aware of its fragment index.

During the execution of the algorithm, each fragment, guided by its leader,

attempts to merge with its closest neighboring fragment. This is accomplished in two
steps: a discovery step and a connection step. During the discovery step, the leader
gathers and updates its information on other fragments and graph nodes. Based on the
information gathered, it determines the closest fragment to merge with. During the
connection step, it communicates with the closest neighbor fragment's leader, requesting
a merge. This closest fragment leader is simply the Z­node with the same index as the
closest fragment. If accepted, the leader with the lowest index attempts to connect the two
fragments. Regardless of the outcome (the request is rejected, the subtrees are connected,
or the connection attempt fails), the cycle repeats until the algorithm terminates.

Distributed K­SPH processes running on each node rely on shortest path

information available at its node, as well as information maintained by the fragment
leaders. The shortest path information stored at each node is the distance, next hop and
next­to­last hop of the shortest path to other nodes. This path information is similar to

 22

that stored by distance­vector routing protocols and may already be available in each
node's routing tables. If so, distributed K­SPH may use the existing tables, avoiding
unnecessary extra storage at each node. If not, this information may be derived using a
distance vector routing algorithm. The next­to­last hop table allows distributed K­SPH
processes to derive the entire shortest path between nodes by recursively considering the
path. Each node also stores the index of its fragment. Initially, only multicast nodes have
a fragment index (its own index). Each leader maintains additional shortest path
information for its fragment. This information augments the shortest path information at
each node. For example, the leader stores only the distance, and the head and tail of the
shortest path between its fragment and every other fragment. The additional details
necessary to build the path between fragments is stored at the head of the path, a node in
the leader's subtree (Note that the shortest path between fragments need not start or end at
a leader node).

When distributed K­SPH starts, each Z­node, the leader of its own trivial

one­node fragment, already knows its distance to every other fragment as provided by the
initial distance tables and no discovery step is necessary. Instead, each distributed K­SPH
leader starts with the connection step, described as follows.

The connection step

During the connection step, each leader attempts to connect its fragment with the
closest fragment, known as its preferred fragment. It does so by sending a merge request
message to the leader of the preferred fragment (That is, the Z­node with the same index
as the preferred fragment). A leader receives one of three responses to its request: accept,
reject, or busy. We consider each response in turn below. The busy response occurs when
a fragment's request arrives at its preferred fragment while the latter is in its discovery
step described below. While in the discovery step, a leader cannot accept or reject merge
requests, as it is in the process of updating its information. Instead, the busy response is
sent. When the requesting leader receives the busy response, it repeats its request in the
hopes or reaching its preferred fragment after its discovery step. A leader will repeat its
connection request until it receives either an accept or reject response.

When a leader receives a connection request from a fragment other than its

preferred fragment, it returns a reject message. This message forces the requesting
fragment into a discovery step to find another preferred fragment. If a former leader node
receives a connection request from any fragment, it returns a reject message since a
connection is no longer possible to the old fragment.

When two fragments exchange merge requests with one another, each responds

by returning an accept message. Once an accept message is sent, the fragment may not
leave the connect step or accept a request from another fragment until the connection
attempt completes. Of the two leaders in a connection attempt, only the leader with the
lower index acts, while the leader with the higher index waits passively for the result of
the connection attempt. This is because if the connection attempt succeeds, the leader
with the lower index becomes the leader of the new, merged fragment. The leader with

 23

the lower index initiates a connection attempt by sending a message to the head of the
shortest path between the two fragments, a node in its fragment. In its message to the
head of the shortest path, the leader specifies the tail of the shortest path, a node in the
other fragment. Upon receiving the connect message, the head node sends a connect
message along its shortest path to the tail node.

When two fragments A and B merge the shortest path used to join them must

have its head in one fragment, its tail in the other, and pass through only non­fragment
nodes.

The connect message may either reach the target fragment or be blocked;

blocking occurs when the message reaches a node in a third fragment before reaching the
target fragment. In either case, a status message returns to the head of the shortest path.

Consider the case of a successful connection first. In this case, the connect

message travels down the shortest path, reserving intermediate nodes in the path as part
of the new fragment, until it reaches a node in the target fragment. It is possible that the
first node reached in the target fragment is not the specified tail. This occurs when the
leader's shortest­path information for other fragments is stale and an intermediate node in
the selected path is already part of the other fragment. The connect message stops at the
first node in the target fragment it reaches and sends a status message back along the
shortest path to the head of shortest path. Each reserved, non­fragment node along the
path receives the status message, includes it self in the new, merged fragment, and passes
the status message along the path. The head of the shortest path forwards the status
message to its leader, now the leader of the new, merged fragment. This completes the
connection step and the leader enters the discover step described below.
Now consider the case of an unsuccessful connection. In this case, the shortest path
between the fragments is blocked. This occurs because a node in the shortest path, the
blocked node, has become part of a third fragment. When the connect message reaches
the blocked node, the blocked node returns a status message along the shortest path to the
head of the path. As each intermediate node receives the status message, it removes its
reservation from the new fragment, becoming an non­fragment node once again. The
head of the shortest path forwards the status message to the leader. The leader informs the
other fragment leader of the connection failure by sending a reject message. This
completes the connection step. Both leaders then enter the discover step described below.

States request, wait and connect in the figure before comprise the connection step.

The discovery step

The discovery step accomplishes three tasks:

(1) it informs every node in the fragment of its new fragment index;
(2) it gathers fragment information about nodes close to the fragment;
(3) it refreshes its information on shortest paths to other fragments.

 24

Each fragment leader achieves these tasks by performing a multicast on its
fragment rooted at itself. In the multicast message, the leader includes the fragment
index, the distance to the preferred fragment and shortest paths to other fragments. As
each node in the fragment receives the multicast, it updates its fragment index, queries
nearby nodes and passes the multicast message to its children. Only those nodes that lie
within the distance from this fragment to the preferred fragment are queried for fragment
index information. The objective of queries to nearby nodes is to find fragment nodes
closer than those already known by the leader. Fragment B's leader believes that fragment
C is the closest fragment. Dur ing fragment B's discovery step, it instructs fragment nodes
to query those nodes closer than fragment C.

This distance is the distance between node 3, the head of the path to fragment C,

and node 4, its tail, and is marked by the dotted circles around each of fragment B's
nodes. Since nodes 1 and 2 fall within one such circle, they receive queries and fragment
B's leader discovers the closer fragment A. Queries could be sent to all nodes in the
graph, but are limited to nodes within a small distance for two reasons:

• a set distance avoids broadcast storms
• new shortest paths discovered should be shorter than those already

available.

The discovery step is implement by state flood­to­N in the figure above.

4.1.2 Distributed SPH

The distributed shortest path heuristic is a special case of distributed K­SPH
described in the previous section. In distributed SPH, any one of the multicast members
may act as the source of the multicast, referred to here simply as the source node. In
contrast to distributed K­SPH, only one fragment, the source fragment grows, connecting
multicast members to itself until all the multicast members are part of the same fragment.
The heuristic terminates when a single tree remains.

In SPH, the preferred fragment of every fragment is always the source fragment.

The sole exception, of course, is the source fragment itself which prefers its closest
fragment. Using the same connection step outlined for heuristic K­SPH, the source
fragment merges with its closest fragment. As the source fragment grows, it uses the
same discovery step to determine the new, closest fragment. The source fragment never
changes its index. This preserves the source fragment's original index so that non­source
fragments never need to change their preferred fragment index. As a consequence,
non­source fragments do not enter the discovery phase. In all other respects, distributed
SPH is very similar to distributed K­SPH.

4.1.3 Message and convergence bounds

Bounds for messages passed and convergence time are summarized in the next
tables.

 25

Messages bounds for distributed heuristics K­SPH, SPH

and Fixup.

Convergence­time bounds for distributed heuristics K­

SPH, SPH and Fixup.

The distributed versions of SPH and K­SPH provide inferior solutions compared

to their centralized versions because of the lack of global topology information in each
node in the former. However, the degradation in the competitiveness was small in our test
networks. In fact, the competitiveness produced by distributed K­SPH was often superior
to that of centralized SPH.

The pruned minimum spanning tree algorithm, on the other hand, requires

participation from every node of the network, a condition difficult to satisfy in practice in
a large wide­area network.

Viewed from the perspective of convergence­time, however, the pruned MST

heuristic enjoys an advantage over shortest path heuristics SPH and K­SPH. The
convergence time for the solutions produced by pruned MST algorithm fell well within a
much narrower range as compared to the results for distributed K­SPH and SPH.

On comparing the SPH and K­SPH algorithms, it is interesting to observe that the

algorithms had the same level of communication complexity in terms of the number of
messages generated, yet the range of convergence times produced by K­SPH was
significantly tighter. This is primarily due to the disparate approaches used by the
algorithms in growing the multicast tree. Distributed SPH grows the tree by adding one
multicast member at a time to the source fragment, concentrating much of the work at the
source, while distributed K­SPH allows multiple fragments of the tree to combine in
parallel. This allows distributed K­SPH to provide lower convergence times without
increasing the number of messages substantially.

Because the convergence times for distributed K­SPH are higher than those of the

pruned MST algorithm by as much as 10 times, we shall use this second one, presented as
follows in our implementation for the MonALISA framework.

 26

4.2 The Pruned Minimum Spanning-Tree Heuristic

The distributed multicast tree setup algorithm has three distinct phases. Phase 1 is
a ‘Tree Construction’ phase, Phase 2 is a ‘Tree Repair’ phase. At the end of Phase 2, the
tree setup is complete and the multicast session can begin. Phase 3 of the algorithm
handles changes in link parameters and/or changes in the multicast group, and may be
invoked at any point during the lifetime of a multicast.

4.2.1 Phase 1: Tree Construction

 Given the multicast group and the cost and delay functions on the edges, this
phase constructs a tree rooted at the source and spanning all destination nodes. The tree
construction can be done using the distributed Highly Asynchronous MST Algorithm.

4.2.1.1 A highly asynchronous minimum spanning tree

We present a distributed protocol for obtaining a minimum spanning tree in an
asynchronous network. We assume that each edge has a distinct weight associated with it.
When the protocol terminates, each node knows which edges incident on it are in the
minimum spanning tree.

This protocol maintains a spanning forest of trees (referred to as fragments), each
of which is a subtree of the MST. Fragments are merged over their minimum weight
outgoing edges until a single fragment that spans the entire network remains. In order to
keep the message complexity low, each fragment has a level number associated with it
which is a measure of the number of nodes in the fragment.

We present a protocol, CompMST, which requires O(min (N, (D+d) log N) time
and O(E+N log N/log log N) messages where D is the maximum degree of a node and d
is the diameter of the MST. To arrive at this protocol we first present a protocol Async. In
Async, a fragment does not wait for another fragment to reach a particular level before it
can combine with it. The protocol takes at most O(min(N,(D+d)log N) time and O(N2)
messages. The features of Async and those from the other protocol are combined to
obtain CompMST. The requirement of balanced growth is relaxed and a fragment at level
l has to wait for a neighbour fragment to reach a level greater or equal to l – log l before
combining with it. The CompMST protocol behaves like the classic protocol when the
fragment size is small and like Async when the fragment size reaches N/log N.

 27

Problem formulation

The network is modeled like an undirected graph with N nodes and E edges. All
nodes are assumed to have distinct identities. We assume that all the edges have distinct
weights and each process knows the weight of all edges incident on it. The nodes
communicate via messages. Messages are not lost and they arrive at their destination
within finite but unpredictable time. Further, messages sent over an edge arrive in the
order in which they are sent. On the initiation of the protocol, we assume that each
process knows the weight of each edge incident on it. On the termination of the protocol,
each node knows which edges incident on it belong to the minimum spanning tree.

The protocol maintains a forest of rooted trees (referred to as fragments). The root
of the fragment is the root of the corresponding tree and the root’s identity is used to
identify the fragment. The best edge of a fragment is the minimum weight edge among all
edges leading out of the fragment.

Each fragment has a level number associated with it. Fragments containing only a
single node are at level 0. When two fragments at level l merge, a new fragment at level
l+1 is created. For such a level numbering scheme, it can be shown that a fragment with
the level number l contains at least 2l nodes. Therefore, the level number of a fragment
cannot exceed log N. The level of a node is the level number of the fragment to which it
belongs.

A node may be in one of the following states:

• the initial state Sleeping (a node is in this state until it starts executing the
protocol)

• the state Find while participating in a fragment’s search for its best edge
• the state Found at other times.

The algorithm starts with each node as a separate fragment. Fragments are merged

iteratively on the best edges and the algorithm terminates when only one fragment which
spans the entire network remains. In each iteration, a fragment determines its best edge
and combines it with the fragment at the other end of the edge. When two fragments
having the same best edge, e, combine to form a new fragment, the node with the larger
identity among the two end-points of e becomes the new root of the combined fragment.

Each node i keeps the identity of edges incident on it sorted according to their
weights in a list. The node picks each time the first edge from this list and sends a test
message to the other end of the edge with its fragment identity and level number. When
node j receives a test message from node i, it behaves as follows:

• If the fragment identity of j agrees to that of i, then i and j belong to the same
fragment and therefore j responds by sending the reject message. When a reject
message is received the current edge is deleted from the list and the process
repeats with the next edge in the list.

• If the fragment identities of i and j are different and the level number of j is
greater than or equal to that of i, it sends an accept message to i.

 28

• Otherwise j delays the response until its level number becomes at least as large as
that of i.

A minimum spanning tree protocol

In this section we describe the Async protocol. Each iteration is executed in two
phases. In the first phase, the fragment identity is propagated to all sites in the fragment.
After this phase is over, the root initiates the second phase for finding the best edge.

First-phase The root of a fragment initiates the first phase by sending an initiate1
message with the fragment identity (which is the identity of the root) as a parameter to its
children. On receiving the message initiate1 a node updates its fragment identity and
propagates initiate1 to its children. When the initiate1 message reaches a leaf node, it
sends a finish message to its parent. An intermediate site waits for a finish message from
all children before sending a finish message to its parent. When the root receives the
finish message from all children, it knows that all nodes in the fragment know the current
fragment identity. The root initiates the second phase.

Second phase The root of a fragment initiates the second phase by sending initiate2 to its
children. In this phase the best edge of the fragment is found. A node sends a test
message over an edge to ascertain that the edge is outgoing. However, the reply to a test
message is not delayed (because if the receiving node is in the same fragment, then it
must know the correct fragment identity since the first phase of the iteration has
completed). After a node has determined its local best edge it propagates this edge weight
towards the root using report messages. The root picks the edge with the minimum
weight among the local best edges and sends a change-root message to the node in the
fragment with this as an incident edge. This node becomes the new root of the fragment
and sends a connect message over the best edge in an attempt to combine with the
fragment at the other end.

Consider the case when a connect message from a site i in fragment F reaches a site j,
which is in fragment G. We have the following cases:

• if j receives initiate1 and has not sent a finish message, then j treats (i,j) as an edge
of the fragment and sends initiate1 to i. Further, site j waits for a finish message
from i before sending its finish message. In this case, nodes in F are absorbed in G
as a part of the current iteration of G

• if j has already sent its finish message then the response to the connect message is
delayed. If (i,j) is also the best edge of G then G will also send a connect message
over this edge and F and G will merge ending the iteration. The node with the
larger identity among the two end-points of the best edge will become the new
root of the combined fragment and will initiate the next iteration. Otherwise when
j gets initiate1 message during the first phase of the next iteration, it will send an
initiate1 message to i and as a result F will be absorbed as a part of that iteration.

 29

Hence, fragments are absorbed only while a site is executing the first phase and no
new sites are added to a fragment while in the second phase.

The composite protocol

CompMST behaves like the protocol presented in the literature when the fragment
size is small and like Async when the fragment size becomes large. In contrast to Async,
the level numbers are explicitly stored by the sites and we require that the response to a
test message sent by a node i at a level l to a node j to be delayed only if the level number
of j is less than l-log l. Since log l increases with l, the protocol becomes more
asynchronous as l increases. In CompMST the level number of a fragment is proportional
to the amount of time it has to wait before updating its level number. The changes
required to Async to obtain this behaviour are explained in the following:

First-Phase The initiator site sends initiate1 message to its children with its current level
number and the fragment identity. On receiving initiate1 a site updates its level number
and fragment identity and propagates initiate1 to its children. The number of nodes are
counted while propagating the finish(count) messages, where count is the number of
nodes in the subtree rooted at the node sending the message. A leaf sends a finish(1)
message to its parent. After site i has received a finish(countm) message from each child
m, it sums up the counts received from the children, adds one to it and sends the resulting
number in a finish message to its parent. The first phase terminates after the initiator
receives a finish message from each child. Let M be the sum of the counts received from
the children by the initiator. The initiator then updates its level number to log(M+1). This
may be greater than the level number previously stored in the initiator due to fragments
absorbed during this first phase.

Second Phase is modified as follows. The initiator propagates its new level number in
the initiate2 messages and sites update their level numbers on receiving this message. The
level number of a node is included in the test message sent by it. If a node j receives a test
message from a node with level l and j’s fragment identity differs from the one received
then the response is delayed by j until its level number becomes at least l- log l.

In addition, we use a protocol Update which allows a node to update the level
number and fragment identity of the nodes in its fragment. The initiator site starts the
protocol by sending the update message to its children with the fragment identity and
level number in it. On receiving update(level,id), site i updates its level number and
fragment identity and propagate the update message to its children.

Consider the case when a connect message from i in fragment F at level li is received
by a node j in fragment G at level lj. If j has already sent a connect message to i (so that
both F and G have the same best edge) then F and G are merged. If j>i then j becomes the
root of the combined fragment and initiates a new iteration. Otherwise, i becomes the
new root. If j has not sent a connect message to i then j behaves as follows:

• li > lj

 30

 In this case, site j delays response to the connect message until its level becomes
at least li (the connect message is then handled as described in case 2 below) or it sends a
connect message to i (in this case the fragments are merged as described above)

• li <= lj
 a. Site j has received the initiate1 and has not sent the finish message:
 In this case site j propagates initiate1 to i and waits for a finish message from i
before sending a finish message to its parent. Thus F is absorbed in G and nodes in F
participate in the current iteration of the protocol in G). The number of nodes in F are
therefore inceluded in updating the number of G.

 b. Site j has sent the finish message and li < lj – log lj
 In this case since j has already sent the finish message, the nodes in F will not be
included in updating the level number of G. Therefore, we require that i counts the
number of nodes in F and reports that count to j before the connect message is processed
by j. To do this, j sends a message to i instructing it to count the number of nodes, and
temporarily refrains from sending a report message to its parent in G if it has not already
sent it. Let C be the fragment rooted at i after the completion of first-phase and count be
the number of nodes in C which is reported to i when first phase completes.

• if log (count) >=lj then site i decides to keep C distinct from G. It notifies j of
this fact so that j can resume execution of the second phase in G. In addition, site i
updates its level to log(count) and initiates Update to update the level number of
the nodes in C
• if log(count) < lj then G absorbs C. In this case, i notifies j of its decision to
get absorbed and then updates its fragment identity to G and level number to lj
Further it initiates Update to update the level number and fragment identity for
the nodes in its subtree. If j has not already sent the report message then nodes in
C participate in the second phase of the current iteration of G. When j receives
initiate2 it propagates it to i and waits for a report message from i before sending
its own report message.

 c. Site j has sent the finish message and lj >= li >=lj –log lj

In this case nodes in F cannot participate in the current iteration of G. As the
previous site i updates its fragment identity to i and initiates first-phase. However, site j
does not refrain from sending messages to its parent while counting is in progress. After
the first phase is over, sit ei update its level number to max(lj, log (count)) where count is
the number of nodes reported to i when the first phase complets. Site i then initiates the
update procedure of the level number of nodes in its fragment.

4.2.1.2 Optimizing the Tree

 The Async MST results in a multicast tree which minimizes a metric, i.e. it can
be used to form a tree that is a minimum cost tree or a minimum delay tree. Two separate
approaches can be adopted for optimizing (or meeting the bound on) the parameter not
already optimized :

 31

(a) Cost First Heuristic (CFH) : which optimizes the cost using Async MST and then
'repairs' the tree wherever delay bounds are violated.
(b) Delay First Heuristic (DFH) : which first obtains the minimum delay tree using
Async MST and then attempts to reduce the cost by making changes wherever delays are
unnecessarily small.

The two methods can be expected to give different cost-competitiveness and
differ in their running complexities. The cost- first heuristic, while can be expected to give
lower cost trees, may result in too much modification to ensure delay bounds, which may
reduce its cost-competitiveness. The delay-first heuristic ignores the costs at the first step,
but needs fewer modifications since the delay bounds have already been met. DFH will
never cause a total degeneration of the tree built by the Async MST. CFH, on the other
hand, may lead to this situation if modifications of the tree are unable to guarantee delay
bounds. Our experiments with the two approaches show that DFH gives better overall
results, and hence CFH is not explored further.

4.2.2 Phase 2: Tree Repair

 Phase 2 begins when the source s sends a DISCOVER_DELAY packet to all its
children using the tree setup in phase 1. As this packet trickles down and reaches a node
v, the node v and the packet is marked with the delay encountered on the path from s to v.
Each node stores this ‘delay mark’.

 Next, all destination nodes whose marked delay exactly matches with the delay
bound, send a NO_CHANGE packet upwards to their parents. As soon as a
NO_CHANGE packet travels over a link, the link is declared permanent, which means
that this link will not be removed from the tree. The packet is forwarded upwards till the
source.

The leaf nodes that have delays marked smaller than the delay bound (no leaf
node can have a mark larger than the bound since this is a minimum delay tree, else it is
impossible to meet the delay bound in the network), calculate the SLACK (= delay bound
-delay mark), and send a SLACK_PACKET upwards to their parents. This packet
contains the sender’s index, as well as the slack. As soon as the packet reaches a node
(other than the originator) which is also a multicast member, the links from the originator
to this node are discarded, and the links that come within slack plus delay of the
discarded link's are considered for inclusion. These are discovered by a localized flooding
to neighbours. If more than one links meet the criteria, the cheapest are chosen. Delay
marks are revised, and according to new marked delays, links may get declared
permanent. However, it may happen that no cheaper paths with delays within slack
amount of the delay on current links can be found. In that case, the packet is sent further
up and the cycle repeats. In case of new links being found, the balance slack, if any, is
sent further up.

 32

This method tries to achieve cost reduction by changes in levels closest to the leaf

nodes whenever possible. This strategy is useful since the closer we are to the source, the
larger is the number of destinations receiving the packets from the link, which makes the
possibility of changing that link without disrupting the whole tree very small. Keeping
the minimum delay links near the source is also desirable for adaptability of the tree
(phase 3). It is thus a trade-off between the amount of modification and the cost. It is to
be noted that the original links are discarded but not forgotten, as these may be required
in the next phase.

4.2.3 Phase 3: Tree Adaptation

 The third phase of the algorithm is invoked in two situations, when the delays
along links change or when a node joins or leaves a multicast. If the delay on a link (that
is a part of the tree) changes, the node receiving packets from that link sends a
DISCOVERY-REQUEST packet to its parent. The parent marks the link on which this
packet is received and forwards the packet upwards, till the packet reaches the source.
The source then sends the DISCOVER_DELAY packet, and phase 2 is repeated in the
partial tree formed by the marked links.
 In this phase, the new situation that can occur is that of negative SLACK values.
These are handled differently. The first node to receive a SLACK_PACKET carrying a
negative value removes the link along which the packet was received, thus breaking the
tree into two subtrees. The links that were obtained through K-SPH in phase 1 are now
brought back into the tree to connect the two subtrees via the shortest delay path. The
discover delay and slack-reduction steps are repeated till slack values become positive. It
may be noted that positive slack values are handled just as in phase 2.
 Dynamic joins and leaves are handled using a Weighted Greedy Approach and
then running phase 2 on the partial tree consisting of new links. The performance of this
scheme is better than the weighted greedy approach because of the cost reduction
achieved by phase 2, while it retains the simplicity as re-optimization is built into the
algorithm itself.

5. A Genetic Algorithm for Steiner Tree Optimization with Multiple Constraints
Using Prüfer Number

 Besides the heuristic approach we can use genetic algorithms which find the
solution more rapidly, but not always the optimized solution.

5.1 Problem formulation

A network is modeled as a directed, connected graph G = (V, E), where V is a
finite set of vertices (network nodes) and E is the set of edges (network links)
representing connection of these vertices. Let n = card (V) be the number of network
nodes and l =card (E) be the number of network links. The link e = (u, v) from node u ∈V
to node v∈V implies the existence of a link e ' = (v, u) from node v to node u. Three non-

 33

negative real value functions are associated with each link e (e∈E): cost C(e):E? R+,
delay D(e):E? R+, and available bandwidth B(e):E? R+. The link cost function, C(e),
may be either monetary cost or any measure of the resource utilization, which must be
optimized. The link delay, D(e), is considered to be the sum of switching, queuing,
transmission , and propagation delays. The link bandwidth, B(e), is the residual
bandwidth of the physical or logical link. The link delay and bandwidth functions, D(e)
and B(e), define the criteria that must be constrained (bounded). Because of the
asymmetric nature of the communication networks, it is often the case that C(e) ? C(e '),
D(e) ? D(e '), and B(e) ? B(e '). A multicast tree T(s, M) is a sub-graph of G spanning the
source node s ∈V and the set of destination nodes M ∈V-{s}. Let m =card(M) be the
number of multicast destination nodes. We refer to M as the destination group and
{s} ∪ M the multicast group. In addition, T(s, M) may contain relay nodes (Steiner
nodes), that is, the nodes in the multicast tree but not in the multicast group. Let PT(s, d)
be a unique path in the tree T from the source node s to a destination node d ∈M.

The total cost of the tree T(s, M) is defined as the sum of the cost of all links in

that tree and can be given by
 C (T(s,M))= ∑

∈),(

)(
MsTe

eC

The total delay of the path PT(s,d) is defined as the sum of the delay of all links
along PT(s,d)
 D (PT (s,d))= ∑

∈),(

)(
dsPe T

eD

The bottleneck bandwidth of the path PT(s,d) is defined as the minimum available
residual bandwidth at any link along the path:
 B(PT(s,d))= min {B(e),),(dsPe T∈ }

Let d∆ be the delay constraint and Bd the bandwidth constraint of the destination
node d. The bandwidth delay-constrained least-cost multicast problem is defined as
minimization of C(T(s,M)) subject to
 MddsPD dT ∈∀∆≤)),((
 MdBdsPB dT ∈∀≤)),((

5.2 Genetic algorithms

Genetic algorithms are the most widely known types of evolutionary computation
methods today. In general, a genetic algorithm has five basic components

1. An encoding method, that is a genetic representation (genotype) of the solutions
to the program

2. A way to create an initial population of individuals (chromosomes)
3. An evaluation function, rating solutions in terms of their fitness and a selection

mechanism

 34

4. The genetic operators (crossover and mutation) that alter the genetic composition
of offspring during reproduction

5. Values for the parameters of genetic algorithm

A general structure of the genetic algorithm is as follows:

Procedure: Genetic Algorithms
Begin
t := 0;
initialize P(t); {P(t) is the population of individuals in generation t}
evaluate P(t);
While (not termination condition) do
Begin

recombine P(t) to yield C(t); {creation of offspring C(t) by means of genetic operators}
evaluate C(t);
select P(t + 1) from P(t) and C(t);
t := t + 1;

End
End

The general structure of a genetic algorithm

5.3 Genotype: modified Prufer numbers

A spanning tree T has n nodes, n=3, and its Prüfer number, P(T), is an n-2 digit
number. Encoding of the Steiner tree by the Prüfer number is more difficult than
encoding of the spanning tree.

Special difficulty arises because:
• The Steiner trees contain a variable number of nodes in the range from m+1 to n, and
their associated Prüfer numbers include between m-1 and n-2 digits.
• In the spanning case, the set of eligible nodes for consideration in decoding algorithm is
the set of all nodes that are not appeared in the Prüfer number. In the Steiner case, this
rule is not applicable.

We adopt the encoding/decoding algorithms of the Prüfer numbers to be suitable
for the Steiner tree problems. The next two figures show these algorithms, which convert
a Steiner tree to its associated Prüfer number and vice versa. Let i be the lowest
numbered leaf (node of degree 1) in T and j be the predecessor of i. The Prüfer number is
built up by appending j to the right of P(T) and removing i and the edge (i, j) from T.
Thus i is no longer considered at all and if i was the only successor of j, then j has
become a leaf. This process is repeated, until only two nodes remain in T to be
considered. Thus, P(T) is built and read from left to right. Let P be the set of nodes that
are part of the Prüfer number, P(T). In our modified Prüfer number decoding algorithm
(see Figure 3), we consider that the set of eligible nodes, R, be all nodes in the multicast
group, {s} ∪ M, that are not member of P, i.e., R=({s} ∪ M)n P'.

 35

Figure 7: The Prufer and modified Prufer number decoding algorithm.

The Prüfer encoding establishes a one-to-one correspondence (non-redundancy

property) between k-node trees and the set of all string of k-2 digits. This means that we
can use only (k-2)-digit permutation (short encoding property) to uniquely represent a
tree where each digit is an integer between 1 to k inclusive. The transformation back and
forth between edges and Prüfer numbers can be carried out in O(n log n) with the aid of a
heap.

5.3 The pre-processing phase

Before starting the genetic algorithm, we can remove all the links, which their
bandwidth are less than the minimum of all required thresholds (Min {Bd | ∀ d∈M}). If
in the refined graph, the source node and all the destination nodes are not in a connected
sub-graph, this topology does not meet the bandwidth constraint. In this case, the source
should negotiate with the related application to relax the bandwidth bound. On the other

 36

hand, if the source node and all the destination nodes are in a connected sub-graph, we
will use this sub-graph as the network topology in our GA-based algorithms.

5.4 The initial population

Random individual creation algorithm: In this algorithm, a linked list is constructed
from the source node s to one of the destination nodes. Then, the algorithm continues
from one of the unvisited destinations and at each node the next unvisited node is
randomly selected until one of the nodes in the previous sub-tree (the tree that is
constructed in the previous step) is visited. The algorithm terminates when all destination
nodes have been mounted to the tree.

Procedure: random individual creation
Begin
n := 1;
First := True;
While (n<=Number of Destinations) do
Begin

Initialize the n-th link list;
If (First) then

Current-node := Source
Else

Current-node := One of unvisited Destinations;
GTM := Temporary matrix of the network graph;
Add the Current-node to the n-th link list;
Link-list-comp := False;
While (Not Link-list-comp) do
Begin

k := Number of connected nodes to the Current-node in GTM;
If (k=0) then
Begin

Remove the Current-node in the n-th link list;
Remove the link between the Current-node and the previous node in
Gold;
Current-node := previous node in the n-th link list;
GTM := Gold

End
Else
Begin

i := a random natural number in interval [1,k];
Add the i-th node to the n-th link list;
Gold := GTM;
Remove all links to the Current-node in GTM;
Current-node := the i-th node;
If (First) then

If (Current-node is one of the destinations) then
Begin

Link-list-comp := True;

 37

Make an individual by n-th link list;
n := n+1;
First := False;
Mark the found destination as a visited destination

End
Else

If (the Current-node is a node in one of the previous link lists(for
example j -th link list)) then

{ if the Current-node has a connection to the source node, this
link has higher priority}

Begin
n-th link list := j -th link list from the source node to
found position + Inverse (n_th link list);
Link-list-comp := True;

 Add the n-th link list to the individual;
n := n+1;
Mark this destination as a visited destination

End
End {Else}

End {inner while}
End {outer while}
End {procedure}

5.5 The fitness function

We define the fitness function for each individual, the tree T(s, M), using the
penalty technique, as follows:

where a is a positive real coefficient, f(z) is the penalty function and ? is the degree of
penalty (? is considered equal to 0.5).

5.6 Selection

The selection process used here is based on spinning the roulette wheel pop-size
times, and each time a single chromosome is selected as a new offspring. The probability
Pi that a parent Ti is selected is given by:

 38

Where F(Ti) is the fitness of the Ti individual.

5.7 Crossover

The algorithm uses two crossover schemes for recombination of two individuals,
which represent Steiner trees:

Crossover I: Let {PF(s, d1), PF(s, d2), …, PF(s, dm)} be the set of paths from the source
node s to all destination nodes in TF and {PM(s, d1), PM(s, d2), …, PM(s, dm)} be the
same set in TM. Since, we have found these paths for all individuals in the current
population for calculating the fitness function of them, the algorithm will not be complex.

A fitness function for the path P(s, di) based on the total cost, the total delay and
the minimum bandwidth of the path using the penalty technique, is defined as follows:

where a is a positive real coefficient, f(z) is the penalty function and ? is the degree of
penalty (? is considered equal to 0.5). According to the crossover probability of Pc, two
multicast trees TF(s,M) and TM(s, M) are selected as parents and the crossover operation
produce an offspring TO(s, M). Each individual may be recombined with its right
individual and its left individual through the crossover operator. For each destination
node di, we compute the fitness of PM(s, di) and PF(s, di) and select the better path.

Procedure: The crossover operator
Begin

For i:=1 to m do { m is the number of destination nodes}
If F(PM(s, di)) > F(PF(s, di)) then

PO(s, di) := PM(s, di)
Else

PO(s, di) := PF(s, di);
Current-tree := PO(s, d1);
For i:=2 to m do
Begin

Previous-node := s;
Start-node := s;
Current-node := The second node in the PO(s, di);

 39

New-link := False;
While (Previous-node <> di) do
Begin

If the Current-node does not exist in the current-tree then
Begin

Add the link between the Current-node and the Previous node to
the current-tree;
New-link := True;

End
Else
Begin

If the New-link = True then
Remove all link from Start-node to the Previous-node in PO(s,
di) in the current-tree;
Start-node := Current-node
New-link := False;

End
Previous-node := Current-node;
If there is another node in PO(s, di) then

Current-node := the next node in the PO(s, di)
End

End
End

Crossover II: In this scheme, it is used a simple one-point crossover. The constructed
offspring do not necessarily represent Steiner trees. Then, the effective and fast check and
recovery algorithm proposed in Q. Zhang, Y.W. Lenug, "An orthogonal genetic
algorithm for multimedia multicast routing" is used to connect the separate sub-trees in
the offspring and also connecting the absent nodes of multicast group to the final tree.

5.8 Mutation

There are two following algorithms for mutation operator:

Mutation I: The mutation procedure randomly selects a subset of nodes and breaks the
multicast tree into some separate sub-trees by removing all the links that are incident to
the selected nodes. Then, the effective and fast check and recovery algorithm is used to
connect the separate sub-trees and also connecting the absent nodes of multicast group to
the final tree.

Mutation II: According to the mutation probability Pm, the mutation procedure randomly
selects an infeasible chromosome from one of the following class (If the first class is
empty, a chromosome is selected from the second class and so on)

• Class 1: The chromosomes, which do not satisfy the delay and the bandwidth
constraints.
• Class 2: The chromosomes, which do not satisfy the delay constraint.

 40

• Class 3: The chromosomes, which do not satisfy the bandwidth constraint.

If all chromosomes in the current population satisfy both of the QoS constraints,
we exit from the mutation procedure. Then, we select only the paths that satisfy both of
the QoS constraints in the selected chromosome.
6. Implementation

The implementation of the algorithms uses the existing framework, namely the

JINI network technology.

6.1 JINI

The Jini system architecture consists of three categories: programming model,
infrastructure, and services. The original Jini Architecture Specification defines these
categories as follows:

The infrastructure is the set of components that enables building a federated Jini
system, while the services are the entities within the federation. The programming model
is a set of interfaces that enables the construction of reliable services, including those
that are part of the infrastructure and those that join into the federation.

Originally, the programming model defined models for leasing, event notification,
and transactions. The basic infrastructure consisted of the discovery/join protocol and the
lookup service. Previous versions of the starter kit delivered implementations of the
following Jini technology-enabled services (Jini services):

§ Lookup Service (reggie)
§ Transaction Manager Service (mahalo)
§ Lease Renewal Service (norm)
§ Event Mailbox Service (mercury)
§ Lookup Discovery Service (fiddler)

6.1.1 Discovery and Join

Entities that wish to start participating in a distributed system of JiniTM
technology-enabled services and/or devices, known as a djinn, must first obtain
references to one or more Jini lookup services. The protocols that govern the acquisition
of these references are known as the discovery protocols. Once these references have
been obtained, a number of steps must be taken for entities to start communicating
usefully with services in a djinn; these steps are described by the join protocol.

Terminology
A host is a single hardware device that may be connected to one or more

networks. An individual host may house one or more JavaTM virtual machines1 (JVM).

Throughout this document we make reference to a discovering entity, a joining
entity, or simply an entity.

 41

§ A discovering entity is simply one or more cooperating objects in
the Java programming language on the same host that are about to
start, or are in the process of, obtaining references to Jini lookup
services.

§ A joining entity comprises one or more cooperating objects in the
Java programming language on the same host that have just
received a reference to the lookup service and are in the process of
obtaining services from, and possibly exporting them to, a djinn.

§ An entity may be a discovering entity, a joining entity, or an entity
that is already a member of a djinn; the intended meaning should
be clear from the context.

§ A group is a logical name by which a djinn is identified.

Since all participants in a djinn are collections of one or more objects in the Java
programming language, this document will not make a distinction between an entity that
is a dedicated device using Jini technology or something running in a JVM that is hosted
on a legacy system. Such distinctions will be made only when necessary.

Host Requirements
Hosts that wish to participate in a djinn must have the following properties:

§ A functioning JVM, with access to all packages needed to run
software written to the Jini specifications

§ A properly configured network protocol stack

The properties required of the network protocol stack will vary depending on the
network protocol(s) being used. Throughout this document we will assume that IP is
being used, and highlight areas that might apply differently to other networking
protocols.

Protocol Overview
There are three related discovery protocols, each designed with different

purposes:

§ The multicast request protocol is employed by entities that wish to
discover nearby lookup services. This is the protocol used by
services that are starting up and need to locate whatever djinns
happen to be close. It can also be used to support browsing of local
lookup services.

§ The multicast announcement protocol is provided to allow lookup
services to advertise their existence. This protocol is useful in two
situations. When a new lookup service is started, it might need to
announce its availability to potential clients. Also, if a network
failure occurs and clients lose track of a lookup service, this
protocol can be used to make them aware of its availability after
network service has been restored.

 42

§ The unicast discovery protocol makes it possible for an entity to
communicate with a specific lookup service. This is useful for
dealing with non- local djinns and for using services in specific
djinns over a long period of time.

The discovery protocols require support for multicast or restricted-scope
broadcast, along with support for reliable unicast delivery, in the transport layer. The
discovery protocols make use of the Java platform's I/O libraries to exchange information
in a platform-independent manner.

Discovery in Brief

Groups
A group is an arbitrary string that acts as a name. Each lookup service has a set of

zero or more groups associated with it. Entities using the multicast request protocol
specify a set of groups they want to communicate with, and lookup services advertise the
groups they are associated with using the multicast announcement protocol. This allows
for flexibility in configuring entities: instead of maintaining a set of URLs for specific
lookup services that needs to be updated if any of the services change address, an entity
can use a set of group names.

Although group names are arbitrary strings, it is recommended that DNS-style
names (for example, "eng.sun.com") be used to avoid name conflicts. One group name,
represented by the empty string, is predefined as the public group. Unless otherwise
configured, lookup services should default to being members of the public group, and
discovering entities should attempt to find lookup services in the public group.

The Multicast Request Protocol
The multicast request protocol, shown in the next figure, proceeds as follows:

1. The entity that wishes to discover a djinn establishes a TCP-based
server that accepts references to the lookup service. This server is
an instance of the multicast response service.

2. Lookup services listen for multicast requests for references to
lookup services for the groups they manage. These listening
entities are instances of the multicast request service. This is not an
RMI-based service;

3. The discovering entity performs a multicast that requests
references to lookup services; it provides a set of groups in which
it is interested, and enough information to allow listeners to
connect to its multicast response server.

4. Each multicast request server that receives the multicast checks if
it is a member of a group specified in the request; if it is, it
connects to the multicast response server described in the request,

 43

and uses the unicast discovery protocol to pass an instance of the
lookup service's implementation of
net.jini.core.lookup.ServiceRegistrar.

At this point, the discovering entity will have obtained one or more remote
references to lookup services.

Figure 8: The Multicast Request Protocol

The Multicast Announcement Protocol
The multicast announcement protocol follows these steps:

1. Interested entities on the network listen for multicast
announcements of the existence of lookup services. If an
announcement of interest arrives at such an entity, it uses the
unicast discovery protocol to contact the given lookup service.

2. Lookup services prepare to take part in the unicast discovery
protocol (see below) and send multicast announcements of their
existence at regular intervals.

The Unicast Discovery Protocol
The unicast discovery protocol works as follows:

1. The lookup service establishes a TCP-based server, on which it
listens for incoming connections. When a connection is made by a
client, the lookup service reads in request data sent by the client; if

 44

the request is acceptable, the lookup service responds by sending
an object that implements the net.jini.core.lookup.ServiceRegistrar
interface over the connection.

2. An entity that wishes to contact a particular lookup service uses
known host and port information to establish a connection to that
service. It sends a discovery request and, if the request is accepted,
receives a ServiceRegistrar object in response.

6.1.2 Entry

Entries are designed to be used in distributed algorithms for which exact-match
lookup semantics are useful. An entry is a typed set of objects, each of which may be
tested for exact match with a template.

Operations
A service that uses entries will support methods that let you use entry objects. In

this document we will use the term "operation" for such methods. There are three types of
operations:

§ Store operations--operations that store one or more entries, usually
for future matches.

§ Match operations--operations that search for entries that match one
or more templates.

§ Fetch operations--operations that return one or more entries.
It is possible for a single method to provide more than one of the operation types.

For example, consider a method that returns an entry that matches a given template. Such
a method can be logically split into two operation types (match and fetch), so any
statements made in this specification about either operation type would apply to the
appropriate part of the method's behavior.

Serializing Entry Objects
Entry objects are typically not stored directly by an entry-using service (one that

supports one or more entry operations). The client of the service will typically turn an
Entry into an implementation-specific representation that includes a serialized form of the
entry's class and each of the entry's fields. (This transformation is typically not explicit
but is done by a client-side proxy object for the remote service.) It is these
implementation-specific forms that are typically stored and retrieved from the service.
These forms are not directly visible to the client, but their existence has important effects
on the operational contract. The semantics of this section apply to all operation types,
whether the above assumptions are true or not for a particular service.

Each entry has its fields serialized separately. In other words, if two fields of the
entry refer to the same object (directly or indirectly), the serialized form that is compared
for each field will have a separate copy of that object. This is true only of different fields
of an entry; if an object graph of a particular field refers to the same object twice, the
graph will be serialized and reconstituted with a single copy of that object.

 45

A fetch operation returns an entry that has been created by using the ent ry type's
no-arg constructor, and whose fields have been filled in from such a serialized form.
Thus, if two fields, directly or indirectly, refer to the same underlying object, the fetched
entry will have independent copies of the original underlying object.

This behavior, although not obvious, is both logically correct and practically
advantageous. Logically, the fields can refer to object graphs, but the entry is not itself a
graph of objects and so should not be reconstructed as one. An entry (relative to the
service) is a set of separate fields, not a unit of its own. From a practical standpoint,
viewing an entry as a single graph of objects requires a matching service to parse and
understand the serialized form, because the ordering of objects in the written entry will be
different from that in a template that can match it.

The serialized form for each field is a java.rmi.MarshalledObject object instance,
which provides an equals method that conforms to the above matching semantics for a
field. Marsha lledObject also attaches a codebase to class descriptions in the serialized
form, so classes written as part of an entry can be downloaded by a client when they are
retrieved from the service. In a store operation, the class of the entry type itself is also
written with a MarshalledObject, ensuring that it, too, may be downloaded from a
codebase.

Generally speaking, storing a remote reference to a non-persistent remote object
in an entry is risky. Because entries are stored in serialized form, entries stored in an
entry-based service will typically not participate in the garbage collection that keeps such
references valid. However, if the reference is not persistent because the referenced server
does not export persistent references, that garbage collection is the only way to ensure the
ongoing validity of a remote reference. If a field contains a reference to a non-persistent
remote object, either directly or indirectly, it is possible that the reference will no longer
be valid when it is deserialized. In such a case the client code must decide whether to
remove the entry from the entry-fetching service, to store the entry back into the service,
or to leave the service as it is.

In the Java(TM) 2 Platform, activatable object references fit this need for
persistent references. If you do not use a persistent type, you will have to handle the
above problems with remote references. You may choose instead to have your entries
store information sufficient to look up the current reference rather than putting actual
references into the entry.

Templates and Matching
Match operations use entry objects of a given type, whose fields can either have

values (references to objects) or wildcards (null references). When considering a template
T as a potential match against an entry E, fields with values in T must be matched exactly
by the value in the same field of E. Wildcards in T match any value in the same field of
E.

The type of E must be that of T or be a subtype of the type of T, in which case all
fields added by the subtype are considered to be wildcards. This enables a template to
match entries of any of its subtypes. If the matching is coupled with a fetch operation, the
fetched entry must have the type of E.

 46

The values of two fields match if MarshalledObject.equa ls returns true for their
MarshalledObject instances. This will happen if the bytes generated by their serialized
form match, ignoring differences of serialization stream implementation (such as
blocking factors for buffering). Class version differences that change the bytes generated
by serialization will cause objects not to match. Neither entries nor their fields are
matched using the Object.equals method or any other form of type-specific value
matching.

You can store an entry that has a null-valued field, but you cannot match
explicitly on a null value in that field, because null signals a wildcard field. If you have a
field in an entry that may be variously null or not, you can set the field to null in your
entry. If you need to write templates that distinguish between set and unset values for that
field, you can (for example) add a Boolean field that indicates whether the field is set and
use a Boolean value for that field in templates.

6.1.3 Distributed Leasing

The purpose of the leasing interfaces is to simplify and unify a particular style of
programming for distributed systems and applications. This style, in which a resource is
offered by one object in a distributed system and used by a second object in that system,
is based on a notion of granting a use to the resource for a certain period of time that is
negotiated by the two objects when access to the resource is first requested and given.
Such a grant is known as a lease and is meant to be similar to the notion of a lease used in
everyday life. As in everyday life, the negotiation of a lease entails responsibilities and
duties for both the grantor of the lease and the holder of the lease. Part of this
specification is a detailing of these responsibilities and duties, as well as a discussion of
when it is appropriate to use a lease in offering a distributed service.

There is no requirement that the leasing notions defined in this document be the
only time-based mechanism used in software. Leases are a part of the programmer's
arsenal, and other time-based techniques such as time-to-live, ping intervals, and keep-
alives can be useful in particular situations. Leasing is not meant to replace these other
techniques, but rather to enhance the set of tools available to the programmer of
distributed systems.

Leasing and Distributed Systems
Distributed systems differ fundamentally from non-distributed systems in that

there are situations in which different parts of a cooperating group are unable to
communicate, either because one of the members of the group has crashed or because the
connection between the members in the group has failed. This partial failure can happen
at any time and can be intermittent or long- lasting.

The possibility of partial failure greatly complicates the construction of
distributed systems in which components of the system that are not co- located provide
resources or other services to each other. The programming model that is used most often
in non-distributed computing, in which resources and services are granted until explicitly
freed or given up, is open to failures caused by the inability to successfully make the
explicit calls that cancel the use of the resource or system. Failure of this sort of system

 47

can result in resources never being freed, in services being delivered long after the
recipient of the service has forgotten that the service was requested, and in resource
consumption that can grow without bounds.

To avoid these problems, we introduce the notion of a lease. Rather than granting
services or resources until that grant has been explicitly cancelled by the party to which
the grant was made, a leased resource or service grant is time based. When the time for
the lease has expired, the service ends or the resource is freed. The time period for the
lease is determined when the lease is first granted, using a request/response form of
negotiation between the party wanting the lease and the lease grantor. Leases may be
renewed or cancelled before they expire by the holder of the lease, but in the case of no
action (or in the case of a network or participant failure), the lease simply expires. When
a lease expires, both the holder of the lease and the grantor of the lease know that the
service or resource has been reclaimed.

Although the notion of a lease was originally brought into the system as a way of
dealing with partial failure, the technique is also useful for dealing with another problem
faced by distributed systems. Distributed systems tend to be long- lived. In addition, since
distributed systems are often providing resources that are shared by numerous clients in
an uncoordinated fashion, such systems are much more difficult to shut down for
maintenance purposes than systems that reside on a single machine.

As a consequence of this, distributed systems, especially those with persistent
state, are prone to accumulations of outdated and unwanted information. The
accumulation of such information, which can include objects stored for future use and
subsequently forgotten, may be slow, but the trend is always upward. Over the
(comparatively) long life of a distributed system, such unwanted information can grow
without upper bound, taking up resources and compromising the performance of the
overall system.

A standard way of dealing with these problems is to consider the cleanup of
unused resources to be a system administration task. When such resources begin to get
scarce, a human administrator is given the task of finding resources that are no longer
needed and deleting them. This solution, however, is error prone (since the administrator
is often required to judge the use of a resource with no actual evidence about whether or
not the resource is being used) and tends to happen only when resource consumption has
gotten out of hand.

When such resources are leased, however, this accumulation of out-of-date
information does not occur, and resorting to manual cleanup methods is not needed.
Information or resources that are leased remain in the system only as long as the lease for
that information or resource is renewed. Thus information that is forgotten (through
either program error, inadvertence, or system crash) will be deleted after some finite time.
Note that this is not the same as garbage collection (although it is related in that it has to
do with freeing up resources), since the information that is leased is not of the sort that
would generally have any active reference to it. Rather, this is information that is stored
for (possible) later retrieval but is no longer of any interest to the party that originally
stored the information.

 48

This model of persistence is one that requires renewed proof of interest to
maintain the persistence. Information is kept (and resources used) only as long as
someone claims that the information is of interest (a claim that is shown by the act of
renewing the lease). The interval for which the resource may be consumed without a
proof of interest can vary, and is subject to negotiation by the party storing the
information (which has expectations for how long it will be interested in the information)
and the party in which the information is stored (which has requirements on how long it
is willing to store something without proof that some party is interested).

The notion of persistence of information is not one of storing the information on
stable storage (although it encompasses that notion). Persistent information, in this case,
includes any information that has a lifetime longer than the lifetime of the process in
which the request for storage originates.

Leasing also allows a form of programming in which the entity that reserves the
information or resource is not the same as the entity that makes use of the information or
resource. In such a model, a resource can be reserved (leased) by an entity on the
expectation that some other entity will use the resource over some period of time. Rather
than having to check back to see if the resource is used (or freed), a leased version of
such a reservation allows the entity granted the lease to forget about the resource.
Whether used or not, the resource will be freed when the lease has expired.

Leasing such information storage introduces a programming paradigm that is an
extension of the model used by most programmers today. The current model is essentially
one of infinite leasing, with information being removed from persistent stores only by the
active deletion of such information. Databases and filesystems are perhaps the best
known exemplars of such stores--both hold any information placed in them until the
information is explicitly deleted by some user or program.

Goals and Requirements
The requirements of this set of interfaces are:

§ To provide a simple way of indicating time-based resource
allocation or reservation

§ To provide a uniform way of renewing and cancelling leases
§ To show common patterns of use for interfaces using this set of

interfaces

6.1.4 Distributed Events

The purpose of the distributed event interfaces specified is to allow an object in
one JavaTM virtual machine (JVM) to register interest in the occurrence of some event
occurring in an object in some other JVM, perhaps running on a different physical
machine, and to receive a notification when an event of that kind occurs.

Distributed Events and Notifications
Programs based on an object that is reacting to a change of state somewhere

outside the object are common in a single address space. Such programs are often used

 49

for interactive applications in which user actions are modeled as events to which other
objects in the program react. Delivery of such local events can be assumed to be well
ordered, very fast, predictable, and reliable. Further, the entity that is interested in the
event can be assumed to always want to know about the event as soon as the event has
occurred.

The same style of programming is useful in distributed systems, where the object
reacting to an event is in a different JVM, perhaps on a different physical machine, from
the one on which the event occurred. Just as in the single-JVM case, the logic of such
programs is often reactive, with actions occurring in response to some change in state that
has occurred elsewhere.

A distributed event system has a different set of characteristics and requirements
than a single-address-space event system. Notifications of events from remote objects
may arrive in different orders on different clients, or may not arrive at all. The time it
takes for a notification to arrive may be long (in comparison to the time for computation
at either the object that generated the notification or the object interested in the
notification). There may be occasions in which the object wishing the event notification
does not wish to have that notification as soon as possible, but only on some schedule
determined by the recipient. There may even be times when the object that registered
interest in the event is not the object to which a notification of the event should be sent.

Unlike the single-address-space notion of an event, a distributed event cannot be
guaranteed to be delivered in a timely fashion. Because of the possibilities of network
delays or failures, the notification of an event may be delayed indefinitely and even lost
in the case of a distributed system.

Indeed, there are times in a distributed system when the object of a notification
may actively desire that the notification be delayed. In systems that allow object
activation (such as is allowed by Java Remote Method Invocation (RMI) in the Java 2
SDK, v1.2.2), an object might wish to be able to find out whether an event occurred but
not want that notification to cause an activation of the object if it is otherwise quiescent.
In such cases, the object receiving the event might wish the notification to be delayed
until the object requests notification delivery, or until the object has been activated for
some other reason.

Central to the notion of a distributed notification is the ability to place a third-
party object between the object that generates the notification and the party that
ultimately wishes to receive the notification. Such third parties, which can be strung
together in arbitrary ways, allow ways of off- loading notifications from objects,
implementing various delivery guarantees, storing of notifications until needed or desired
by a recipient, and the filtering and rerouting of notifications. In a distributed system in
which full applications are made up of components assembled to produce an overall
application, the third party may be more than a filter or storage spot for a notification; in
such systems it is possible that the third party is the final intended destination of the
notification.

Goals and Requirements
The requirements of this set of interfaces are to:

 50

§ Specify an interface that can be used to send a notification of the
occurrence of the event

§ Specify the information that must be contained in such a
notification

In addition, the fact that the interfaces are designed to be used by objects in
different virtual machines, perhaps separated by a network, imposes other requirements,
including:

§ Allowing various degrees of assurance on delivery of a notification
§ Support for different policies of scheduling notification
§ Explicitly allowing the interposition of objects that will collect,

hold, filter, and forward notifications

6.1.5 Transaction

Transactions are a fundamental tool for many kinds of computing. A transaction
allows a set of operations to be grouped in such a way that they either all succeed or all
fail; further, the operations in the set appear from outside the transaction to occur
simultaneously. Transactional behaviors are especially important in distributed
computing, where they provide a means for enforcing consistency over a set of operations
on one or more remote participants. If all the participants are members of a transaction,
one response to a remote failure is to abort the transaction, thereby ensuring that no
partial results are written.

Traditional transaction systems often center around transaction processing
monitors that ensure that the correct implementation of transactional semantics is
provided by all of the participants in a transaction. Our approach to transactional
semantics is somewhat different. Within our system we leave it to the individual objects
that take part in a transaction to implement the transactional semantics in the way that is
best for that kind of object. What the system primarily provides is the coordination
mechanism that those objects can use to communicate the information necessary for the
set of objects to agree on the transaction. The goal of this system is to provide the
minimal set of protocols and interfaces that allow objects to implement transaction
semantics rather than the maximal set of interfaces, protocols, and policies that ensure the
correctness of any possible transaction semantics. So the completion protocol is separate
from the semantics of particular transactions.

The two-phase commit protocol defines the communication patterns that allow
distributed objects and resources to wrap a set of operations in such a way that they
appear to be a single operation. The protocol requires a manager that will enable
consistent resolution of the operations by a guarantee that all participants will eventually
know whether they should commit the operations (roll forward) or abort them (roll
backward). A participant can be any object that supports the participant contract by
implementing the appropriate interface. Participants are not limited to databases or other
persistent storage services.

Clients and servers will also need to depend on specific transaction semantics.
The default transaction semantics for participants is also defined in this document.

 51

The two-phase commit protocol presented here, while common in many
traditional transaction systems, has the potential to be used in more than just traditional
transaction processing applications. Since the semantics of the individual operations and
the mechanisms that are used to ensure various properties of the meta-operation joined by
the protocol are left up to the individual objects, variations of the usual properties
required by transaction processing systems are possible using this protocol, as long as
those variances can be resolved by this protocol. A group of objects could use the
protocol, for example, as part of a process allowing synchronization of data that have
been allowed to drift for efficiency reasons. While this use is not generally considered to
be a classical use of transactions, the protocol defined here could be used for this
purpose. Some variations will not be possible under these protocols, requiring
subinterfaces and subclasses of the ones provided or entirely new interfaces and classes.

Because of the possibility of application to situations that are beyond the usual
use of transactions, calling the two-phase commit protocol a transaction mechanism is
somewhat misleading. However, since the most common use of such a protocol is in a
transactional setting, and because we do define a particular set of default transaction
semantics, we will follow the usual naming conventions used in such systems rather than
attempting to invent a new, parallel vocabulary.

The classes and interfaces defined by this specification are in the packages
net.jini.core.transaction and net.jini.core.transaction.server. In this document you will
usually see these types used without a package prefix; as each type is defined, the
package it is in is specified.

Model and Terms
A transaction is created and overseen by a manager. Each manager implements

the interface TransactionManager. Each transaction is represented by a long identifier
that is unique with respect to the transaction's manager.

Semantics are represented by semantic transaction objects, such as the ones that
represent the default semantics for services. Even though the manager needs to know
only how to complete transactions, clients and participants need to share a common view
of the semantics of the transaction. Therefore clients typically create, pass, and operate on
semantic objects that contain the transaction identifier instead of using the transaction's
identifier directly, and transactable services typically accept parameters of a particular
semantic type, such as the Transaction interface used for the default semantics.

As shown in the next figure, a client asks the manager to create a transaction,
typically by using a semantic factory class such as TransactionFactory to create a
semantic object. The semantic object created is then passed as a parameter when
performing operations on a service. If the service is to accept this transaction and govern
its operations thereby, it must join the transaction as a participant. Participants in a
transaction must implement the TransactionParticipant interface. Particular operations
associated with a given transaction are said to be performed under that transaction. The
client that created the transaction might or might not be a participant in the transaction.

 52

Figure 9: Transaction Creation and Use

A transaction completes when any entity either commits or aborts the transaction.

If a transaction commits successfully, then all operations performed under that
transaction will complete. Aborting a transaction means that all operations performed
under that transaction will appear never to have happened.

Committing a transaction requires each participant to vote, where a vote is either
prepared (ready to commit), not changed (read-only), or aborted (the transaction should
be aborted). If all participants vote "prepared" or "not changed," the transaction manager
will tell each "prepared" participant to roll forward, thus committing the changes.
Participants that voted "not changed" need do nothing more. If the transaction is ever
aborted, the participants are told to roll back any changes made under the transaction.

6.1.6 Lookup Service

The JiniTM lookup service is a fundamental part of the federation infrastructure for
a djinn, the group of devices, resources, and users that are joined by the Jini technology
infrastructure. The lookup service provides a central registry of services available within
the djinn. This lookup service is a primary means for programs to find services within the
djinn, and is the foundation for providing user interfaces through which users and
administrators can discover and interact with services in the djinn.

Although the primary purpose of this specification is to define the interface to the
djinn's central service registry, the interfaces defined here can readily be used in other
service registries.

The Lookup Service Model
The lookup service maintains a flat collection of service items. Each service item

represents an instance of a service available within the djinn. The item contains the RMI
stub (if the service is implemented as a remote object) or other object (if the service
makes use of a local proxy) that programs use to access the service, and an extensible
collection of attributes that describe the service or provide secondary interfaces to the
service.

 53

When a new service is created (for example, when a new device is added to the
djinn), the service registers itself with the djinn's lookup service, providing an initial
collection of attributes. For example, a printer might include attributes indicating speed
(in pages per minute), resolution (in dots per inch), and whether duplex printing is
supported. Among the attributes might be an ind icator that the service is new and needs
to be configured.

An administrator uses the event mechanism of the lookup service to receive
notifications as new services are registered. To configure the service, the administrator
might look for an attribute that provides an applet for this purpose. The administrator
might also use an applet to add new attributes, such as the physical location of the service
and a common name for it; the service would receive these attribute change requests from
the applet and respond by making the changes at the lookup service.

Programs (including other services) that need a particular type of service can use
the lookup service to find an instance. A match can be made based on the specific data
types for the JavaTM programming language implemented by the service as well as the
specific attributes attached to the service. For example, a program that needs to make use
of transactions might look for a service that supports the type
net.jini.core.transaction.server.TransactionManager and might further qualify the match
by desired location.

Although the collection of service items is flat, a wide variety of hierarchical
views can be imposed on the collection by aggregating items according to service types
and attributes. The lookup service provides a set of methods to enable incremental
exploration of the collection, and a variety of user interfaces can be built by using these
methods, allowing users and administrators to browse. Once an appropriate service is
found, the user might interact with the service by loading a user interface applet, attached
as another attribute on the item.

If a service encounters some problem that needs administrative attention, such as
a printer running out of toner, the service can add an attribute that indicates what the
problem is. Administrators again use the event mechanism to receive notification of such
problems.

6.2 Jabber vs. Proxy Communication

 For the implementation of the message communication we took into consideration
2 approaches: Jabber framework and Proxy communication.

6.2.1 Jabber

 Jabber is a set of streaming XML protocols and technologies that enable any two
entities on the Internet to exchange messages, presence, and other structured information
in close to real time. The first Jabber application is an instant messaging (IM) network
that offers functionality similar to legacy IM services such as AIM, ICQ, MSN, and

 54

Yahoo. However, Jabber is more than just IM, and Jabber technologies offer several key
advantages:

• Open -- the Jabber protocols are free, open, public, and easily understandable; in
addition, multiple implementations exist for clients, servers, components, and
code libraries.

• Standard -- the Internet Engineering Task Force (IETF) has formalized the core
XML streaming protocols as an approved instant messaging and presence
technology under the name of XMPP, and the XMPP specifications are moving
forward rapidly within the IETF's standards process.

• Proven -- the first Jabber technologies were developed by Jeremie Miller in 1998
and are now quite stable; hundreds of developers are working on Jabber
technologies, there are tens of thousands of Jabber servers running on the Internet
today, and millions of people use Jabber for IM.

• Decentralized -- the architecture of the Jabber network is similar to email; as a
result, anyone can run their own Jabber server, enabling individuals and
organizations to take control of their IM experience.

• Secure -- any Jabber server may be isolated from the public Jabber network (e.g.,
on a company intranet), and robust security using SASL and TLS has been built
into the core XMPP specifications.

• Extensible -- using the power of XML namespaces, anyone can build custom
functionality on top of the core protocols; to maintain interoperability, common
extens ions are managed by the Jabber Software Foundation.

• Flexible -- Jabber applications beyond IM include network management, content
syndication, collaboration tools, file sharing, gaming, and remote systems
monitoring.

• Diverse -- a wide range of companies and open-source projects use the Jabber
protocols to build and deploy real- time applications and services; you will never
get "locked in" when you use Jabber technologies.

Jabber uses a client-server communication. We prefer OpenIm, on open source
implementation for the server because of its key features, useful for our algorithms:
stability, modularity - component oriented using Apache Avalon Merlin manager
(integration with LDAP or DB can be easily done via users-manager and storage API),
most of classical IM functions are supported: message, presence, roster, subscription,
vCard, offline storage, oob (lan file transfer), browse and search, server to server
communications, secure connections via SSL, message logger and recorder (for statistic
usage or supervision).

6.2.2 Proxy Service

 This service intermediates communication between MonALISA Service and its
clients. It registers as a Jini client being, in this way, found by clients. It also finds farms
in given lookup services and connects with them. Clients send request messages to the
known proxy, which forwards them to the specified farm.

This service was introduced because of the following reasons:

 55

• it limits the number of TCP connections to farms. Without this proxy, every
client starts its TCP connection with every found farm. With a big number
of clients, a farm could be overloaded. But having a number of proxy
services, the number of farm clients is much greater

• the number of messages between farms and clients decreases. For example,
without this proxy, every client received from every farm the same filter
messages, but on its TCP connection. Using the proxy service, this kind of
messages are transmitted only between the farms and the proxy service and
then spread by it to all known clients interested in those filters.

• the MonALISA service can now run behind a firewall without any
problem. If the proxy cannot connect to the found farm, then the farm
initiates the TCP connection with the proxy announcing its presence.

These proxy services run on different machines and register with known lookup
services. The client finds these services and, getting the proxys attributes, makes a
decision on which to choose. After choosing one, the communication with farms is
intermediated by this one.

If the connection with the chosen proxy has died, the client tries to find another
one and initiates a new dialog with farms through the new one.

6.2.3 Solution

Although Jabber offers many enhancements and it already has the infrastructure
for message communication we chose to use the proxies for the communication in order
to use the already existing TCP connections between the proxy and the farms. Each
Jabber server would connect through TCP to each farm and thus the number of
connections to the farms for a wide large netowork would increase dramatically.

We also studied the possibility of installing a Jabber Server on each Proxy but this
would end up in one connection to the proxy, so the clients would be hidden and not
directly accesible to the jabber server as the protocols ensures. In this case we should
have changed the source code of OpenIm in order to make the clients transparent to the
Jabber Server using just one connection to the Proxy; this would imply a greater number
of messages in the network, suplimentary traffic over the network, thus not a reliable
solution.

Instead we use the proxy for routing the message. To achieve this we had to
modify the classes assuring the communication protocol between farms and proxies in
MonALISA and introduce our own type of message: monMessageMulticast, which is an
implementation of the monMessage interface.

 56

6.3 Implementation Aspects

The implementation of the presented algorithms was focused on two main
directions: communication architecture and the development of the K-SPH algorithm.

6.3.1 Message Communication Arhitecture

 During this stage we were concerned with the integration of the message
communication of the algorithm in the existing MonALISA framework, namely to make
possible the communication between farms, as in the existing stage the communication is
possible only between farms and proxy.

 To achieve this we developed specific types of messages (monMessageMulticast)
derived from the existent interfaces and enriched the proxy implementation with new
message listeners in order to route corectly the new types of messages.

 57

Figure 10: Components of lia.Monitor.monitor package which needed updates.

 We also added a pool of messages in the DataCache, which are then routed using
the appropiate listeners.

6.3.2 Multicast Algorithm Implementation

 The development of the K-SPH algorithm in Java follows the steps presented in
section 4: discovery and connection. First we need a synchronizing step in order to wait
for all the farms to be online and start the agorithm.

 We use two major listeners:

- for the messages inside a fragment

- for the messages outside a fragemnt (interfragment communication)

and take the appropiate decisions considering the type of message arrived as mentioned
in the algorithm description.

 The algorithm ends when no best farm to connect to is found, thus we have only
one fragment which is the multicast tree. The farms are anounced by an appropiate
message about the algorithm’s termination.

 58

Figure 11: Comparative dependecies representations of the multicast and D MST
implementations.

7. Conclusions

 We compare our algorithms by execution against the baseline algorithm, the
pruned minimum spanning­tree heuristic, which is the basis of many algorithms for
finding multicast trees. We analyze the competitiveness (the ratio of the sum of the
heuristic tree's edge weights to that of the best solution found) of the heuristic algorithms
upon the pruned MST.

To evaluate the distributed heuristics presented in the Section 4.1, we
implemented the algorithms and performed extensive executions on different generated
test networks used by MonALISA. We choose the distributed MST algorithm as our
baseline algorithm to compare the results. This algorithm was used to produce a
minimum spanning tree of the network graph, which was then pruned to obtain a Steiner
tree. We chose this MST algorithm as our baseline algorithm because the majority of
previous distributed algorithms reviewed find multicast trees are based on finding
minimal spanning trees. This algorithm differs from the heuristic algorithm, distributed
K­SPH , in the fact that all the network nodes must participate in the execution of the

 59

algorithm in the former, while only the multicast members and nodes in the vicinity of
the multicast tree being set up execute the algorithm in the latter.

This section summarizes the execution results and compares the algorithms in
terms of their convergence time, competitiveness, and the number of messages
exchanged.

7.1 Evaluation Methodology

Each algorithm was run on a total of test networks. The test networks have 10%
or 30% of its nodes in the multicast group because multicast applications running on such
a WAN are likely to involve only a minority of nodes in the network.

We performed different executions on each generated graph by varying the
multicast group size in diffenret ways.The nodes in a multicast group were chosen
randomly in each case. The random numbers were chosen from a uniform distribution.

7.2 Metrics Tested

The metrics we use for comparison are the competitiveness, convergence time,
and messages passed. Competitiveness is the ratio of heuristic tree cost Ct to that of the
best solution Cbest found by any heuristic. To determine the best solution, we considered
solutions produced by the distributed heuristics described in this diploma paper as well as
serial heuristics described in other articles. We use the best heuristic solution found for
each test network rather than an optimal solution because explicit algorithms to find
optimal solutions are prohibitively expensive on large networks.

The convergence time was found by measuring the elapsed time in the simulated
network from the start of simulation to the time at which the last message reaches its
destination. Since message­passing delays are likely to dominate over processing delays
on the convergence time of the algorithm in a wide­area network, we considered only the
former in computing the simulation time.

We used the distance between two nodes as the delay to pass a message between
them. Messages passed is the total number of messages passed between nodes before
convergence.

7.3 Simulation Results

Having described the algorithms and the simulation environment, we now turn to
the results of our simulations.

The distributed versions of K­SPH provide inferior solutions compared to their
centralized versions because of the lack of global topology information in each node in
the former. However, the degradation in the competitiveness was small in our test
networks. In fact, the competitiveness produced by distributed K­SPH was often superior
to that of centralized SPH.

 60

When comparing the competitiveness, heuristics K­SPH consistently
outperformed the pruned MST heuristic, in both centralized and distributed cases. This
result is consistent with the known theoretical upper bounds on the heuristics. It has been
shown that cost of a solution produced by K­SPH is within twice the cost of an optimal
solution. In contrast, the ratio between a solution produced by pruning a minimum
spanning tree and an optimal solution can be as large as the number of non­multicast
nodes. In our case, the cost of pruned MST solutions was rarely worse than twice that of
the best solution found, but was often significantly worse than that produced by shortest
path heuristics.

We found that 90% of the solutions produced by distributed K­SPH were within
4% of the best in terms of their cost. In comparison, when the best 90% of the solutions
produced by the pruned MST algorithm were considered, some of the solutions had costs
as high as 50% more than that of the optimal algorithm. Thus, if competitiveness is the
most important criterion in the choice of the algorithm, distributed K­SPH is the heuristic
of choice.

Heuristic K­SPH also enjoys the advantage that it doesn’t require the participation
of all the nodes in the network. Only the nodes in the multicast tree and within its
neighborhood need to participate in the execution of the algorithm. The pruned minimum
spanning tree algorithm, on the other hand, requires participation from every node of the
network, a cond ition difficult to satisfy in practice in a large wide­area network.
However, limiting the execution of the algorithm to a subset of the network nodes results
in a substantial increase in the number of messages generated in our algorithms, with a
corresponding increase in convergence time. This convergence time may be reduced by
streamlining our algorithms.

Viewed from the perspective of convergence­time, however, the pruned MST
heuristic enjoys an advantage over shortest path heuristics K­SPH. The convergence time
for the solutions produced by pruned MST algorithm fell well within a much narrower
range as compared to the results for distributed K­SPH.

Distributed K­SPH allows multiple fragments of the tree to combine in parallel.
This allows distributed K­SPH to provide lower convergence times without increasing
the number of messages substantially. Even though the convergence times for distributed
K­SPH are higher than those of the pruned MST algorithm by as much as 10 times, we
believe that the former can be brought down by careful optimization of distributed
K­SPH.

7.4 Concluding Remarks

In this paper we introduced the distributed heuristics based on shortest path
Steiner hueristics, and evaluated their performance relative to to a baseline pruned
minimum spanning­tree heuristic. The primary advantage of our distributed algorithms
over previous algorithms is that they require participation from only the nodes in the
multicast tree and within their neighborhood.

 61

The heuristics developed are an improvement over existing distributed Steiner
heuristics based on the minimum spanning tree for two reasons: they produce solutions of
superior quality in most cases and requires the participation of only a subset of network
nodes. Our results show that the competitiveness of the solutions produced by our
algorithms were, on the average, at least 25 percent better in comparison to those
produced by the pruned spanning­tree approach. In addition, the competitiveness found
by our algorithms in almost all cases was within 10% of the best solution found by any of
the Steiner heuristics considered, including both centralized or distributed algorithms.

8. Future Work

 We are working on optimizig the current implementation of the algorithm,
especially trying to accelerate the convergence time and reduce the number of message
exchanged. We also continue to add a monitoring tool for the multicast and a specifing
logging interface in order to make the results more visible and reusable.

 The goal of the project is to integrate the multicast and MST agents in a more
generic agent communication platform developed for the future versions of MonALISA.

 Also, we are working on a distributed version of the presented genetic algorithm.

I would like to thank Mr. Valentin Cristea and Mr. Iosif Legrand who coordinated
scientificaly this work and also Mihaela Toarta, Ramiro Voicu, and Catalin Carstoiu for
their continous support along the development of this diploma project.

 62

Bibliography

[1] A. Ballardie, Core Based Trees (CBT) Multicast Routing Architecture, RFC
2201, September 1997.

[2] K. Bharath-Kumar and J. M. Jaftie, “Routing to Multiple Destinations in
Computer Networks:’ LEEE Trans. Cornrnurn.,vol.COM-31, pp. 343-351,
1983.

[3] R. Cohen, “Smooth Intentional Rerouting and its Applications in ATM
Networks,” IEEE INFOCOM, 1994, pp. 1490-1497.

[4] T. H. Cormen, C. E. Leiserson and R. L. Rivest, Introduction to Algoritlvns,
MIT Press, 1990.

[5] Y. K. Dafat and R. M. Metcatfe, “Reverse Path Forwarding of Broadcast
Packets,” Coorrnurrications of the ACM, vol. 21, no. 12, pp. 1040-1048,
1978.

[6] S. Deering, et. al., Protocol Independent Multicast Version 2, Dense Mode
Specification, work in progress.

[7] J. M. S. Dear, “Multicasting in The Asynchronous Transfer Mode
Environment,” Computer Laboratory Technical Report, no. 298, University
Cambridge, 1993.

[8] D. Estrin, et. at., Protocol Independent Multicast-Sparse Mode (PIM-SM):
Protocol Specification, RFC 2117, June 1997.

[9] M. IMASE and B. M. Waxmarr, “Dynamic Steiner Tree Problem,” SIAM
[10] R. M. Karp, “Reducibility among Combinatoriat Problems,” in Miller and

Thatcher (Eds.), Complexity of Computer Computations, Plenum Press, New
York, 1972, pp. 85-103.

[11] L. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for Steiner
Trees,” Acts Informarica, vol. 15, pp. 141-145, 1981.

[12] H. Mehlhorn, “A Fsster Approximation Algorithm for the Steiner Problem
in Graphs,” Infom. Process. Lett., vol. 27, no. 3, pp. 125–128, 1988.

[13] J. Plesnik, “A Bound for the Steiner Tree Problem in Graphs,” Math.
Slovaca, vol. 31, no. 2, pp. 155–163, 1981.

[14] R. C. Prim, “Shortest Connection Networks and Some Genertilzations,”
Bell Syst. Tech. J. 36, pp. 1389-1401, 1957.

[15] T. Pusateri, Distance Vector Multicast Routing Protocol, work in progress.
[16] V. J, Rayward-Smith, “The Computation of Nearly Minimal Steiner Trees

in Graphs,” Int. J Math. Ed. Sci. Tech., vol. 14, no. 1, pp. 15–23, 1983.
[17] V. J, Rayward-Smith and A. Clare, “On Finding Steiner Vertices,”

Networks, vol. 16, pp. 283–294, 1986.
[18] H. Takahashi and A. Matsuyama, “An Approximate Solution for the

Steiner Problem in Graphs,” Math. Japonic, vol. 24, no. 6, pp. 573-577, 1980.

 63

[19] H. Tode, Y. Sakai, M. Yamamoto, H. Okada and Y. Tezuka,
“MulticastRouting Algorithm for Nodat Load Balancing,” IEEE INFOCOM,
1992, pp. 2086-2095.

[20] M. Waxman, “Routing of Mukipoint Connections,” IEEE Journal on
Selected Area in Communications, vol. 6, no. 9, pp. 1617–1622, December
1988

[21] M. Waxman, “Performance Evahration of Multipoint Routing
Algorithms,” IEEE INFOCOM, 1993, pp. 980–986.

[22] P. Winter, “Steiner Problem in Networks: A Survey,” Networks, vol. 17,
pp. 129-167, 1987.

[23] J. Disc. Math, vol. 4, no. 3, pp. 369–384, August, 1991.
[24] E. N. Gilbert, “Random Graphs,” The Annals of Mathematical Statistics,

vol. 30, pp. 1141–1444, 1959.
[25] J. Kadtie, “Minimizing Packet Copies in Multicast Routing by Exploiting

Geographic Spread,” ACM SIGCOMM Computer Communication Review,
vol 24, pp. 47–63, 1994.

[26] J. Kadirire and G. Knight, “Comparison of Dynamic Multicast Routing
Algorithms for Wide-Area Packet Switched (Asynchronous Transfer Mode)
Networks” IEEE INFOCOM, 1995, pp. 212-219.

[27] R. M. Karp, “Reducibility among Combinatoriat Problems,” in Miller and
Thatcher (Eds.), Complexity of Computer Computations, Plenum Press, New
York, 1972, pp. 85-103.

[28] L. Kou, G. Markowsky, and L. Berman, “A Fast Algorithm for Steiner
Trees,” Acts Informarica, vol. 15, pp. 141-145, 1981.

[29] H. Mehlhorn, “A Faster Approximation Algorithm for the Steiner Problem
in Graphs,” Infom. Process. Lett., vol. 27, no. 3, pp. 125–128, 1988.

[30] J. Plesnik, “A Bound for the Steiner Tree Problem in Graphs,” Math.
Slovaca, vol. 31, no. 2, pp. 155–163, 1981.

[31] R. C. Prim, “Shortest Connection Networks and Some Genertilzations,”
Bell Syst. Tech. J. 36, pp. 1389-1401, 1957.

[32] T. Pusateri, Distance Vector Multicast Routing Protocol, work in progress.
[33] V. J, Rayward-Smith, “The Computation of Nearly Minimal Steiner Trees

in Graphs,” Int. J Math. Ed. Sci. Tech., vol. 14, no. 1, pp. 15–23, 1983.
[34] V. J, Rayward-Smith and A. Clare, “On Finding Steiner Vertices,”

Networks, vol. 16, pp. 283–294, 1986.
[35] H. Takahashi and A. Matsuyama, “An Approximate Solution for the

Steiner Problem in Graphs,” Math. Japonic, vol. 24, no. 6, pp. 573-577, 1980.
[36] H. Tode, Y. Sakai, M. Yamamoto, H. Okada and Y. Tezuka, “Multicast

Routing Algorithm for Nodat Load Balancing,” IEEE INFOCOM, 1992, pp.
2086-2095.

[37] B. M. Waxman, “Routing of Mukipoint Connections,” IEEE Journal on
Selected Area in Communications, vol. 6, no. 9, pp. 1617–1622, December
1988

[38] B. M. Waxman, “Performance Evahration of Multipoint Routing
Algorithms,” IEEE INFOCOM, 1993, pp. 980–986.

 64

[39] P. Winter, “Steiner Problem in Networks: A Survey,” Networks, vol. 17,
pp. 129-167, 1987.

[40] K. Bharath­Kumar and Jaffe. ``Routing to multiple destinations in
computer networks,'' IEEE Transactions on Communications, vol. COM­31,
no. 3, pp. 343--351, Mar. 1983.

[41] G. Chen, M. Houle, and M. Kuo. ``The Steiner problem in dis tributed
computing systems,'' Information Sciences, vol. 74, no. 1­2, pp. 73--96, Oct.
1993.

[42] R. Gallager, P. Humblet, and P. Spira. ``A distributed algorithm for
minimum­weight spanning trees,'' ACM Transactions on Programming
Languages and Systems, vol. 5, no. 1, pp. 66--77, Jan. 1983.

[43] P. Humblet. ``Another adaptive distributed shortest path algorithm,''
IEEE/ACM Transactions on Communications, vol. 39, no. 6, pp. 995--1003,
Jun. 1991.

[44] F. Hwang and D. Richards. ``Steiner tree problems,'' Networks, vol. 22,
pp. 55--89, 1992.

[45] V. Kompella, J. Pasquale, and G. Polyzos. ``Two distributed algo rithms
for the constrained Steiner tree problem,'' in Proc. Comput. Commun. and
Netw., San Diego, CA, Jun. 1993.

[46] M. Smith and P. Winter. ``Path­distance heuristics for the Steiner problem
in undirected networks,'' Algorithmica, vol. 7, no. 2­3, pp. 309--327, 1992.

[47] H. Takahashi and A. Matsuyama. ``An approximate solution for the
Steiner problem in graphs,'' Math. Japonica, vol. 24, no. 6, pp. 573--577,
1980.

[48] S. Voss. ``Steiner's problem in graphs: Heuristic methods,'' Discrete
Applied Mathematics, vol. 40, pp. 45--72, 1992.

[49] P. Winter. ``Steiner problem in networks: A survey,'' Networks, vol. 17,
no. 2, pp. 129--167, 1987.

[50] H.B. Newman, I.C. Legrand, J.J. Bunn, “A Distributed Agent-based
Architecture for Dynamic Services” CHEP 2001, Beijing, Sept 2001,

[51] Julian Bunn and Harvey Newman Data Intensive Grids for High Energy
Physics Grid Computing: Making the Global Infrastructure a Reality, edited
by Fran Berman, Geoffrey Fox and Tony Hey, March 2003 by Wiley

[52] Nancy A. Lynch, Distributed Algorithms, Morgan Kauffman Publishers,
1996

[53] Michael T. Goodrich, Roberto Tamassia, Algorithm Design, John Wiley
& Sons, 2001

[54] H.B. Newman, I.C. Legrand A Self-Organizing Neural Network for Job
Scheduling in Distributed Systems CMS NOTE 2001/009, January 8, 2001

 65

Appendix

Appendix 1: monAgentMessage.java

/*

 * Created on Jun 11, 2004

 *

 * To change the template for this generated file go to

 * Window>Preferences>Java>Code Generation>Code and Comments

 */

package lia.Monitor.monitor;

import net.jini.core.lookup.ServiceID;

/**

 * @author ceainegru

 *

 * To change the template for this generated type comment go to

 * Window>Preferences>Java>Code Generation>Code and Comments

 */

public abstract class monAgentMessage implements java.io.Serializable{

 public ServiceID fromFarmServiceID=null;

 public ServiceID toFarmServiceID=null;

 public abstract ServiceID getDestinationServiceID();

 public abstract ServiceID getSourceServiceID();

 public monAgentMessage(){

 }

}

 66

Appendix 2: monMessageMulticast.java

/*

 * Created on Jun 16, 2004

 *

 * To change the template for this generated file go to

 * Window>Preferences>Java>Code Generation>Code and Comments

 */

package lia.Monitor.monitor;

import net.jini.core.lookup.ServiceID;

import lia.Monitor.monitor.monAgentMessage;

/**

 * @author ceainegru

 *

 * To change the template for this generated type comment go to

 * Window>Preferences>Java>Code Generation>Code and Comments

 */

public class monMessageMulticast extends monAgentMessage implements
java.io.Serializable{

 public ServiceID fromFarmServiceID;

 public ServiceID toFarmServiceID;

 public ServiceID fragmentLeader;

 public ServiceID bestFarmLeader;

 public Double bestFarmValue;

 //constructori

 public monMessageMulticast(){

 }

 public monMessageMulticast(ServiceID fromFarmServiceID, ServiceID
toFarmServiceID,ServiceID bestFarmLeader,Double bestFarmValue){

 this.fromFarmServiceID = fromFarmServiceID;

 67

 this.toFarmServiceID = toFarmServiceID;

 this.bestFarmLeader=bestFarmLeader;

 this.bestFarmValue=bestFarmValue;

 }

 public monMessageMulticast(ServiceID fromFarmServiceID, ServiceID
toFarmServiceID){

 this.fromFarmServiceID = fromFarmServiceID;

 this.toFarmServiceID = toFarmServiceID;

 }

 public monMessageMulticast(ServiceID fromFarmServiceID,ServiceID
toFarmServiceID,ServiceID fragmentLeader){

 this.fromFarmServiceID=fromFarmServiceID;

 this.toFarmServiceID=toFarmServiceID;

 this.fragmentLeader=fragmentLeader;

 }

 public ServiceID getDestinationServiceID(){

 return toFarmServiceID;

 }

 public ServiceID getSourceServiceID(){

 return fromFarmServiceID;

 }

 public ServiceID getFragmentLeader(){

 return fragmentLeader;

 }

 public ServiceID getBestFarmLeader(){

 return bestFarmLeader;

 }

 public double getBestFarmValue(){

 return bestFarmValue.doubleValue();

 }}

 68

Appendix 3: FarmAgentMulticast.java

/*

 * Created on Jun 17, 2004

 *

 * To change the template for this generated file go to

 * Window>Preferences>Java>Code Generation>Code and Comments

 */

package lia.Monitor.FarmAgents;

import java.util.Hashtable;

import java.util.Vector;

import net.jini.core.lookup.ServiceID;

import net.jini.discovery.LookupDiscoveryManager;

import java.util.logging.Logger;

import java.util.logging.Level;

import java.util.Comparator;

import java.util.Collections;

import lia.Monitor.DataCache.ProxyWorker;

import lia.Monitor.monitor.FarmMessagesListener;

import lia.Monitor.JiniSerFarmMon.RegFarmMonitor;

import lia.Monitor.JiniSerFarmMon.MLLUSHelper;

import lia.Monitor.monitor.monPredicate;

import lia.Monitor.DataCache.Cache;

import lia.Monitor.monitor.ExtendedResult;

import lia.Monitor.monitor.monMessage;

import lia.Monitor.monitor.monMessageMulticast;

/**

 * @author ceainegru

 *

 * To change the template for this generated type comment go to

 * Window>Preferences>Java>Code Generation>Code and Comments

 69

 */

public class FarmAgentMulticast {

 /** Logger Name */

 private static final transient String COMPONENT ="lia.Monitor.FarmAgents";

 /** The Logger */

 private static final transient Logger logger = Logger.getLogger(COMPONENT);

 private LookupDiscoveryManager ldm ;

 //obiect folosit pentru a rezolva IP sau numele host-ul unei ferme cu ServiceID-ul
corespunzator aceesteia

 private MLLUSHelper resolver;

 //obiect ce contine pool-ul de mesaje care ajung pe proxy si care realizeaza
interogarile si

 //actualizarile bazei de date folosind predicatele cu care se inscriu clientii

 protected Cache dataStore;

 protected RegFarmMonitor host ;

 //ID-ul fermei curente

 protected ServiceID hostServiceID ;

 //vectorul fermelor cu care suntem conectati

 protected Vector farmsVector;

 //leaderul fragmentului

 protected ServiceID fragmentLeader;

 //parintele nodului curent in fragment

 protected ServiceID parent;

 //worker folosit pentru comunicatia cu proxy

 protected ProxyWorker proxyWorker;

 //starea algoritmului

 protected int state;

 private final int NOT_STARTED=-1;

 private final int CONNECTING=1;

 private final int DISCOVERY=2;

 70

 private final int FINISHED=3;

 //vector de sincronizare

 protected Vector sync;

 //legaturile cu fermele care fac parte din arborele de multicast

 protected Vector MulticastFarmList;

 protected Hashtable farms;

 //id-ul fermei din alt fragment cu care incercam unirea

 protected ExtendedResult bestFarmRes;

 protected ServiceID bestFarm;

 //delay-ul gasit pentru aceasta ferma

 protected double bestFarmValue;

 //contor al mesajelor primite de la copii

 private int count;

 //listener pentru mesajele de sincronizare

 protected SyncFarmMessagesListener syncListener;

 //listener pentru mesajele exterioare fragmentului

 protected OutFragmentFarmMessagesListener outListener;

 //listener pentru mesajele interioare fragmentului

 protected InFragmentFarmMessagesListener inListener;

 //constructor

 public FarmAgentMulticast(){

 farmsVector = new Vector();

 MulticastFarmList = new Vector();

 sync=new Vector();

 state=NOT_STARTED;

 farms=new Hashtable();

 }

 //functie care realizeaza procesarie initiale

 public void init(LookupDiscoveryManager ldm, RegFarmMonitor host, ServiceID
hostServiceID){

 this.ldm=ldm;

 this.host=host;

 this.hostServiceID=hostServiceID;

 this.dataStore=(Cache) host.dataStore;

 71

 outListener=new OutFragmentFarmMessagesListener();

 inListener=new InFragmentFarmMessagesListener();

 syncListener= new SyncFarmMessagesListener();

 //demareaza thread-ul pentru sincronizare

 syncListener.start();

 dataStore.setInFragmentListener(inListener);

 dataStore.setOutFragmentListener(outListener);

 dataStore.setSyncListener(syncListener);

 }

 //functie ce realizeaza trimiterea unui mesaj monMessageMulticast de tipul

 //indicat de tag folosind

 //functiile de comunicatie definite de proxyWorker, mesajul fiind impachetat

 //intr-un mesaj generic de tip monMessage (care contine ca si obiect in campul

 //tag.ident mesajul monMessageMulticast propriu-zis)

 private void sendMessage(monMessageMulticast Mmsg,String tag){

 logger.log(Level.INFO,"send message "+tag+" to
"+Mmsg.getDestinationServiceID());

 monMessage msg=new monMessage(tag,Mmsg,null);

 proxyWorker.getProxyTCPClientWorker().sendMessage(msg);

 }

 //thread ce asigura sincronizarea initiala a fermelor. Aceasta este necesara
deoarece fermele apar

 //la momente diferite in retea iar algoritmul trebuie sa isi inceapa executia in
momentul cand toate

 //cunosc existenta celorlalte

 private class SyncFarmMessagesListener extends Thread implements
FarmMessagesListener{

 private boolean stop=false;

 public synchronized void notify(monMessage msg){

 monMessageMulticast Mmsg=(monMessageMulticast)msg.ident;

 if(msg.tag.compareTo("SYNC")!=0)

 logger.log(Level.INFO,"received "+msg.tag+"
from "+Mmsg.getSourceServiceID()+" fragmentLeader="+fragmentLeader);

 72

 //la primirea unui mesaj de tip SYNC...

 if(msg.tag.equals("SYNC")){

 if(state==NOT_STARTED){

 //daca ferma e in starea initiala
mesajul e adaugat in pool-ul de mesaje de tip sync

 dataStore.addSyncFarmMessage(msg);

 //logger.log(Level.INFO,"Synced delayed "+MSTmsg.getSourceServiceID());

 }

 else

 if(!isSynced(Mmsg.getSourceServiceID())){

 //altfel se trimite reply
pentru a confirma sincronizarea cu ferma ce a trimis initial sync

 //si aceasta este adaugata in
vectorul de ferme cu care s-a sincronizate deja

 sendSync(Mmsg.getSourceServiceID());

 sync.add(Mmsg.getSourceServiceID());

 //
 logger.log(Level.INFO,"Synced with "+MSTmsg.getSourceServiceID());

 }

 }

 }

 //threadul ruleaza pana se realizeaza sincronizarea cu toate fermele ->
stop

 public void run(){

 logger.log(Level.INFO,"Synchronizing process
started!");

 while(!stop){

 for(int
i=0;i<dataStore.getSyncFarmMessagesNumber();i++){

 notify(dataStore.getSyncFarmMessage());

 }

 try{

 Thread.sleep(1000);

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 73

 }

 public void finishIt(){

 stop=true;

 logger.log(Level.INFO,"Synchronizing process
succedeed!");

 }

 }

 //functie ce rezolva ID-ul unui ferme dintr-un Extend Result folosind MLUSHelper

 private ServiceID getFarmServiceID(ExtendedResult res){

 return resolver.getServiceIDfromFarm(res.NodeName);

 }

 //comparator pentru ID-urile fermelor, util in algoritm in momentul unirii a doua
fragmente:

 //decizia de unire si noul lider al fragmentului format sunt liderul cu indexul
mai mic

 private int compareServiceIDs(ServiceID sid1,ServiceID sid2){

 return sid1.toString().compareTo(sid2.toString());

 }

 //functie ce testeaza daca ferma este sincronizata cu ferma pasata ca argument
(daca se gaseste

 //in vectorul sync)

 protected boolean isSynced(ServiceID sid){

 for(int i=0;i<sync.size();i++)

 if(compareServiceIDs(sid,(ServiceID)sync.elementAt(i))==0)

 return true;

 return false;

 }

 //functie ce interogheaza baza de date pentru rezultate despre starea conexiunilor

 //folosind ABPing in predicatul monPredicate;

 protected void getData(){

 String[] params=new String[1];

 params[0]=new String("RTime");

 //se citesc datele din ultimul minut, care se stocheaza in vectorul
results

 Vector results=dataStore.select(new monPredicate("*","ABPing","*",-
60000,-1,params,null));

 // logger.log(Level.INFO,"ABPing no. of results="+results.size());

 74

 for(int i=results.size()-1;i>=0;i--){

 //numele fermei e rezolvat din rezultatul interogarii
(ExtendedResult) in ServiceID

 //folosind MLUSHelper si rezultatul adugat in vectorul de
ferme

 ExtendedResult res=(ExtendedResult)results.elementAt(i);

 if(resolver.getServiceIDfromFarm(res.NodeName)!=null)

 if(!farms.containsKey(res.NodeName)){

 farms.put(res.NodeName,res);

 farmsVector.add(res);

 }

 }

 //odata informat asupra valorilor legaturilor adiacente se trece in
etapa de DISCOVERY

 state=DISCOVERY;

 //si incepe sincronizarea cu celelalte ferme

 sync();

 for(int i=0;i<farmsVector.size();i++)

 //rezultatele primite de la ABPing sunt sortate pentru a se
putea alege mereu bestPath

 Collections.sort(farmsVector,new Comparator(){

 public int compare(Object o1,Object o2){

 ExtendedResult res1=(ExtendedResult)o1;

 ExtendedResult res2=(ExtendedResult)o2;

 if(res1.param[0]==res2.param[0])

 return
res1.NodeName.compareTo(res2.NodeName);

 if(res1.param[0]>res2.param[0])

 return 1;

 return -1;

 }

 });

 // logger.log(Level.INFO,"After sorting the data no. of
results="+unusedFarmList.size());

 // for(int i=0;i<unusedFarmList.size();i++)

 //
 logger.log(Level.INFO,((ExtendedResult)unusedFarmList.elementAt(i)).NodeName+"="+(
(ExtendedResult)unusedFarmList.elementAt(i)).param[0]);

 }

 //in update() liderul isi instiinteaza copii la unirea cu alt fragment despre

 75

schimbarea liderului

 //si deci a indexului fragemntului

 private void update(){

 state=DISCOVERY;

 count=0;

 bestFarm=null;//cea mai buna ferma gasita

 bestFarmValue=Double.MAX_VALUE;//valoarea delay-ului pentru aceasta

 logger.log(Level.INFO,"Entering Discovering Step..."+MulticastFarmList);

 for(int i=0;i<MulticastFarmList.size();i++){

 logger.log(Level.INFO,"UPDATE "+MulticastFarmList.elementAt(i));

 logger.log(Level.INFO,"PARENT "+parent);

 if(parent!=null){

 if(compareServiceIDs(parent,(ServiceID)MulticastFarmList.elementAt(i))!=0){

 monMessageMulticast up=new
monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i),fragmentLeade
r);

 sendMessage(up,"UPDATE");

 count++;

 }

 }

 else{

 monMessageMulticast up=new
monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i),fragmentLeade
r);

 sendMessage(up,"UPDATE");

 count++;

 }

 }

 discovery();

 }

 //in etapa de discovery fiecare nod cauta cea mai buna ferma din fragmentele
adiacente cu care sa se uneasca

 //folosind rezultatele furnizate de ABPing

 private void discovery(){

 if(farmsVector.size()>0){

 bestFarmRes=(ExtendedResult)farmsVector.remove(0);

 76

 bestFarm=resolver.getServiceIDfromFarm(bestFarmRes.NodeName);

 bestFarmValue=bestFarmRes.param[0];

 logger.log(Level.INFO,"Best farm="+bestFarm);

 }

 best();

 }

 //se porneste agentul dupa ce se instantiaza rezolverul si proxyWorkerul

 public void doWork(){

 resolver=MLLUSHelper.getInstance();

 proxyWorker=dataStore.getProxyWorker();

 wakeup();

 }

 //se trimite parintelui cea mai buna ferma gasita

 private void best(){

 logger.log(Level.INFO,"Count="+count+" parent="+parent);

 if(count==0 && parent != null){

 monMessageMulticast mcast=new
monMessageMulticast(hostServiceID,parent,bestFarm,new Double(bestFarmValue));

 sendMessage(mcast,"BEST");

 }

 }

 //la pronirea agentului se citesc datele si se intra direct in etapa de conectare
(se considera ca initial, prin citirea datelor

 //din baza de date s-a facut etapa de discovery)

 private void wakeup(){

 fragmentLeader=hostServiceID;

 getData();

 logger.log(Level.INFO,"Starting MULTICAST...");

 bestFarm=getFarmServiceID((ExtendedResult)farmsVector.elementAt(0));

 bestFarmValue=((ExtendedResult)farmsVector.elementAt(0)).param[0];

 farmsVector.remove(0);

 state=CONNECTING;

 77

 //algoritmul debuteaza cu trimiterea unui mesaj de tip connnect
catre un fragment preferat

 monMessageMulticast Mmsg=new
monMessageMulticast(hostServiceID,bestFarm,fragmentLeader);

 sendMessage(Mmsg,"CONNECT");

 logger.log(Level.INFO,"Entering Connection Step...");

 }

 //sincronizarea dureaza pana cand ferma ia cunostinta de toate celelalte ferme =
schimba mesaje

 //SYNC cu toate, deci pana cand vectorul sync ajunge la dimensiunea vectorului
de ferme

 private void sync(){

 while(sync.size()!=farmsVector.size()){

 for (int i=0;i<farmsVector.size();i++){

 ServiceID
crtFarmSID=getFarmServiceID((ExtendedResult)farmsVector.elementAt(i));

 if(!isSynced(crtFarmSID))

 sendSync(crtFarmSID);

 try{

 Thread.sleep(500);

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 try{

 Thread.sleep(1000);

 }

 catch(Exception e){

 e.printStackTrace();

 }

 }

 syncListener.finishIt();

 }

 protected void sendSync(ServiceID sid){

 monMessageMulticast syncMmsg=new monMessageMulticast(hostServiceID,sid);

 sendMessage(syncMmsg,"SYNC");

 78

 }

 //listenerul pentru mesajele externe fragmentului

 private class OutFragmentFarmMessagesListener implements FarmMessagesListener{

 public synchronized void notify(monMessage msg){

 monMessageMulticast mcast=(monMessageMulticast)msg.ident;

 logger.log(Level.INFO,"received message"+msg.tag+" from
"+mcast.getSourceServiceID()+" fragmentLeader="+fragmentLeader);

 if(msg.tag.compareTo("CONNECT")==0){

 //la primirea unui connect, conform algoritmului,daca nodul
nu este leader trimite REJECT (doar liderul

 //ia decizii de unire)

 if(compareServiceIDs(hostServiceID,fragmentLeader)!=0){

 monMessageMulticast reject=new
monMessageMulticast(hostServiceID,mcast.getSourceServiceID());

 sendMessage(reject,"REJECT");

 }

 else{

 //daca este lider dar nu este in starea de
conectare raspunde cu BUSY

 if(state==DISCOVERY){

 monMessageMulticast busy=new
monMessageMulticast(hostServiceID,mcast.getSourceServiceID());

 sendMessage(busy,"BUSY");

 }

 //daca cel ce a cerut connect nu este cel preferat
de lider (in urma etapei de discovery) ii timite

 //de asemenea reject

 else{

 if(compareServiceIDs(bestFarm,mcast.getSourceServiceID())!=0){

 monMessageMulticast reject=new
monMessageMulticast(hostServiceID,mcast.getSourceServiceID());

 sendMessage(reject,"REJECT");

 }

 //altfel inseamna ca cei doi lideri se
prefera reciproc deci se vor uni (ii confirma celuilalt printr-un accept)

 //si isi instiineaza copii despre aceasta
(schimbarea frament liderului si implicit a indexului fragmentului)

 else{

 monMessageMulticast accept=new

 79

monMessageMulticast(hostServiceID,mcast.getSourceServiceID());

 sendMessage(accept,"ACCEPT");

 MulticastFarmList.add(bestFarm);

 logger.log(Level.INFO,"Add in
MulticastTree "+bestFarm);

 if(compareServiceIDs(hostServiceID,mcast.getSourceServiceID())<0)

 update();

 }

 }

 }

 }

 else

 if(msg.tag.compareTo("REJECT")==0){

 //la primirea unui reject nodul readauga ferma preferata in
lista de ferme pentru a o include in etapa

 //urmatore de discovery in care intra din nou

 farmsVector.add(bestFarmRes);

 discovery();

 }

 else

 if(msg.tag.compareTo("ACCEPT")==0){

 //la primirea unui accept compara id-urile propriu si al
frgamentului preferat pentru a vedea care

 //devine lider (cel cu id-ul mai mic)

 if(compareServiceIDs(hostServiceID,mcast.getSourceServiceID())>0){

 parent=mcast.getSourceServiceID();

 }

 }

 else

 //la primirea mesajului de busy continua etapa de conectare
trimitand un mesaj de connect urmatoare ferme

 //preferae din vectorul sortat de preferinte

 if(msg.tag.compareTo("BUSY")==0){

 monMessageMulticast connect=new
monMessageMulticast(hostServiceID,mcast.getSourceServiceID());

 sendMessage(connect,"CONNECT");

 }

 }

 80

 }

 //listener pentru mesajele din interiorul fragmentului

 private class InFragmentFarmMessagesListener implements FarmMessagesListener{

 public synchronized void notify(monMessage msg){

 monMessageMulticast mcast=(monMessageMulticast)msg.ident;

 logger.log(Level.INFO,"received message "+msg.tag+" from
="+mcast.getSourceServiceID()+" fragmentLeader ="+mcast.getFragmentLeader());

 if(msg.tag.compareTo("UPDATE")==0){

 //la prmirea unui mesaj de update se actualizeaza liderul
fragemntului si parintele curent

 fragmentLeader=mcast.getFragmentLeader();

 parent=mcast.getSourceServiceID();

 update();

 }

 else

 if(msg.tag.compareTo("BEST")==0){

 count--;

 //la primirea unei ferme preferae pentru unire se
actualizeaza daca este cazul

 //ferma actuala preferata

 if(mcast.getBestFarmValue()<bestFarmValue){

 bestFarm=mcast.getBestFarmLeader();

 bestFarmValue=mcast.getBestFarmValue();

 }

 //daca s-au primit mesaje de la toti fii

 if(count==0){

 //se reintra in etapa de conectare

 state=CONNECTING;

 //daca nu este radacina, trimite mesaj mai sus cu
ferma preferata

 if(parent!=null){

 monMessageMulticast best=new
monMessageMulticast(hostServiceID,parent,bestFarm,new Double(bestFarmValue));

 sendMessage(best,"BEST");

 }

 81

 //altfel este radacina si ia decizia de unire

 else{

 //daca nu s-a mai gasit o cea mai buna ferma
inseamna ca algoritmul s-a incheiat si se anunta toate nodurile

 if(bestFarm==null){

 logger.log(Level.INFO,"MCast="+MulticastFarmList);

 for(int
i=0;i<MulticastFarmList.size();i++){

 monMessageMulticast
finish=new monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i));

 sendMessage(finish,"FINISH");

 }

 }

 else{

 //trimite connect fermei preferate in
urma etapei de discovery

 monMessageMulticast connect=new
monMessageMulticast(hostServiceID,bestFarm);

 sendMessage(connect,"CONNECT");

 }

 }

 }

 }

 else

 //s-a primit finish, algorimtul s-a incheiat, mesajul este trimis
mai departe memebrilor arborelui de multicast

 if(msg.tag.equals("FINISH")){

 logger.log(Level.INFO,"MCAST="+MulticastFarmList);

 for(int i=0;i<MulticastFarmList.size();i++){

 if(compareServiceIDs(parent,(ServiceID)MulticastFarmList.elementAt(i))!=0){

 monMessageMulticast finish=new
monMessageMulticast(hostServiceID,(ServiceID)MulticastFarmList.elementAt(i));

 sendMessage(finish,"FINISH");

 }

 }

 }

 82

 }

 }

}

