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1. Introduction

1.1. Generalities

Distributed system s have become very useful especially in the case of scientific
applications, where there is necessary the processing of a very large data volume, in a very short
amount of time, aswell as the storage of these data.

Taking into account the tremendous popularity of complex distributed systems, favoured
by therapid development of the computing systems, of the high speed networks, and of the
Internet, it is clear that it is imperative, in order to achieve performances as high as possible, in
the utilization of these systems, to pick an optimal structure and architecture, but also
scheduling algorithms, and data replications ones in that distributed system. This thing is
particularly difficult, but even impossible, to be done by somebody without the help of a
specialized program, because the prediction of the functioning of a distributed system without
the aid of the mentioned program is only approximate and there may appear functioning errors
in that distributed system.

Therefore, simulators for distributed systems are particularly useful, because they are
very flexible andeasy to use in the testing of certain architectures, scheduling algorithms, the
same result being much more difficult to achieve by testing real systems.

The project MONARC 2 is such a simulator for large scale distributed systems, having

as a purpose the modelling and ssimulation of distributed systems, with the goal of predicting
genera performances of the applications running on these systems.

1.2. Theoretical aspects of the smulation

1.2.1. Introduction

Computerized simulation consists in the designing of a system model, in the execution
of this model on adigital computer, and in the analysis of the results.

For the simulation of a physical system, the first step which must be done is the creation
of a mathematical model to represent it. The model will be executed through the mediation of a

program which will ssimulate the passing of the time, modifying the values of the state variables
which are of interest in the simulation.

1.2.2. TheUtility and the implementation of the computer simulation

This modality of ssimulation has become the most used in the last decades. Although
there are a multitude of methods of modelling systems, this kind of simulation proves extremely
useful in the case in which we have to deal with avery large scale system, in which the
variables computed at every discrete moment are very many, the components are very
numerous. There is also useful in the case in which it is wanted as the results of the simulation
to be obtained in a visual form, as well asin the case in which inside the model we have



variables which vary randomly, or even after certain distributions or mathematical computations
that can be very laboriousy computed without the aid of the computer.

Another simulation advantage is that it can be used exactly the same execution
technique for alarge number of systems, an especially difficult thing to do through the classica
solving of the simulations, in the second case being necessary to solve the problem again. To
conclude, the classical systems may be appliedfor arelatively limited number of situations, to
contrast with the large applicability of the computerized simulations.

The designers of the distributed systems want to achieve the best performances with the lowest
price. The computer simulation may be even more precise than the real one. The simulation of
certain types of architectures is particularly useful before taking the decision of the designing of
areal system.

The simulation may be used not only to optimize performances, but also to verify the
correctness of the real results. For example, there are simulations made to verify the behaviour
of atype of carsin extreme conditions, taking into account as accurately as possible al the
parameters. The errors must be identified and corrected as ragdly as possible, asin final phases,
the errors are much more difficult and more costly to correct. There are cases in which
uncorrected mistakes can produce catastrophical results.

There exists a multitude of fields in which the computer smulations are largely used: in
the scientific field, phenomena which can take whole eras: as the genesis of the universe, or in
general the ones related with the astronomy, or oppositely, the ones which take nano seconds,
as the knockings between electrons, can be studied and reproduced with the aid of the computer.
The simulations may used to create virtual environments, for example the training of the
fighting planes pilots, who can learn on a simulator manoeuvres that, in the case they do not
posses, in reality, would make them lose their lives, as well as destroying very valuable
equipments.

1.2.3. Simulation Types

If we classify the computer simulations after the mode in which there appear changes of
dates in the system they model, we will distinguish two categories.

- continuous time simulation: the state changes appear continuously in time, and the
system can be described with the aid of differentia equations systems; this model is suitable
for smulating the weather's evolution or the fluid dynamic;

- discrete time simulation: the events appear instantaneously, only at certain momentsin
time; this model can be used for simulating air traffic, communication networks or
computing systems.

The simulation models in continuous time are more general and can be converted to
discrete time simulations, considering that unitary events are instantaneous.

The discrete smulation can be of two types:
- discrete smulation oriented on time
- simulation oriented on discrete events
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1. time-oriented discrete simulation: the time advances in constant -size steps, so
system is evaluated once in a certain time interval. When choosing the length of the
time interval we have to make a compromise between the accuracy of the
simulation and the time needed for execution; usually the time intervals short
enough to guarantee the precision we need lead to a longer execution time. If the
events appear irregularly in time, this model is inefficient.

2. event-oriented discrete simulation (Discrete Event Simulation - DES): the system is
only observed in the moments of time when events appear. The simulator maintains
an internal clock, which measures the virtual time (the time of the simulated system).
Each event has a timestamp, which indicates the moment when it appears, and the
events that must be processed are organized in a priority queue in which a smaller
value for the timestamp means a greater priority. In a simulation step, the events
with the minimum timestamp are extracted from the queue and the virtual time
advances, becoming equal with the timestamp of the events extracted. The
processing of an event can have as an effect the change of some state variables
and/or the insertion of some rew events into the queue.

In MONARC it is used the second approach — DES, because this variant corresponds
better with our purpose, which is the simulation of the distributed systems.

1.2.4. A few other examples of smulators

There are a lot of computing systems simulators, some of them genera, and the other
specific. Below, we have examples of this kind of applications (especialy distributed systems
oriented):

1. SEDSisasimulator developed at Osaka University

They have developed a Simulator for Evaluation of the Distributed Systems (SEDS) for
evaluating not only distributed system (DS) architectures but aso distributed algorithms. In
their smulator SEDS, through using simple format "forms" defined in SEDS, they can describe
both the hardware conf iguration of a DS and the distributed algorithm implemented on it.



Through the simulation of the problem by SEDS, they show the availability and
applicability of the SEDS to the wide range of the problem around the DS.

2. Bricks is a program developed at the Tokyo Institute of Technology, which has the
role of evaluating the high performance computing systems, and of scheduling algorithms. It is
written in Java and it simulates the behaviour of different network architecturesinside some
global systems. The users can specify the parameters of the system that will be modelled
through the scripts. The components of the application may be replace with user defined ones,
s0 it can be tested different scheduling algorithms from the ones already implemented.

3. Proteus is a high-performance simulator for MIMD multiprocessors. It is faster than
comparable simulators, asthey say, and it can reproduce result s from real multiprocessors, it is
easily configured to simulate awide range of architectures. Proteus provides a modular
structure that simplifies customization and independent replacement of parts of architecture.
There are typicaly multiple implementations of each module that provide different
combinations of accuracy and performance. Finally, PROTEUS provides repeatability,
nonintrusive monitoring and debugging, and integrated graphical output, which result in a
development environment superior to those available on real multiprocessors

4. GridSim is asimulator projected for the modelling of Grid systems, and of the peer-
to-peer networks. There are supported many types of resources, mono and multi processors, for
different types of systems.

5. Peersim has been developed with extreme scalability and support for dynamicity in
mind. Peer-to-peer systems can reach huge dimensions such as millions of nodes, which
typically join and leave continuously. Evaluating a new protocol in areal environment,
especially in its early stages of development, is not feasible. There are distributed planetary-
scale open platforms to develop and deploy network services, but these solutions don't include
more than 400 nodes.

Peersim is composed of many simple extendable and pluggable components, with a
flexible configuration mechanism. To allow for scalability and focus on self-organization
properties of large scale systems, some simplifying assumptions have been made, such as
ignoring the details of the transport communication protocol stack. Peersim is developed within
the Bison project and it is distributed under an open source license. Peersim is written in the
Java language.

6. Ptolemy is s system made at Berkeley, with avery large area of utilization, it may
handle lots of calculus model, with discrete and continuous time. It is written in Java, and has a
modular structure, containing both generic packages, and specialised packages for every model.
There are implemented libraries for mathematical functions, graph algorithms, alanguage
interpreted for expressions and many others.



1.3. Distributed Systems. Gener alities.

1.3.1. History

From the beginning, in 1945, until about 1985, computers were large and expensive. As
a result, most organisations had only a handful of computers, and for lack of the way to
interconnect them, they operated independent from one another.

Starting from the mid 1980's, however, two advances began to change the situation. The
first was the development of powerful microprocessors. Initialy, they were 8-bit machines, but
soon 16, 32 and 64 bit CPUs became common. The second development was the invention of
high-speed computer networks. Local-area networks alow hundreds of machines within a
building to be connected in such a way that small amounts of information can be transferred
between machines in a few microseconds. Larger amounts of data can be moved between
machines at rates of 10 to 1000 million bits/sec. Wide-area networks allow millions of machines
all over the earth to be connected at speeds varying from 64 Kbps to gigabits per second.

The results of these technologies is that it is now easy to put together computing systems
composed of large numbers of computers, connected by a high-speed network. They are usually
called computers networks, or distributed systems, in contrast with the previous centralized
systems (or single processor systems) consisting of a single computer, its peripheras, and
perhaps some remote terminals.

1.3.2. Definition and Characteristics of a Distributed System

A distributed systemis a collection of independent computers that appear to its users as
asingle coherent system.

The two aspects of this definition are;

-One that dedls with the hardware; the machines are autonomous.

- The second deals with the software: the users think that they are dealing with a single
system.

Characteristics of adistributed system:

- The differences between the various computers and the ways in which they
communicate are hidden from users.

- Theinternal organisation of a distributed system is hidden to the users.

- The users and the applications can interact with the distributed system in a consistent
and uniform way, regardless of where and when interaction takes place.

-Distributed systems should aso be relatively easy to expand or scae. This
characteristic is a direct consequence of having independent computers, but at the same time,
hiding how these computers actually take part in the system as a whole. A distributed system
will normally be continuoudly available, athough perhaps certain parts may be temporarily out
of order.



In order to support heterogeneous computers and networks while offering a single-
system view, distributed systems are often organized by means of a layer of software that is
logically placed between a higher-level layer consisting of users and applications, and a layer
underneath consisting of operating systems. Such a distributed system is sometimes called
middleware.

1.3.3. Several examplesof distributed systems

A first example could be a network of workstations in a university or company
department. In addition to each user’s workstation, there might be a pool of processors in the
machine room that are not assigned to specific users, but are allocated dynamically as needed.
Such a system might have a single file system, with all files accessible from all machinesin the
same way as using the same path name. When a user types a command, the system could look
for the best place to execute the command, possibly on the user’s own workstation, possible on
an idle workstation belonging to someone else, and possibly on one of the unassigned
processors in the machine room. If the system as a whole looks and acts as a classical single-
processor time sharing system (multi-user), it qualifies as a distributed system.

As a second example let us consider a workflow information system that supports the
automatic processing of orders. Such a system is used by people from several departments,
possibly at different locations. For example people from the sales department may be spread
across a large region or an entire country. Orders are placed by the means of laptop computers
that are connected to the system through the telephone network. Incoming orders are
automatically forwarded to the planning department, resulting in new interna shipping orders
sent to the stock department. The system will automatically forward the orders to an available
person. Users are unaware of how orders physically flow through the system: to them it appears
asif they are all operating on a centralised database.

As afina example, let us consider the World Wide Web. The Web offers a simple,
consistent and uniform model of distributed documents. To see a document, a user need merely
activate a reference, and the document appears on the screen. In theory, there is no need to
know from which server the document has been fetched, neither where the server is located.
Publishing a document is very simple: you only have to give it a unique name in the form of a
Uniform Resource Locator (URL), that refers to a local file containing the document’s content.
If the World Wide Webwould appear to its users as a gigantic centralized document system, it
too would qualify as a distributed system.

1.3.4. The Goals of Distributed Systems

1.3.4.1. Connecting usersto resour ces

The man goal of a distributed system is to make it easy for the users to access remote
resaurces, and to share them with other users in a controlled way. Resources can be virtualy
anything, but typical examples include printers, computers, storage facilities, data and files.

There are many reasons for wanting to share resources. The main obvious reason is that
of economics. It is cheaper to let a printer be shared by several users, than having to buy and
maintain a printer for each. Connecting users and resources also make it easier to collaborate



and exchange information, as it is best illustrated by the Internet. However, as connectivity and
sharing increase, security is becoming more and more important.

1.3.4.2. Transparency

An important goal of a distributed system is to hide the fact that its processes and
resources are physically distributed across multiple computers. A distributed system that is able
to present itself to users and application asif it were only a single computer system is said to be
transparent

The concept of transparency can be applied to several aspects of a distributed system, as
we can see below.

We have transparency for:

-Access —there are hidden the differences in data representation and how a
resource is accessed.

-Location - it is hidden where the resource is located

-Migration — it is hidden that a resource may move to another location.

-Relocation — hide that a resource may be moved to another location while in
use.

-Replication — hide that aresource is replicated.

-Concurrency — hide that a resource may be shared by several competitive users.
-Failure — hide the failure and recovery of aresource.
-Persistence — hide whether a software resource is in memory or on disk.

1.3.4.3. Openness

An open distributed system is a system that offers services according to stardard rules
that describe the syntax and semantics of those services. For example, in computer networks,
standard rules govern the format, contents, and meaning of the messages sent and received.
Such rules are formalized in protocols. In distributed systems, services are generaly specified
through interfaces, which are often described in an Interface Definition Language (IDL).

1.3.4.4. Scalability

Worldwide connectivity through the Internet is rapidly becoming very common.
Scalability of a system can be measured along at least three different dimensions (Neuman,
1994). First, a system can be scalable with respect to its size, meaning that we can easily add
more users and resources to the system. Second, a geographically scalable system is one in
which the users and resources may lie far apart. Third, a system can be administratively
scalable, meaning that it can still be easy to manage even if it spans many independent
administrative organisations. Unfortunately, a system that is scalable in one or more d these
dimensions often exhibits some loss of performance as the system scales up.
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1.3.5. Hardwar e concepts

Even though all distributed systems consists of multiple CPUs there are several different
ways the hardware can be organized, especialy in terms of how they are interconnected and
how they communicate.

Various classification schemes for multiple CPU computer systems have been proposed
over the years. We divide all computers into two groups. those that have shared memory,
usualy caled multiprocessors, and those that do not, called multicomputers. The essential
difference is this: in a multiprocessor, there is a single physical address space that is shared by
all CPUs. All the machines share the same memory. In contrast, in a multicomputer, every
machine has its own private memory.

We can make another further distinction between distributed computer systems: those
that are homogenous, and those that are heter ogeneous. In a homogenous multicomputer, there
is essentialy only a single interconnection network that uses the same technology everywhere.
Likewise, al processors are the same and generally have access to the same amount of private
memory.

Multiprocessor s

Multiprocessors systems all share a single key property: al the CPUs have direct access
to the shared memory. Busbased microprocessors consist of some number of CPUs, al
connected to a common bus, along with a memory module.

Homogenous M ulticomputer Systems

In multiprocessors, every CPU has a direct connection to its local memory. The only
problem left is how the CPUs communicate with each other. Clearly, some interconnection
scheme is needed here, too, but since it is only for CPU-to-CPU communication, the volume of
traffic will be several orders of magnitude lower than when the interconnection network isused
for CPU-to-memory traffic. The homogenous multicomputers are also referred as SANs

(System Area Networks). In these systems, the nodes are mounted in a big rack and are
connected through a single, high-performance interconnection network.

Heter ogeneous M ulticomputer Systems

Most distributed systems as they are used today are built on the top of a heterogeneous
multicomputer. This means that the computers that form part of the system may vary widely
with respect to, for example, processor type, memory sizes, and 1/0 bandwidth. In fact, some of
the computers may actually be high performance parallel systems, such as multiprocessors or

homogeneous multicomputers. Also, the interconnection network may be highly heterogeneous
as well.
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1.4. The Technology used: Java Concurrent Programming

1.4.1. Introduction. Advantagesof Java |language.

The Javalanguage offers a series of advantages that made it be preferred by many of the
creators of the simulation programs. The main advantages of the Java language are:

- Portability: the MONARC simulation can be used not only on PCswith Linux or
Windows as operating system, but also on other, more powerful machines, possibly multi-
processor, that use different Linux variants. That is why the fact that a Java program can be
used unmodified practically on any platform has a very important role in convincing us to use
the Java language.

- Java is an object oriented programming language, that helps us obtain a modular
structure of the program, a structure resembling with the real one, and a very easy to change
code.

- The support for multi-threading programming. Inside a distributed system there
appear different entities with autonomous behaviour, for example the local networks, or
database servers, or the tasks executed by the system. For their simulation, weneed concurrent
programming, and Java is one of the few languages that offer a library for the work with
threads.

The main disadvantage of Java language is the relatively low performance, taking into
account the fact that Java is an interpreted language. However, in the last years, significant
progress have been made, with the advent of technologies like JT (Just-InTime Compiling),
and of the last versions of virtual machines from Sun and IBM.

1.4.2. Javaand concurrent programming

Theterm of “concurrency” refers basically to the possibility of executing more actions
simultaneously; the concurrent programs are used in numerous situations, like: intense
computational applications inthe scientific field, the web services, simulations, 1/O processing,
graphical interface applications.

There are more ways to achieve concurrency, each of them being appropriate for different kinds
of applications. Among them are the following:

1 Processes: aprocess represents a program in execution, in fact, the process notion is an
abstract one and depending on the operating system (this is the one that handles the
process administration). The operating system generates the autonomy, security and
interferences between processes.

2 Threads: their usage represents an aternative for the multi- process programming, the
advantage being the lower overhead at creation, finishing or commutation between
them. The threads associated with a process stere its memory zone, the opened files, and
other resources associated with the respective process. The not shared things are the
genera registers, the stack and the program counter. In the Javalanguage, the
scheduling policy for the threads is not specified. It can be anywhere between the most
costly solution (between the threads of a process is not done any scheduling — they are
let to “ cooperate”’), and the most complex —the attaining of a preemptive scheduling.
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3 Theutilisation of moresystems: -it maps every logical unit of the application on a
different system; the advantage is that the systems are autonomous and can be separately
administered, but on the other hand the message transfer between the machines can be
very costly — in addition it may appear security or other kind of problems.

Theconcurrent and object oriented programming have been associated from the
beginning of their existence: the first object oriented language, SIMUL A, created around
1966. Other languages, created ulterior, offered, in a certain measure, support for object
oriented programming and concurrency. This association between concurrent and object
oriented programming appears very strongly in Java, which offers two classes (Thread, and
ThreadGroup), and an interface (Runnable), in the javalang package. The Thread class and
the Runnable interface offers support for the work with threads as separate entities, and the
ThreadGroup class permits the creation of thread gr oups, with the purpose of treating them

unitary.

The thread class implementsthe Runnable interface, and the ThreadGroup objects
contains many Thread objects.

1.4.3. Thecreation of Threadsin Java

To create a thread, the programmer has two possibilities: to create a derived class from
the Thread class or to create a class that implements the Runnable interface.

1.4.3.1. Thecreation of athread through the derivation of the Thread class

Thesteps that must be followed in this case are:

1
2.

3.
4.

The creation of aclass derived from the Thread class.

The superscription of the method public void run() from the Thread class; this
method must implement what the respective Thread will do.

The instantiation of an object from the created class

The starting of the execution thread, through the caling of the start() method,
inherited from the Thread class. This call makes that the Java virtual machine to
create the necessary context for athread and to call the run() method.

1.4.3.2. Thecreation of athread through the implementation of the Runnable interface

The programmer may want that athread have, through the inheritance, functionalities of
another Java class. Because in this language the multiple inheritance is not permitted, it is not
possible that the execution thread to derive both from Thread, and from the class whose
functionality is necessary. The solution is that, instead of inheriting the Thread class, to
implement the Runnable interface.

The necessary operations to create athread in thisway are:

1

2.
3.
4.

the creation of a class that implements the Runnable interface.

the superscription of the method public void run() from this interface.

the instantiation of an object from the created class (let us call it runnable_object).
the creation of a Thread type object, starting off the Runnable object (this operation
is necessary to cal for the new Thread the methods from the thread class).

Thread thread = new Thread(runnable_objec);
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5. the starting of the thread, through the start() method.

1.4.3.3. The Thread control
A Thread may be in one of the following states:

1. created: the Thread object was instanced (through the new() call), but it is not still an
execution thread. In this moment, for it can be called only the start() method.

2. ready — ready to run —the start() method was called and the thread was created, and
can be executed when the processor is available.

3. suspended: in this state are the threads that called one of the methods sleep() or
wait(). The control is given away and they will come back to the ready state, when an extern
event will appear (time expiring, if it was called the sleep() method, or the notify()/ notifyAll()
cal, if the wait() method was called).

4. finished: athread can bein this state if the run() method execution finished, or if the
stop() method was called. (this method generates an exception of ThreadDeath type, that can be

“caught” if some processing are wanted before the thread to be finished).

Another specia category of Threads are the daemon type ones, that offer services for
other execution Threads or objects (an example would be the demon that handles the garbage
collector daemon)

Usudlly, the run() method for the daemon threads contains an infinite cycle. Their
finishing takes place in the moment when all the threads from this application, that are not
daemons, finished their execution. To declare a thread as a daemon, it can be called the method
setDaemon(true), before the call of the start() method.

The main methods in the Thread class, with which we control the Threads are;

public native synchronized void start() - used to start the execution of a thread;
after this call the Java Virtual Machine handles the creation of the context for the

new thread and the execution of its run() method.

public final void stop() — it is forced the stopping of a Thread, in any stage it
would be.

public fina void suspend() — stops temporary the execution of the thread, until
the call of the resume() method.

public static native void sleep(long milliseconds) — temporary stops the thread
execution, on atime period specified in the argument (in milliseconds). Because
the method is static, it is of the Thread class and not the instanced object’s; the
thread from which the deep() call takes place will be blocked, regardless of the
object through which the call is made.

public find void join() — the thread fom where the join() method of another
thread will wait thaqgt the latter finish the running (there are variants that specify
amaximum waiting period).
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public static native void yield() — makes that the thread from which it is called be
sent in the waiting queue, yidding its place to other concurrent thread (with the
same priority).

public void run() — the method that must be overwritten by the programmer to
specify the tasks that the thread will accomplish.

public void interrupt() — it send an interruption request to the thread (it is useful
for the case when the thread blocks — it will be reactivated and will throw an
exception).

public void destroy()- it destroys the thread immediately.

1.4.3.4. The Thread Synchronization

The threads of a process share the same memory zone for data, so they can access, for
example, the same variable in the same time. In the same case there may be problems if a thread
triesto read a value that other thread modifiesin that moment (the first can receive awrong
result), a if two threads write simultaneously in the same memory location (case in which the
final result depends of the relative speed of execution of the two threads).

Other situations in which the threads interact is that in which one waits for results from
other, or that in which more threads cannot start a new series of processing until the previous
series was not finished by the other execution threads. The cases described below can be
situated in two categories from the point of view of the relations between threads: these
relations can be of concurrency and of cooperation.

In the case of concurrency, the threads try to use the same resources, and this thing must
be done in a consistent manner (usualy, a a given moment, a thread can access common
resources). In this case, the synchronization role is that of assuring the exclusive access to
common resources. In this way it appears the notion of critical region, which is a part of code
that only athread can execute at a given moment.

The cooperation of the threads refers at the information exchange between them; this
exchange must be done only when they are at a certain stage of the execution, or else the sent
information may be incorrect. So, the synchronisation means that in this case the threads must
wait one another until they are ready for the information transfer.

To solve thiskind of problems, Java adopted the monitor solution, the concept of
monitor being used by C. Hoare, and implies the existence of a special object (the monitor), that
permits only one thread to call one of his method at a given time. The other threads that want to
call amethod of the monitor are suspended until the thread that entered the monitor finishes the
execution of the certain method. Javaimplements this concept with slight differences: every
Java object is an object of type monitor, but this thing is valid only for certain methods or code
sequences specified by the programmer. This specification is made with the help of the
synchronized key-word. An object can have more methods or synchronized blocks, and, at a
given moment only athread can access them (if athread calls a synchronized method of an
object, another thread can not call this method or other synchronized method of the object, until
the first one is not finished).
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We can say that a monitor isin acritical zone in which it can enter only one thread at a
given moment. Once entered, the thread can call any synchronized method existent in that area.
For a thread to have access to a method of the zone (this means of the monitor), the first must
exit from the monitor.

In the norma mode, the synchronization mechanism is bound to an object, but it is
possible as a static method to be declared synchronized; in this way the monitor is the class, and
not one of its objects. Only athread can execute at a given moment of time a method static
synchronized of acertain class.

Through the use of synchronized there may be solved the majority of the simultaneous
resource access problems, but for the threads that are in cooperation relationship, this solution is
not sufficient.

In this case there can be used the methods: wait(), notify() and notifyAll() of the Object
class. The method wait() goes to the blocking of the thread, from where it was called, it
remaining blocked until other thread will call one of the methods notify() and notifyAll() for the
same object for which it was called wait(). For athread to call one of these methods, it must be
entered in the monitor of the object (with other words, their call can be done only for a
synchronized sequence of code).

Through the wait() cal it is exited from the monitor, to alow other threads to enter and
call notify() (or else the thread that called wait() could not be unblocked). There also are
variants of the wait() method through which there can be specified a maximum amount of time
for the waiting. Through the notify() call it is unblocked only one thread (if there are more that
wait for the same monitor, it can not be known which of them can be unblocked). Through
notifyAll() there are unblocked all the threads that wait at a monitor.

1.4.3.5. The Scheduling and the Priority Mechanism

Even if apparently the threads are executed in pardlél, in redlity this thing cannot be
happened on a one processor machine. To give the impression that the work threads work in
pardlel, they get the periodical access to resources, on the basis of a scheduling system.

The Java virtual machine contains a scheduler that handles the thread accessto
resources, but the specifications of the VM do not establish the rules of its functioning.

The scheduling algorithm depends on the implementation of the Java machine on a
certain platform, so the application must not be based on a certain algorithm, or another.

For example, in the systems d time division, an execution thread runs for a period of
time, after which it is forced by the planner to yield his place to other thread, which will run for
aperiod of time, and so on. This way, even the threads with smaller priorities will gain accessto
resources, avoiding their blocking. In systemswithout time-division, a thread that received the
execution right occupies the resources until the moment it passes in the blocked state, finishes,
yields explicitly the controls (through the yield() method), or another thread with a greater
priority appears. Thisway, it may happen that a thread with a greater priority to get the
resources, and the ones with smaller priorities not to get executed.

At the start, athread has an associated priority, which isimplicitly equal with that of the
tread that was executed. The priority level can take values between Thread.MIN_PRIORITY
and Thread MAX_PRIORITY, constants defined in the Thread class. In the system it is always
executed the thread with the greatest priority; if athread with a greater priority than that of the
one executing enters the system, it will be given the control.
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2. General Functioning of the MONARC. Implementation
details.

2.1. Generalities

MONARC 2 is a simulation framework whose purpose is to offer a design and
optimization instrument for the large scale distributed systems, to serve, in afirst phase to the
LHC experiments that take place at CERN. The purpose is to offer arealistic smulation of the
distributed computing systems, in particularly for the physical data processing, and to offer a
flexible and dynamic medium to evaluate the performances of a category of processing
architectures.

2.2. The Architecture

One of the strengths of MONARC is that it can be easily extended, even by users, and
this is made possible by its layered structure. The first two layers contain the core of the
simulator (which we call "simulation engine") and models for the basic components of a
distributed system (CPU units, jobs, databases, networks, job schedulers); these are the fixed
parts on top of which some particular components (specific for the simulated systems) can be
built. The particular components can be different types of jobs, job schedulers with specific
scheduling algorithms or database servers that support data replication.

Thefollowing diagram represents the MONARC layers and the way they could interact
with a monitoring system:

Computing hWodels

pecdfic Components

asic Components

LAN S imulation D, wan
Engine

Schaduler

Distributed Scheduler

Fig. 1. MONARC 2 layers
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MONARC 2 consists of three main packages: engi ne,net wor k and nonar c; the
first two of them only contain basic components, while the last one also includes specific
components and can be extended with classes added by users.

The engine package contains the core of the simulator, managing the tasks and the
events and providing the mechanism through which the tasks interact. The network package
simulates the data traffic on LANs and WANS, according to different protocols; the ones
implemented so far are TCP and UDP. The monarc package is more complex than the other two
and contains sub packages needed to implement models for the entities in the regional centres
(CPUs, jabs, job schedulers etc.) and other useful features: the graphical interface, the output
clients, the parsing of the configuration files, the generation of random numbers with specific
distributions.

2.3. The Components of the System

To offer asimulation as redlistic as possible, al the components of the system and the
interactions between them had to be made abstract. The simulation engine is designed to be
generic for any distributed systems. The model chosen for Monarc is based on regional centres:
the system is composed from (more) interconnected regional centres. Every regiona centre has
afarm of workstations (named CPUs), database servers, data heaping units, one or more LANS;
there also exists a scheduler for the jobs which are submitted, and a waiting queue for the jobs
that can not be processed at the certain moment of time.

Beside those components that reside to the layout of the simulated systems the
application also handles some components for the simulation of processes that occur in those
components. The basic component is the job. The job simulates the behaviour of arealworld
thread that must do something. The job is injected into the system in the beginning by a
component called Activity. Also, the job is scheduled for execution in the system by another
component called job scheduler. The job executes itself on another component called active job.
The active job is the simulation of a real-world thread on which the job is mapped and executed.

Any regiona centre can instantiate dynamically a set of “Users’ or “Activity” Objects
which are used to generate data processing jobs based on different scenarios. Inside a regiona
centre different job scheduling policies may be used to distribute the jobs to processing nodes.

With this structure it is now possible to build a wide range of computing models, from
the very centralized (with reconstruction and most analyses at CERN) to the distributed
systems, with an almost arbitrary level of complication (CERN and multiple regional centres,
each with different hardware configuration and possibly different sets of data replicated).
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These components are represented in the image below:

REGIONAL CENTER

LAN

FARM
Job
Scheduler

Ioh
Jok Jok

Fig. 2. The SystemArchitecture

2.4. Component M odel - Multitasking Data ProcessingM odel

Multitasking operating systems share resources such as CPU, memory and 1/0 between
concurrently running tasks by scheduling their use for very short time intervals. However,
simulating the detail of how tasks are scheduled in the real system would be too complex and
time consuming, and thus it is not suitable for our purpose. Therefore we need to model the
multitasking data processing.

Our model for multitasking processing is based on an "interrupt” driven mechanism
implemented in the simulation engine. An "interrupt()" method, implemented in the "active
object" which is the base class for the running jobs, is a key part of our multitasking model.

The way it works is shown schematically in the next figure:
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Fig.3. The task model

When afirst job starts, the time it needs for completion is evaluated and the associated
"active object” entersinto a waiting state for this amount of time, or until it isinterrupted. If a
new job starts on the same hardware it will interrupt the first one.

Both will share the same CPU power and the time to complete for both of them is
computed assuming that they share the CPU equally. Both active jobs will enter into a wait state
and are listeners to interrupts. When a job is finished it aso creates an interrupt to re-distribute
the resources for the remaining ones.

This model isin fact assuming that resource sharing is done continuously between any
discrete events in the smulation time (e.g. new job submission, job completion) while on real
machinesiit is done in a discrete way but with a very small time interval. This provides an
accurate and efficient model for multiprocessing tasks

2.5. Task functioning and their states

At a moment of time, atask can be in one of 5 possible states: created, ready, running,
waiting and finished. A new task isin thecreated state until the scheduler finds in the pool a

worker thread that can execute it; then, the task goes into the ready state. The scheduler will let
all theready tasks run (and set their state to running) after it finishes processing the events from
the current simulation step. In the running gate, the RUN( ) method of the task is executed by
the worker thread; the classes inheriting from Task must override this method according to the

behaviour that they simulate. When a task must stop its execution (for example, if it has to wait
for an event), it goes into thewaiting state. The transitions between the last three states are done

with the aid of a semaphore that each task maintains. when the task can start running, a V()
operation is done on the semaphore, and when the task must block - a P(') operation.
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The possible states of the tasks and the transitions between them are represented in the
diagram below:
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Fig4. The states of the tasks

2.6. The scheduling algorithm (from the engine package)

As mentioned before, the simulation tasks and events are coordinated by a Schedul er
object; the scheduler maintains a priority queue with the future events (events that haven't been
processed yet), and another priority queue with deferred events (these events happened in the
past, but their destination tasks were not expecting them, i.e. the tasks were not in the waiting
state at that moment. So the events are moved to the “ deferred” queue, and the destination tasks

will eventualy look for them here).
At every smulation step, the scheduler executes the following operations:
1. Look at each simulation task and:

a. If thetask isinthe created state, assign it to a worker thread from the pool
and change the task’ s state to ready

b. If thetask isin the ready state, restart its execution by making a V() on the
semaphore

c. If thetask isin the finished state, remove it
2. Wait until all the tasks that were running block again or finish their execution
3. Process the events:

a. Takefromthef ut ur e queue the event(s) with the minimum time stamp.
The simulation time advances, becoming equal to that time stamp.

b. For each event taken from the que ue, look for the destination task. If it is
waiting for an event (i.e,, itisin the waiting state), deliver the event to the
task. Else, put the event into thedef er r ed queue.
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These steps are executed until there are no more alive tasks and no more eventsin the
queues. The next diagram illustrates some of the steps of this algorithm.
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Fig. 5. The event queue

We represented a task (which is an active job, named AJob_5) that, at some moment of
time (t0) sends an event to another task (AJob_30); this event is inserted into the future queue.
The scheduler waits until all the tasks block (at the moment t1), then starts processing events,
i.e. it takes from the queue the two events with the minimum time stamp and delivers them to

AJob_18 and AJob_26. The event sent by AJob_5 will be extracted from the queue in a future
dep.

2.7. The Network Package

The network package offers support for simulating the data traffic in both local and wide
area networks. Since in most of the real cases that we simulate the amounts of data are very
large and the network topology is not precisely known, the traffic simulation at a packet level
would be impossible. Instead, we chose a larger scale approach, based on an "interrupt” scheme
similar with the one used for evaluating the tasks completion time.

The main entities of the network package are:
Net wor KEnt i t y: thisis the base class which describes the general behaviour of a

network entity - LAN,WAN or Li nkPor t . A network entity is characterized, among

other things, by the bandwidth that it offers; it keeps track of the messages that are
traversing it at the current moment and of the bandwidth they consume.
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Li nkPor t : describes the physical device that connects a computer to the network; it is
associated with a network address which, in our model, has an IP-like format. The
network messages are aways exchanged between two link ports. The link ports also
determine, when a message must be sent, its route and initial speed.

LAN: smulates alocal area network. A LANobject hasreferencestothe Li nkPort s
corresponding to the computers from the network; it can be attached to a wide area
network.

WAN: simulates awide area network. A WAN can have several LANSs attached to it and
can communicate with one or more routers.

Rout er : arouter connects two or more wide area networks (in our model, a route
between two wide area networks goes through a router). Depending on its configuration,
the router can introduce a delay in the data transfer.

Message : thisis the base class used to represent network messages. Every message is
characterized by a number of parameters such as the source and destination addresses,
the data length, the current speed etc. The classes derived from Message describe
protocol-specific messages (TCPMessage ,UDPMessage).

Protocol each message has a Protocol object which calculates its initial speed, informs
the network entities when the message enters or leaves them etc. Protocol is a base class,
extended by other classes which model specific protocols (TCP, UDP).

The approach used to smulate the data traffic is again based on an “interrupt” scheme
described below:

letwork
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Fig. 6. Network model

When a message transfer starts between two end points in the network, the time to
completionis calculated.

This is done using the minimum speed value of al the components in between, which
can be time dependent, and related to the protocol used. The time to complete is used to
generate a wait statement which alows to be interrupted in the simulation. If a new message is
initiated during this time an interrupt is generated for the LAN/WAN object.
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The speed for each transfer affected by the new one is re-computed, assuming that they
are running in parallel and share the bandwidth with weights depending on the protocol. With
this new speed the time to complete for al the messages affected is re-evaluated and inserted
into the priority queue for futur e events. This approach requires an estimate of the data transfer
speed for each component. For a long distance connection an “effective speed” between two
points has to be used. This value can be fully time dependent.

This approach for data transfer canprovide an effective and accurate way to describe
many large and small data transfers occurring in parallel on the same network. This model

cannot describe speed variation in the traffic during one transfer if no other transfer starts or
finishes. Thisis a consequence of the fact that we have only discrete eventsin time.

However, by using smaller packages for data transfer, or artificially generating
additional interrupts for LAN/WAN aobjects, the time interval for which the network speed is
considered constant can be reduced. As before, this model assumes that the data transfer
between time events is done in a continuous way utilizing a certain part of the available
bandwidth.

The following diagram represents the components of the network package and the
relationships between them:

Regional Center | Regional Cemter

Fig.7. Thefunctioning of the network package

As shown in the theoretical part the network smulates the behaviour of the TCP/IP
network model. In order to do that every layer isimplemented by some modules in our project.

Thefirst layer deals with the components that make out the network. A network can be
composed from link port (the physical device that connects a computer to the network), LAN (a
medium that connect together link ports in order to provide communication between them), wan
(amedium that connect together lans in order to provide the necessary communication
infrastructure betweenlink ports situated in different parts of the simulation) and router (it
connects together wans in order to provide communication over different regional centres).

The second layer deals with what is the effective unit that moves from one link port to
another. Thisisthe message. A message must contain a destination ip destination address and
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has a source ip destination address). The message if effectively moved by the means of events.
The event is moved between tasks, which in term contains inside a network message. The
network message also contain inside data that are carried. Some other parameters such as
message length are used in order to provide a mean by which the message time to arrival will be
computed. Also the message can take out parameters (such as the time it took in order to arrive
at the destination or the bandwidth that occupies) for the output clients.

The third layer deals with the way the message moves through the network. Thisis
implemented by the Protocol. In the project there were implemented two kinds of transport
protocols. Those are TCPProtocol and UDPProtocol. The protocol moves the message from one
task from its route to the next until the destination is reached. The way in which the message is
moved is the actua way in which the given protocol functions in the real world. That is, for the
tcp protocol for instance, the message is first fragmented, then each part is given to the next task
after adelay that is computed based on the size of fragment and the bandwidth available. Then,
after a number of fragments the protocol sends back an acknowledgement in order to simulate
the windowing problem described in the theoretical chapter.

The fourth layer is represented by the applications that use the network communication
that is the jobs that implements the sending and receiving of messages.

In the following we will describe in more detail the basic units presented above.

The link port is the entity that received and sends messages. Every message is exchange
only between the link ports. Also every entity involved in the simulation has a network link port
(interface) attached to it in order to practicaly participate in the network simulation.

Every link port is unique through the ip address of it. So, if a job says he wants tosend a
message to a given address, there is only one link port that will receive the message. But in the
simulation a special kind of addressing was provided. A link port can aso be described by the
unit to which he is attached. Also, in order to provide more dynamism the addresses of the link
ports are allowed not to be unique, in which case the message will be sent to the closer to the
sender found link port.

2.8. Job Scheduling and Execution

The jobs are submitted to the regional centres by the Activity classes, which instantiate
Job objects and send them to the centre via the addJob() method. At the moment of (simulated)
time when an activity calls addJob(), the regional centre’s farm receives an event associated
with the new job, and sends the job to the job scheduler.

The job scheduler first tries to find an available CPU unit to execute the job. The job
might need to be executed on a specific CPU unit, and in this case the scheduler doesn’'t search
anymore— it knows exactly where to send it. Otherwise, the scheduler takes a decision
according to the strategy it implements. The basic scheduler sends the job on the CPU unit with
the minimum load (by load we understand the total amount of memory used by the jobs that are
already running on the CPU). A job can be executed on a CPU unit if the memory needed by
the job, added with the current load of the CPU, doesn’t exceed the amount of memory that the
CPU has. If a CPU was found, the scheduler also looks for an active job (AJob object) to assign
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the jobto it, the active jobs objects being held in a poal. If there is no CPU or no AJob
available, the job is added to a waiting queue, ordered by the jobs priorities.

When anew job is scheduled on a CPU, the other jobs that are executing on the same
CPU are interrupted because the unit's power is reallocated. The jobs (including the new one)
estimate the time needed for completion, according to the new amount of power offered by the
CPU; then, they wait until a new change of state (beginning/ending of ajob) appears, or until
the time needed for completion expires (this mechanism is explained in more detail in the next
section).

The following diagram represents the process described above, in three steps (job
submission, job scheduling and the re-evaluation of the time needed to complete).
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Fig. 8. The job Scheduling and execution model
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3. The simulation of thePr oof Cluster

3.1. Introduction

Proof is afacility for distributed data under a Root structure, developed at CERN.

3.2. The Proof paralledd model based on ROOT. The CERN per spective

The LHC experiments begun at CERN were challenges for the old systems used until
then, because in these experiments, the data quantities that followed to be smulated and
analysed are with a few magnitudes grater than what was seen before.

The ROOT project was developed in the NA49 experiment context at CERN. It
generatedimpressive data quantities, of approximately 10 TB of raw data on arun. So, the NA
49 experiment is the ideal development and testing medium of the new generation of tools of
study of these data quantities.

The ROOT system offers a set of object oriented medium, with al the necessary
functionality to handle the analysing of large quantities of data in a very efficient way. Having
the data organised as a set of objects, there are used specialized methods of stocking, to have a
direct access to separate attributes of the selected objects, without any need to anayse the pure
data. There are included histogram methods in 1, 2, or 3 dimensions, function evaluations,
minimisations, graphics and visualisation classes, which to offer a system analysis to process
the data

From the CERN point of view, the development of the ROOT Parallel Facility, Proof,
permits a physician to analyse much larger sets on a much smaller scale time. Root uses the
event parallelism and implements an architecture that optimises the 1/0 and the CPU utilisation
in heterogenic clusters with distributed stocking mechanisms.

The system offers transparent and interactive access at Giga bytes level.

Proof is an extension of the ROOT system, which makes possible the analysis of a vast
set of ROQT files, in pardlel on remote computer clusters (vhich lie at large geographical
distances from one another).

The main purposes for the Proof systems are:

- transparency
- scaability
- adaptability

Through transparency it can be understood that it must be a as small as possible
difference between alocal ROOT session and a parallel remote PROOF session, both of them to
be interactive, and to give the same results.

Through scalability it is understood that the base architecture should not require any
implied limitation on the number of computers that may be used in parall€l.

Through adaptability it can be understood that the system must be capable to adapt to
the variations of the remote environment (the networks interrupts, the switching of the load in
the cluster nodes).
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Being an extension of the ROOT system, PROOF is designated to work on ROOT type
objects. Being a logical extension of the ROOT system, PROOF is designated to work on
ROOT type objects. Through the logical gouping of many ROOT type files in only one very
big object, there may be created data sets. In a loca cluster environment, these data can be
distributed on the disks of the cluster nodes, or made available through a NAS or SAN type
solution.

In the close future, through the usage of Grid technologies, it is scheduled the Proof
extension from unique clusters to virtual global clusters. In such an environment, the processing
can take more, un-interactive, but the user will be presented only one result, as if the processing
be made locally.

3.3. The Proof System (made at CERN) Architecture

The Proof consistsin a 3 level architecture:
- The ROOT client session
- The Master Proof server

- The Slave Proof servers

The user connects from his ROOT session to a Master dave, on a remote distributed
cluster, and the master server, in his turn, creates dave servers on al the cluster nodes. The
inquiries are processed in parale by al the dave servers.

Using a certain protocol, the dave servers ask the master for packages with what they
have to do, and this permits the master to distribute the packages to every slave server. The
slower daves take smaller work packages, while the fast ones process more packages.

In this scheme, the parallel processing performance is afunction of the duration of each
job, packet, and depends also by the available bandwidth ad network latency. Because the
bandwidth and the latency of a cluster are fixed, the main parameter that may be adjusted in this
scheme is the dimension of the package. If the dimension of the package is chosen too small,
the parallelism will suffer, as too many packages are sent over the network, between the master
and slave servers. If the dimension of the package is too big, then the effect of the differencein
performance of each node is not balanced enough

This allows to the Proof system to adapt itself at the performance and load on each
individua cluster node, and to optimize the job execution time.

3.4. The Architectureand premises of Proof smulation

3.4.1. The Architecture

A Proof configuration consists of severa clusters;, the computers from a cluster run
master and slave processes, as the following diagram shows in detail, which presents a possible
Proof architecture:
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The typical scenario for data processing with Proof contains the following phases:
1. aclient sends aregquest to a master, specifying a dataset to be processed

2. the master identifies the files that contain the needed data and determines their
location; the data can be stored on a central server or on the dave stations

3. each dave enters aloop in which it asks the master for a work packet (which
specifies a number of events to be processed), it executes the task and sends the
result back to the master

4. the master assigns work to the daves taking into account the location of the files(a
daveisfirst assigned the files that it has on the local disk) and the relative
performance of the daves

There are three possibilities for the slaves to obtain the data they are assigned: from the
local disk, from a server or from other dave stations, with the aid of the rootd server (rootd isa
daemon that allows remote access to Root database files).

There also are several possible policies for determining the size of the work packets that

the master assigns to the slaves. For this simulation we chose a fixed size package, equivalent to
afile.
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3.4.2. The example description

The ssmulated scenario is based on the one described above:

the working cluster contains n master stations, mslave stationsand s data servers (we
tested with n=20 and m=500, and with different values for s)

each master receives a data processing request from a client; we assumed that the client
needs to process a set of files with the same length, containing analysis data for a certain
number of events. We aso tested some cases in which the clients repeatedly send
requests to the masters, with pause intervals between requests.

when asking the master for work, a dave is assigned one file which is assumed to be
available on the dave's local disk with a certain probability; if not available, the fileis
taken from a data server

it was assumed that the master takes some time to handle a work request from a slave
and to process the partial results returned by a dave; if there are several daves that send
work requests or partial results at the same time, their messages will be processed by the
master sequentially

The behaviour of the system was studied by varying several parameters such as:

the number of dave processes created by each master (on a dave station there can be
more than one slave process; in our test cases, the minimum number of processes on a
dave station was 1, corresponding to 25 dave processes created by each master - aswe
have 20 masters and 500 slave nodes)

the probability of having the data on the local disk at the Slave nodes
the LAN bandwidth

the number of data servers available in the cluster

3.4.3. Theactual implementation

The implementation of the simulation is achieved in the following classes.

-ActivityCaltech, wherefor each Caltech Client it is requested the respective master to
take the work and assign them to the dlaves. In is then waited the answer form the
JobMaster Collector with the results.

-ActivityCern, where the masters create MasterJob objects that send the data tothe
daves, and JobMaster Collect objects, that receive the processed data back from the daves.

-The JobMaster Collect receive the processed data back from the daves, and then send it
to the Caltech Clients.

-The JobMaster, that creates the JobServer for the servers to function, creates the
JobMaster Collect objects, and sends them their addresses, and sends the data to the JobS aves

-The JobServer, which waits the requests for files from the clients, and then sends them
the requested files.
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-The JobSlave objects, that receives the data from the masters, if they need data from the
file servers, then they request it, wait the answer from the Servers, process the data, and then
send the results to the JobMaster Collector entities.

3.4.4. TheTwo different Scheduling V ariants

We have implemented two different scheduling variants of the way the master chooses
the files to give to the servers that requests work from them.

Let ustake the two cases. We have clients in the Caltech regional centre that give work
to the masters in the CERN regional Centre. Each master has his own saves to give them work.
The daves, when they are free (do not have anything to do) request work from the masters. The
works consists in the processing of some files. The files are processed in some way by the
servers (it does not matter what processing is done). The files, numbered from 1 to
numberOfFiles can be found on the local disk of the dave that has to do the processing, or it is
not found, and then, the slave has to take it through the network from a database server that has
all thefiles.

The two scheduling variants differ exactly in the manner the master gives work to the
daves, depending on what they have or not on the local disk.

1. Therandom variant of scheduling — The files numbers do not count. The masters
have eventsto give to the slave to deal with (events are parts of the files, that are given to the
slaves for processing). The master pure and simply randomly generate a number between 0 and
1 and if the number is smaller than a parameter read from the configuration file:
local DataProbability, then it will consider that the data file will be found on the slave disk. Else
thefileistaken fromthe local file server. This agood policy for the simulation, but a rather
simple scheduling policy

2. Thevariant corresponding to thereality scheduling variant — There are
numberOfFiles files that can be given to the dlaves. Initially, on the master, for every daveit is
retained the list of files existent on the local disk, in a Hashtable. Then, when a slave requests
from the master to work, it is first searched in hislist of files from the loca disk, and if there is
any file not processed and available on its local disk, the file is given to the slave for work. Else
there will be generated a request for the data file server from the slaves. Thisisamore redistic
scheduling policy.

3.45. Thereaults
3.45.1. Thelnfluence of the LAN Bandwidth

The improvement of the LAN bandwidth has the effect of increasing the throughput (computed
as number of jobs processed per hour). For this series of simulations, we assumed that the
cluster has 2 data servers and each master creates 50 dave processes.

The LAN bandwidth was given the values of 200Mbps, 500Mbps and 1Gbps. Asshownin Fig.

2, with a 100M bps network we don't obtain an acceptable throughput when more than a half of
the data files are taken from the network.
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The next figure represents the CPU utilization in the farm for two values of the local data
probability (0.25 and 0.75):
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CPU utilization on the dave nodes (test case with 50 save processes created for each master
and 1Gbps LAN bandwidth): a) 0.25 probability of having the data on the local disk; b) 0.75
probability of having the data on the local disk.

As expected, for 0.75 local data probability the total processing time is smaller and the CPUs
are used more efficiently. The next figure represents the bandwidth utilization for the same two
test cases:
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Bandwidth utilization an the slave nodes (test case with 50 dlave processes created for each
master and 1Gbps LAN bandwidth): a) 0.25 probability of having the data on the loca disk; b)

0.75 probability of having the data on the local disk.

3.45.2. Thelnfluence of the Data Server Processing Time
The following graph shows another possible cause for low throughput: the time taken by

the data server to process a request. This is more visible when the data servers are single
threaded, asthey arein this set of simulations. When reducing the processing time at the data

servers from 50ms from 20ms, we obtained a substantial improvement in throughput.
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3.4.5.3. Theeffect of introducing additional data servers

One way to reduce the delays caused by the data server is to introduce several other

serversin the cluster. Having 5 data serversis almost equivaent to having one server that
processes requests instantaneoudly. The graph from Fig. 7 corresponds to a test case with 50
slave processes created by each master.
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Fig. 5. Thethroughput isincreased by growing the number of data servers.

3.45.4. The Optimum Number of Slave Processes

The advantage of having several slave processes on a machine is that while some of
them are waiting for dita from the network, the others can do CPU-intensive operations.
However, thereis also a disadvantage of having more slave processes. they can create network
bottlenecks and waiting queues at the data server and at the master (when requesting work
packets and sending results).

The graph from Fig. 8 represents the total processing time of a constant number of jobs in three
situations: when each master creates 25, 50 and 100 slave processes. In this test case, when the
data server is single threaded, the optimum number of daves is the smallest one (25).
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Fig. 6. Total processing time with different numbers of slave processes.

3.4.5.5. The Simulation of Longer Periods of Activity

As mentioned above, we also smulated the situation in whichthe clients send several
reguests to the masters, with breaks between requests. An average request would take about
1.5h to be processed on a single CPU, but only takes about 5min to be processed in the cluster.
The breaks between requests also have the average value of 5min (their lengths are normally
distributed).

In this case, having more slave processes on a station leads to a better throughput, because the
station has a greater probability of being active even if not all the masters are processing a
request at that moment. We simulated test cases with 25, 50 and 100 slave processes created by
each master (that is 1, 2 and 4 dave processes per station), and computed the average CPU
usage for different local data probabilities. These average vaues are shown in the figure bellow:
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The following figure represents the CPU and bandwidth utilization in the cluster for the test
with 100 slave processes and 75% probability of having the data on the loca disk. The
bandwidth utilization has alow average, as in this test case the number of network transfersis
small; when one of these transfers occurs, the bandwidth utilization reaches a peak value for a
very short period of time.
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4. The Optimiz ation of the networking part of the MONARC

4.1. Objective

The message sending on a single thread from the same source CPU. The receiving of the
message on a single thread for the same destination CPU.

4.2. Implementation details

4.2.1. Theexplanation of the problem

It is wanted the creation of a single thread to handle al the messages which originate
from the same source CPU. The same, it is created only one thread which handles al the
messages that have the same CPU destination.

The packages that implements the before specified problem is monarc.job.opt message,
which handle only the messages, and monarc.job.opt which handles both messages and
processing jobs.

The JobOpt class is the Optimized Job. His main purpose is to optimize the running time
and the memory of the simulation, using only one Java thread that handles receiving or the
sending of al the messages addressed to one Cpu. The class handles al the messages that are
sent from the same Cpu, receiving from the activity object created by the user an addJob
request. Thisjob is scheduled, and it is sent a TAG_START_MESSAGE event.
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The JobOptScheduler class functions as a scheduler that handles all the events that refer
to JobOpt. Initidly, for the message receiving on one CPU part, it was derived from the
Protocol class in the network package, but then | gave up to this derivation, choosing the
solution that every JobOptScheduler to contain an object from the Protocol class, for which we
call different methods of computing the time necessary for the message to arrive at destination,
of bandwidth distribution to the messages, and so on.

This optimisation method has the great advantage on the norma message sending, that it
offersmuch less context switching.

In the not optimized version (the old one), for every new message that was necessary to
be sent, it was created a Task type object (AJob), which handles the sending of the message, and
in the other side, at the receiver, it is created another AJob that handles the reception of the
message (it listens until it is received the TAG_ARRIVE_MESSAGE tag, which signifies the
message receiving). This version has the advantage of parallelism, but because of the context
switching and synchronisation, this advantage is in fact a big disadvantage.

My approach (the optimised version) has a significant advantage; it functions very well
even on a multiprocessor machine. In the case of the jobs injected by the Activity objects of the
users, with very many message to send through the network, which means a very large number
of Events that are sent, the overhead produced by the increasing of the number of threads
becomes very great. To conclude, for very many network interrupt events, the classical system
fails to achieve better results than the optimised one, because of the context switching, the great
overhead, and the great number of synchronisations.

The new system behaves very well, even on a multi-processor system, in the casein
which the thread number, so implicitly the network interrupts number is very great. The optimal
variant must be used in smulations in which is created a very number of threads, and is
generated a large amount of interruptions.

4.2.2. Thefunctioning of the optimised variant

The functioning on a single thread can be graphically seen in the following way:
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The functioning mode of the message sending is (simplified) the following:

- For the start it is done the message adding form the activity object through the
addJob method. This method schedulesa TAG_START_MESSAGE event in the
JobOpt class. In the JobOptScheduler it is called therun method, which treats
sequentialy al the messages that are sent from the CPU that sends this message. We
have a server (run), which is athread that, in that way, it runs forever, waiting for
events with different tags. (Evidently, at the finishing of the ssmulation when there
are no more Job-s, this thread is terminated).

- For the first version of the program we had a “waitForEvent” method called, which
was waiting for an event, and then was processing it, and then passed through the
Scheduler, the core of the program, to pick the next event. This approach was
inefficient because in the Scheduler we lost alot of time, so we replaced the
“waitForEvent” method with a“ waitForAllEvents’ method, which takes al the
events in that step of the smulation, puts them in a Vector objects, and then satisfies
all of them, before passing to the next step. In this way we save alot of time and
operations, which were necessary before, to take through the Scheduler again.

- Inthe “JobOptScheduler” class we catch al the events. (It is waited, unblocking, the
event, in order to be treated any of the events caught). The events not treated in that
moment isput by the Scheduler in the future queue, to be treated afterwards.

- If wereceiveaTAG_START_MESSAGE event, we will schedule the
TAG_STOP_MESSAGE event, for the moment of time we compute that the
message will be fully sent.

- If wereceivea TAG_STOP_MESSAGE event, the message will be considered sent
and it will be called the after the message is sent handler, to be specific the
actionPerformed method (the handler specifies another action to do after the sending
of the message finishes).

- Ifitisrecaved aTAG_INTERRUPT_MESSAGE event (this event is produced the
moment when a message appears in the affectedmessages vector of the current
message, and it is necessary the re-computing of al the times (when appears a new
message, when a message finishes — so a the START or STOP event of a message,
all the affected messages will be sent a TAG_INTERRUPT _MESSAGE event).
Then, it is re-computed the STOP time of the respective message, the old STOP
event being taken out, and instead of him it is inserted another event with the new
stop time.

- Ifitisreceived anew TAG_ARRIVE_MESSAGE event — this event is received by
the receiving station- then it will be called the “ servemessage” method, in which the
times are recalibrated, other new times are recomputed, the message is put in the
served messages list, and the contents of the message is taken and sent to the
destination CPU.

The message was successfully sent.
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4.2.3. The performancetesting of the optimised version. Simulations.

4.2.3.1. Simulations

In order to test the performances of the new system compared with the new one, we
have attained several simulations.

1 Thefirst ssimulation has 3 regiona centres, every one of them with one cpu (the
purpose of these simulations are to be as smple as possible in order to test and interpret the
results of the simulation the best as possible). It is created only one thread, one for the messages
that leave or arrive on the same CPU.

_ Regional
Regiona Centre 2,
Centre 1, CPU 1
CPU 1

Regional
Centre 3,
CPU 1

Every CPU from every regiona centre sends messages to the other 2 regional centres.
Therefore, in this topology there will be sent in every step 6 messages. This configuration was
initially tested for different parameters.

For each processor we have scheduled one Job that receives and the other one that
sends. So, we had more jobs than it was necessary for the optimal simulation. (we had too
many jobs —there was necessary only one job that send and one that receives for al the
messages send or received from one processor). Because of this deficiency of the simulation,
the new algorithm did not have better results than the old one.

2. We passed to asimulation in which we had two CPUs in two regional centres, the
one sends, and the other one receives, in the first version with delays between the
message sending, in the second, all the messages one, in a burst, specialy to
generate queuing, therefore with very many network interruptions.

Cpul Cpu 2

41



Another more complicated simulation, starting off this one, is the one in which the next
message will be sent in the finishing handler of the current message. This means, immediately
after the current message is sent, the next message will be sent and so on.

Thisis aversion without queuing, but which suits very well with the seria version (with
only one thread), because if we created new threads for every message it will be too much
context switching for ajob which will work better sequentially.

3. Thesimulation which presentsthe best results of the optimal variant is the
following:

We have two CPUSs, every one of them in a different regonal centre, which send each
other messages (to create as much queuing as possible).

This time, however, regardless the number of the sent messages, for the optimal variant
we will have only two threads, created calling JobOpt The normal version will function
through the creation of ajob (Ajob) of send and receive for every message which is sent.

Varying the parameters values | observed a far much better of the optimal agorithm,

from al the view points.

- Themaximum memory usedby the smulator is better in the optimised case
compared with the un-optimal one. Evidently, the average memory at every moment
of time is much better for the optimised case, because in this case it is lost much less
memory with the context switching between threads, and with synchronisation.

- Theexecution timeuntil the smulation is ended is smaller in the optimal case. So,
we have attained an optimisation of the execution time. It matters very much. The
optimal variant behaves the better the bigger the number of interrupt eventsiis.

- Thethread number isincomparably less for the optimised variant. It isinvariable
two (one for the process which sends, and the other for the receiving process), while
in the case of the un-optimized variant it can live up to the order of hundreds or even
thousands.

4.2.3.2. Reaults

Below we have the results of the optimized algorithm, compared with the un-
optimised algorithm.

We have tested the optimised version for two cases (in each of them varying the
parameters to attain a different number of interruptions).

1. The case for which the time difference between the sending of the jobsis 2.0 s.
Thisis acase of pretty pronounced queuing (taking into account the network’s parameters, in
this amount of time the messages can not be sent integrally, so the messages will accumulate,
generating very many interruptions).

The execution time is far better in the optimised case.
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Below is given the execution time, varying depending of the interruptions number,
in both cases. The execution time is smaller for the optimal variant:
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The same graphic, but with only the first results, to observe in detail the good
behaviour of the optimal variant:

The execution time depending on the
number of interrupts

% 1600

£ 1400 /11#&40

£ 1200 ~

;e i (o
=

S 600 Zor Normal
Q

x

[<H)

Q

=

|_

s
400 -
200 3
0
3 347 1331 2955

The number of interrupts

43



The maximum amount of used memory is smaller in the optimal case, as we can see
from the following dependence:

The maximum amount of memory used
in both cases

2000000
1800000
1600000

1400000
1200000 /
1000000
800000
600000
400000
200000
0

J_

—&—Optim
—@—Normal

The used memory

> A A&y @
PSS

The number of interrupts

The number of A-jobsisfar smaller in the optimised case, as we can see from the following
dependence:

The job numberin both cases
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2. The casein which the delay with which the message is sent after another is3.0s.
The queuing is smaller in this case, but it still remains (the messages accumulate one another —
before finishing sending one message, another is scheduled for transmission).
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The maximum used memory in each of the two cases (optimised/ not — optimised) is:
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The execution time is, in this case also, better for the optimised version:
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The number of used A-Jobs is much better for the optimized version:
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5. The Optimiz ation of the Job Processing of the MONARC

5.1. Objective

The processing on a single thread of al the jobs running on one CPU. This problem is
related with the problem presented in the chapter described above. In the final | will give some
results both for the message optimisation and for the job processing optimisation.

5.2. Implementation details

5.2.1. Theexplanation of the problem

It is wanted the creation of asingle thread to handle all the jobs running on a CPU. The
packages that implements the before specified problem is monarc.job.optprocess, which handle s
only the job processing, and monarc.job.opt which hendles both messages and processing jobs.

The JobOpt class is the Optimized Job. His main purpose is to optimize the running time
of the smulation, using only one Java thread that handles all the processing jobs running on one
Cpu. The class handles al the jobs that run on a cpu, receiving from the activity object created
by the user an startJob request. Thisjob is scheduled, and it issent a TAG_START_RUN_JOB
event.
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The JobOptScheduler class functions as a scheduler that handles all the events that refer
to JobOpt.

This optimisation method has the great advantage on the normal message sending, that it
offersmuch less context switching.

In the not optimized version (the old one), for every new job, it was created a Task type
object (AJob), which handles the processing. This version has the advantage of paralelism, but
because of the context switching and synchronisation, this advantage isin fact abig
disadvantage.

My approach (the optimised version) has a significant advantage; it functions very well
even on a multiprocessor machine. In the case of the jobs injected by the Activity objects of the
users, with very many jobs to process for one Cpu, which means a very large number of Events
that are sent, the overhead produced by the increasing of the number of threads becomes very
great. To conclude, for very many network interrupt events, the classical system fails to achieve
better results than the optimised one, because of the context switching, the great overhead, and
the great number of synchronisations.

5.2.2. Thefunctioning of the optimised variant
The functioning mode of the job processing is (simplified) the following:

- For the start it is done the job adding from the activity object through the startJob
method. This method schedulesa TAG_START_RUN_JOB event in the JobOpt
class. In the “JobOptScheduler” it is caled the run method, which treats
sequentially al the jobs that will run on the same CPU. We have a server (run),
which is athread that, in that way, it runs forever, waiting for events with different
tags. (Evidently, at the finishing of the simulation when there are no more Job-s, this
thread is terminated).

- Inthe “JobOptScheduler” we have a “ waitFor AllEvents” method, which takes all
the eventsin that step of the simulation, puts them in a Vector objects, and then
satisfies dl of them, before passing to the next step. In this way we save alot of time
and operations, which were necessary before, to take through the Scheduler again.

- Inthe “JobOptScheduler” class we catchall the events. (It is waited, unblocking, the
event, in order to be treated any of the events caught). The events not treated in that
moment is put by the Scheduler in the future queue, to be treated afterwards.

- If wereceiveaTAG_START _RUN_JOB event, we will schedule the
TAG_STOP_RUN_JOB event, for the moment of time we compute that the job will
be finished

- If wereceivea TAG_STOP_RUN_JOB event, the job will be considered finished
and it will be called the after the job is done handler, and the stopJobProcessng
method.

- Ifitisreceved anew TAG_CPU_CHANGED event, all the times for the other jobs
will be recomputed (estimate dTimeForJob), the old TAG_STOP_RUN_JOB event
will be removed from the queue, and the new one will be sent.

The processing job was successfully run on the Cpu
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5.3. The performancetesting of the optimized version. Smulationsand
results.

5.3.1. Simulations

In order to test the performances of the new system compared with the new one, we
have done arelevant smulation, which worksboth for messages and for job processing.

It is called the optimizeJobProcess smulation (it can be found in examples), and it
consists in a single processor in one regiona centre which:

- using the first option it is scheduled for it a series of
processing jobs to do, using the optimised agorithm and the
old one.
using the second option it sends itself (heis aso the sender
and the receiver) messages.

We will analyze the performances in both cases (optimised/normal) for both messages
and processing jobs.

5.3.2. Results
TheJob Processing Data Results:

For the time between the insertions of the processing jobs of 0.0s (The queuing
phenomenon appears here)

The NORMAL case The OPTIMAL case
The The
The The number . running
iterations of i runnlfrl% TS; f time of TEe f
number | interruptions Ime ot the 1 number o the AUMBeEr o
execution jobs . jobs
execution
(ms) (m9)
50 2550 1436 50 977 1
100 10000 3385 100 1917 1
200 40000 31107 200 7311 1
300 90000 47107 300 20966 1
400 160000 115837 400 61984 1
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The results in the graphical form can be seen below.
First, the execution time depending on the interruptions number.
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Second, the job number in both cases — optimised and normal:
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For the time between the insertions of the processing jobs of 10.0 s

The NORMAL case The OPTIMAL case
The
The .
. Th_e The number running The funning The
Iterations of time of the | number of time of number of
number | interruptions . . the ;
execution jobs : jobs
execution
(ms) (9
50 2550 1940 50 1309 1
100 10000 5407 100 3494 1
200 40000 18958 200 10256 1
300 90000 43989 300 22833 1
400 160000 86383 400 44977 1
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The results in the graphical form can be seen below.
The execution time depending on the number of interruptions:

The execution time depending on the number of
interruptions
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The Resultsfor the M essage variant of thesimulation:

The NORMAL case The OPTIMAL case
" The The The ] A The
e running maximum | runnin The The -
iterations | time of 5 m-lEIh §i on nu-lr:s o | @mount | g time | smulati | numbe | M mturrf1
number the . . of of the | ontime rof | @mounto
execution ime(s) | of jobs memory | executi () jobs memory
used
(ms) used on (ms)

50 502 500 100 719384 209 500 1 696784
100 873 1000 200 753760 305 1000 1 698992
200 1304 2000 400 854760 413 2000 1 816376
300 1635 3000 600 931936 533 3000 1 873632
400 2044 4000 800 | 1025536 647 4000 1 934032

The results in the graphical form can be seen below.

First, the execution time depending on the iterations number (in these results | have used
the number of iterations):

The execution time depending of the number of
iterrations

2500

2000

1500

1000

500

—— Normal
—a— Optimal

The running time (ms)

100

200

300 400

The number of iterrations

500

50




Second, the maximum memory used in both cases, depending on the number of
iterations:

The maximum memory used in both cases
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Third, job number in both cases — optimised and normal:

The number of jobs depending on the number of
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6. The Simulation TO/T1 Data Production and Replication
(CernTier Simulation)

6.1. Introduction

The scale, complexity and worldwide geographical spread of the LHC computing and
data analysis problems are unprecedented in scientific research. The complexity of processing
and accessing this data is increased substantially by the size and global span of the major
experiments, combined with the limited wide area network bandwidth available. This
simulation study aims to describe the physics analysis processes and the means by which the
experiments bands together to meet the technical challenges posed by the storage, access and
computing requirements of LHC data analysis.

6.2. Problem explanation

The general concept developed by the two largest experiments, CMS and ATLAS, isa
hierarchy of distributed Regional Centres working in close coordination with the main centre at
CERN. Thissimulation study follows this concept and describes several major activities,
mainly the data transfer on WAN between the TO (CERN) and a number of severa T1 Regional
Centres. The topology describing the connectivity of the Regional Centresis presented in figure
1

LEU
T1—EUj/'J ——
T1—J|i’)

Fig. 1. The network topology considered for the connectivity between the TO and the T1 Regional Centers

We assume that the three T1 Regiona Centresin Europe are connected independently,
in anetwork similar to GEAT. In asimplified model this can be approximated with a“mega-
router” in which each T1 regional centre is connected through alink. We aso consider a
transatlantic link connecting TO with the two T1 regiona centresin US and another link
connecting the T1 regional centresin Japan. In order to make the file transfer efficient we
assume that a transfer Agent runs on all the centres. When it is necessary to send afile to
several or al of these centreswe have assumed that this is done using the Agent mechanism to
provide effective data transfers. I n case the same file needs to be transferred to both T1 regional
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centresin US, the file is transferred only once over the transatlantic line and than copied from
T1-US1to T1-US2 or / and T1-JP.

For the WAN links we assumed the following RTT values:

RTT (ms)
T1-EU1 <-> TO (CERN) 20
T1-EU2 <-> TO (CERN) 25
T1-EU3 <-> TO (CERN) 30
T1-USL<-> TO (CERN) 120
T1-USI <> T1-US2 60
T1-USL<-> T1-JP 240

Those RTT values are used in evaluating the efficiency of using the available bandwidth
for “ftp” like transfers.

Using this topology we simulated a number of Activities specific for Physics data
production, asfollows:

1) RAW Data Replication.
From the experiment we assumed a mean rate of recording raw data equal to 200 MB/s.
This information is stored in 2GB (normal distributed with 10% sd) data files. These
files are replicated in around robin manner to all 6 T1 regional centres. (Thefirst fileis
sent to TEEU1, the second to T1I-EU2...)

2 Production and DST distribution.
At TO al raw data are processed and DST files are generated. The DST files are 10
times smaller in size than the RAW files. We considered again a normal distribution (sd
10%). The DST filescreated at TO aresent to all T1 centres For the T1-US2 and T JP
the agent transfer system is used to make this operation effective and avoid sending the
same file more than once over the same link.

3 Re-production and new DST distribution.
After a certain time the RAW datain each T1 centreis re-processed and new DST data
iscreated. Each T1 centre will reprocesses 1/6 of the RAW data. The DST data
generated at each regional centre are sent to all the other. Again the agent system is used
to effectively transfer data.

4) Detector Analysis.

This activity startsin certain T1 regional centres at given moments of time and
collects al RAW data from the other regional centres produced over the last hours. We
chose local 9 o' clock as the time this activity startsin the given regional centres and also
we chose to gather the RAW data for the last 12 hous. The RAW data is gathered
dynamically, meaning from al the regional centres that have the requested data it is
chosen the one that maximizes the performance of the transfer, based on the network
load, proximity and database |oad.
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6.3. Simulation Results

6.3.1. Generalities and Explanations

We simulated the described activities alone and then combined. The tests that we have
done are shown below in the following order:

1. Comparison for Production and DST distribution done with and without the Data
Transfer Agent;

RAW Data Replication activity;

Production and DST distribution;

Reproduction and DST distribution;

RAW Data Replication activity followed by Production and DST distribution;
RAW Data Replication activity followed by Production and DST distribution
followed by Re-production and new DST distribution;

Detector Analysis activity;

RAW Data Replication activity followed by Production and DST distribution
followed by Re production and new DST distribution with Detector Analysis
activity.

O ANA~WN

o N

We simulated approximately 1 day of running these activities.

In the following figures are some conclusions obtained when running al four activities
in parallel. We assumed a mean rate of recording raw data of 200 MB/s. The information is
stored in 2GB data files (normally distributed with 10% sd). DST files are produced in the
second activitiesinvolved at TO (CERN) from all the RAW data and then are distributed to all
the T1 regional centres. The data transfer agent described above is then used. After a certain
period of time each T1 centrewill start to re-process the raw data stored locally and to generate
anew set of DST. Each T1 has ~1/6 from the entire raw data and will generate new DST which
should be replicated to all the other regional centres As before, inthis case we also assume that
transfer agents are running on all the centresinvolved (TO, T:USL) for an effective replication.
Finally, the Detector Analysis activity runs on T1-JPregiona centre and starts at 9 o’ clock local
time. Then it will gather the RAW data produced in the last 12 hours from the others centres
using a get-optimum-performance algorithm as mentioned above.

Using this configuration we did a series of tests in which we have varied the available
bandwidth between TO (CERN) and TEUSL In the following figures are the obtained resullts.

In the figure 2 is the representation of how varies the time with which the DST files are
served in different T1 centresfor the test cases in which the available bandwidth between TO
(CERN) and T1-US1 varies between 3Gbps and 10Gbps. As seen the DST files transfer time
tends to decrease proportionally with the amount of bandwidth available between TO (CERN)
and T2-US1 centres. The series “all Series’ represents the average value of the DST files
transfe time considering al the T1 tiers in the smulation.
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Average DST files transfer time
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Fig. 2. The DST files transfer timein different T1 centers with different values for the available bandwidth between
TO (CERN) and T1-US1

In the figure 3 is the representation of the way the RAW file transfer time variesin
different T1 centresin the tests in which we have varied the amount of available bandwidth
between TO (CERN) and T1-USL1. As seen the RAW files transfer time tends to decrease
proportionally with the amount of bandwidth available between TO (CERN) and T1-US1
centres The series “all Series’ represents the average value of the RAW files transfer time
considering al the T1 tiersin the smulation.

Average RAW files transfer time
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Fig. 3. The RAW files transfer time in different T1 centers with different valuesfor the available bandwidth
between TO (CERN) and T1-US1

In the figure 4 is the representation of the variation of time needed to complete the

Detector Analysis activity in the tests done for different values for the amount of available
bandwidth between TO (CERN) and TEUSL. As said above this activity gathers the RAW data
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from the last 12 hours, but as seen here when using a 3Gbps link it takes amost 24 hours to
finish, while when using a 10Gbps link between TO (CERN) and T1-US1 it takes around 15
hoursto finish.

Detector Analysis activity - time to finish

26:00

2400
220 \
£ o \
2 \
18:00 \\
18:00 T
14:00
3 4 5 B 7 ! g 10
Available bandwidth between TO(CERN) and T1-US1 (Ghps)

| —Detector Analysis time to completior‘

Fig. 4. Time needed for the Detector Analysis activity to finish for the tests done centers with different values for
the available bandwidth between TO (CERN) and T1-US1

6.3.2. Results

6.3.2.1. Comparison for Production and DST distribution done with and without
the Data Transfer Agent

In the first series of tests we tried to see the role of the Data Transfer Agent in the
simulated activities. For that we have simulated the Production and DST distribution activity
test first using the Data Transfer Agent and then without using it and compare the obtained
results.

In the Production and DST distribution activity test at TO (CERN) regional centreare
produced DST files from the recorded RAW data, which are then distributed to all threT1

regional centres. The Data Transfer Agent is used on the TEUSL regional centre and will
forward the DST data received in that centrefrom TO (CERN) further to T1-US2 and T1-JP
regional centres (see figure 1). This means that at TO (CERN) when using the Data Transfer
Datathe DST fileswill be sent only to TEEU regional centres and to T1-US1, while the agent
will handle the further transfer of those files from T1-USL1 to the rest of the regional centres

For the average used bandwidth on the major links the obtained results are shown in

figures 5 and 6. As seen the average bandwidth used on the CERN link is greater when we do
not use the Data Transfer Agent since more data get transferred from that regional centre.
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Fig. 5. The used bandwidth on the major links output Fig. 6. The used bandwidth on the major links output
obtained for the test done using the Data Transfer obtained for the test done without using the Data
Agent Transfer Agent

Furthermore, the difference between the two tests is better seen in the figures 7 and 8,
which show the results obtained for the parameter average used bandwidth again on the major
links, but on each direction on each link (from CERN to EU, from CERN to USL, etc). The
results are explained if we look into the deeper details of the tests done. In both tests at TO
(CERN) regional centre are produced DST files with a continuous rate. The desired purposein
thistest is, as already mentioned, to distribute those DST files from this regiona centreto all
the other regional centres. One of the tests uses a Data Transfer Agent on T1-USL that will
transfer further thefilesto TEUS2 and T1-JP. So, in both tests from TO (CERN) to TXEU is
transferred the same amount of data (see link CERN->EU in the graphics below). But the
difference consists in the amount of data that is transferred from TO (CERN) to T:USL. When
using the Data Transfer Agent only one file gets transferred on that connection for al three
regional centres (the T1-US1 will act as a proxy for that file), while in the test done without
using the Data Transfer Agent one file will be transferred through that link to each of the three
regiona centres. In the graphics below this is represented by the link Lus->CERN and as seen
the report is 1:3 as expected in the bandwidth that gets used. The link Lus->Ljp represents the
connection from T2USL1 to the other two regiona centres, and in both tests two files are
transferred through it. Ljp->Lus represents the link that arrive at T1-JP, so again in both tests
only one file gets transferred each time through it.
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Fig. 7. The used bandwidth on the major linksoneach  Fig. 8. The used bandwidth on the major links on each
direction output obtained for the test done using the direction output obtained for the test done without
Data Transfer Agent using the Data Transfer Agent
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A difference can be observed aso in figures 9 and 10 where are the results obtained for
the total amount of data that gets transferred through each major link. As explained above we
expected a report of 4.6 between the amount of data that gets transferred through the CERN link
when using the Data Transfer Agent and the same parameter in the test done without using the
Data Transfer Agent.
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Fig. 9. The amount of data that is trarsferred through Fig. 10. The amount of data that is transferred through
the major links in the test done using the Data Transfer ~ the major links in the test done without using the Data
Agent Transfer Agent

One more parameter that was compared for the two tests done was the distribution of the
DST files transfer time, for which the results are the ones shown in figures 11 and 12. Because
the Data Transfer Agents acts as a proxy, meaning in order to transfer one file from TO (CERN)
to T1-JPthefilewill first get fully transferred to TEUSL and then will get transferred to T:JP,
in the test done without using the agent the times needed to transfer filesto T1-JP and T1-US2
is lower than in the other test, but because in the test done using the agent in T 0 (CERN) more
bandwidth is available the time needed to transfer datato T1-EU is higher.
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Fig. 11. The distribution of DST file transfer times for each regional center
obtained in the test done using the Data Transfer Agent
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Fig. 12. The distributi on of DST file transfer times for each regional centre
obtained in the test done without using the Data Transfer Agent

6.3.2.2. RAW Data Replication

In this test we simulated the RAW Data Replication activity. This activity involves the
creation of RAW Datafilesat TO (CERN) regiona centre with a mean rate of 200 MB/s. The
produced RAW datais stored in 2GB size data files (where this size is normally distributed with
10% sd) and then each of thisfile is replicated in a round robin way to al the six T1 regional
centres This means that the first fileis sent to TEEUL, the second fileis sent to T1-EU2, etc.
Also the WAN links have 2.5Gbps available bandwidth.

In figure 13 is the output obtained for the total amount of data transferred on the major
links (CERN, Lus and Ljp shown in Figure 1). This parameter shows the quantity of data
transferred through a given link from the beginning of the ssimulation until the present moment
of time.

Figure 14 shows the plot obtained for the parameter average bandwidth in WAN used in
the Regional Centres.
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Fig. 13. The total amount of data transferred on the
major links

Fig. 14. The average bandwidth in WAN used in the
Regional Centres
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In figure 15 is the representation of the distribution of the transfer time for the RAW
datafile for each Regiona Centre.
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6.3.2.3. Production and DST Distribution

The second case we have simulated was the Production and DST Distribution activity.
Inthistest at TO (CERN) regional center are produced DST files from the recorded RAW data,
which are then distributed to al the T1 regional centers.

In order to minimize the transportation cost for the DST files a data transfer agent is
used in each regional center. In this case the DST fileis sent from TO (CERN) only to T1-USL,

and at this center the transfer data agent will replicate the fileto TEUS2 and T1-JP. In this way
we avoid sending the same file more than once over the same link.

Again in this case we have chosen the speed of 2.5Gbps for all WAN links between
regionda centers. Below are the results for the different parameters that we have obtained.

In figure 16 is the output for the total amount of data transferred on the major links in
this test case. Compared with the output from figure 13 the amount of data transferred in TO
(CERN) for example is 0.4 times lower. Thisis because the DST data files are 10 times smaller
then the RAW datafiles, but in this case the DST files are sent from TO (CERN) to T1-Eux
regional centers and also to T1-US1 in the same time.

In figure 17 is the output for the bandwidth used in the major links. Compared with
figure 14 we can again observe the same 0.4 fractions for this parameter in different regional
centers.
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Fig. 16. The total amount of data transferred on the Fig. 17. The bandwidth used on the major links
major links

Figure 18 shows the output for the distribution of file transfer time per regional
center. When computing the time it takes to one DST data file to reach from the source to its
destination we take into consideration the sum of the times needed by that file to pass through
all different centers on route. Because in this test we are using a data agent in T1-USL the time
needed for afileto arrivein T1-US2 and / or T1-JP means the time it takes to that file to arrive
completely to T1-US1 from TO (CERN) and then the time it takes to the file to arrive
completely from TEUSL to T1-US2 or T1-JP. This explains the difference in the distribution of
file transfer time in the case of T1-US2 and T 1 JP compared with the output from the figure 15.
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Fig. 18. Thedistribution of file transfer time per Regional Center

The results from this test were compared to another test done in the same conditions, but
without using the Data Transfer Agent. The obtained results show that the Data Transfer Agent
has a great importance in reducing the amount of used bandwidth on the mgjor links and adso in
influencing the time it takes to a DST file to reach its destination.

6.3.2.4. Re-production and new DST Distribution

After a certain period of time each T1 regional center will start to re-process the RAW
data stored locally and to generate a new set of DST. Each T1 regional center has approximately
1/6 from the entire RAW data and will generate new DST data that should be replicated to al
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the other regional centers. Asin the case of Production and DST Distribution activity, in this
case we also assume that transfer agents are running on all the centersinvolved (TO, TEUSL)
for an effective replication.

Between the regional centers the links have 2.5Gbps available bandwidth. Below are the
obtained results.

Figure 19 shows the values for the total amount of data transferred on the magjor links. In
the first activity tested (RAW DataReplication — see 6.3.2.2) the amount of data transferred was
larger because of the size of the RAW files that were transferred, in the second activity tested
(Production and DST distribution — see 6.3.2. 3) the amount of data transferred was alittle
smaller because of the smaller files that were transferred (DST files) while in this third case of
simulated activity the amount of transferred data is the smallest and this is the result of the fact
that in this case the amount of files transferred is lower (just /6 of the number of files from the
second test is transferred from each regional center) and also a result of the use of the Data
Transfer Agent who makes it possible to transfer f or example only one file from T1-EU1to TO
(CERN) instead of transferring four files, one for each of the other regional centers others than
T1-EU.

In figure 20 is the output obtained for the parameter used bandwidth in each regional
center. Also compared to the outputs from the other activities of the bandwidth in the regiona
centersin this case of smulated activity we obtained the lower amount of used bandwidth.
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Fig. 19. The total amount of data transferred  Fig. 20. The bandwidth used in the Regional
on the major links Centers

Further details for the bandwidth used are the ones from the figure 21 which is the result
obtained for the parameter used bandwidth on the mgjor links per each direction of the link.
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Fig. 21. The bandwidth used on the major links in each direction of the link

In figure 22 is the result for the distribution of DST file transfer times in each regional
center.
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Fig. 22. The time distribution of file transfer times per Regional Center

6.3.2.5. RAW Data Replication activity followed by Production and DST distribution

After simulating each of the activities alone (see 6.3.2. 2, 3 and 4) we have done a
number of tests in which we have combined the activities. Thisis atest in which we have
simulated the RAW Data Replication activity and the Production and DST distribution activity
running concurrently. For this test we have also assumed a 2.5Gbps bandwidth for the links
connecting the regional centers.

In figure 25 is the obtained output for the parameter number of active connections in the

regiona centers. For comparison in figures 23 and 24 are the results for the same parameter
obtained for the cases when each activity was running alone.
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Fig. 23. The number of active connections in the WANs  Fig. 24. The number of active connections in WANs
when running RAW Data Replication alone when running Production and DST distribution alone

As seen the number of active connections increases significantly when running both
activities concurrently.
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Fig. 25. The number of active connectionsin the WANs  Fig. 26. The total amount of data transferred on the
major links

In figure 26 is the output for the total amount of data transferred on the major links in
this case. The obtained values for this parameter are sum of the correspondent values obtained
in the cases when running each of the activities alone.

Figure 27 shows the result for the used bandwidth in each of the regiona center. More
bandwidth is used when running the activities concurrently, but as seen the system is able to
keep up with the generated traffic. Similarly figure 28 shows the output obtained for the
parameter used bandwidth on the mgjor links in the simulation.
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Fig. 27. The bandwidth used in the Regional Centers Fig. 28. The bandwidth used on the major links

Another parameter that we were interested in was the distribution of the file transfer
times. In figure 29 is the output obtained for this parameter in the case of the DST files, whilein
figure 30 is the output obtained for this parameter in the case of the RAW files.
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Fig. 30. The distribution of RAW files transfer times per Regional Center
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The mean time to transfer RAW filesincreased significantly from the case where we
simulated the RAW Data Production activity alone (see 6.3.2.2), but the system is able to keep
up with the generated traffic.

6.3.2.6. RAW Data Replication activity followed by Production and DST distribution
followed by Re-production and new DST distribution

After seeing the results for the first two activities running concurrently we went even
further and simulated al the three activities (RAW Data Replication, Production and DST
distribution and Re-production and new DST distribution) running in parallel.

The available bandwidth for the links connecting the Regional Centers was chosen as
2.5Gbps. As seen from the obtained outputs below in this case the system was not able to keep
up with the total transfer rete (the rate with which the network transfers occurred in the system
was higher than the rate with which the started transfers were terminated and for that reason it
wasn't possible to simulate a whole day of running activities). The link TO (CERN) <-> T1-US1
(see figure 1) became the bottleneck and for that reason we did a second test again with all three
activities running concurrently but in which we increased the available bandwidth for that link
to 5Gbps. The obtained results are aso shown below in thissection

In figure 31 is the output for the number of active connections in each of the Regional
Centers. Compared with the output from the figure 25 in this case there are more active
connections in each center at any given moment of time. In the figure 32 is the output for the
amount of data transferred through the major links. Again, compared with the output from
figure 26 more data get transferred through each of the links.
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Fig. 31. The number of active transfer connectionsin Fig. 32. The total amount of data transferred on the
the WANs major links

In the figure 33 is the output for the bandwidth used in each of the Regional Centers.
The output shows the effective bandwidth that gets used, so the bandwidth in the TO (CERN)
center isactually used at full capacity. In figure 34 is the output for the used bandwidth per each
direction of each of the links. From this output it can be seen that the connection between TO
(CERN) and T1-USL1 is acting as a bottleneck in this case.
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Fig. 33. The bandwidth used in the Regional Centers

Fig. 34. The bandwidth used on the major links in each

direction of the link

In figures 35 and 36 are the outputs for the distribution of the files transfer times per

each Regional Center, first for the DST files and then for the RAW files. As seen above the link

TO (CERN) <-> T1-US1 becomes a bottleneck and as a consequence the RAW data transfer
time starts to increase continuously compared with the output from figure 30.
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Fig. 36. The distribution of the RAW files transfer times per Regional Center

We have also done a second test with the three activities running concurrently in which
we have increased the available bandwidth for the link TO (CERN) <-> T 1-US1 to 5Gbps.

In figure 37 is the output for the parameter number of active connections per Regiona
Center obtained in this case. Compared with the output from figure 31 at each moment of time
there are fewer connections in each center.

In figure 38 is the output for the amount of data transferred through each of the major

links.
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Fig. 37. The number of active connectionsin the WANs  Fig. 38. The amount of data transferred on the major
links

In figure 39 is the output obtained in this case for the parameter used bandwidth in each
of the Regional Centers. It can be seen that in this case no link acts as a bottleneck for the
transferred data (the link TO (CERN) <-> T 1-US1 has 5Gbps available bandwidth and less than
half of it gets used). In figure 40 is the output for the bandwidth used on the mgjor links per
each direction of each link.
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Fig. 39. The bandwidth used in the Regional Centers Fig. 40. The bandwidth used on the major links in each
direction of the link

In figures 41 and 42 are the outputs for the DST and RAW files transfer times
distributions. The RAW files transfer times distribution is more stable in this case than in the
case when using the link of 2.5Gbps, as seen when comparing figures 36 and 42.
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Fig. 41. The distribution of DST files transfer times per Regional Center

In this case the system can cope with the three activities and the distribution of the
transfer time for both types of filesis not very different compared with the cases in which each
activity was considered independently.
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Fig. 42. The digtribution of RAW files transfer times per Regiona Centers

As a conclusion for the two cases (when using a 2.5Gbps link and when using a 5Gbps
link between TO (CERN) and T1-US1) it can be seen that if a bottleneck occurs in the system
all the parameters that we have observed are being negatively influenced by this phenomenon.

6.3.2.7. Detector Analysis activity

Beside the three simulated activities we have constructed a faurth one, named Detector
Analysis. This activity startsin certain T1 regional centers at given moments of time and
collects all RAW data from the other regional centers produced over the last hours. We choused
local 9 o' clock as the time this activity startsin the given regional centers and also we choused
to gather the RAW data for the last 12 hours. The RAW data is gathered dynamically, meaning
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from all the regional centers that have the requested data it is chosen the one that maximize the
performance of the transfer, based on the network load, proximity and database load.

First we have simulated this activity running alone in two cases. In the first case the
activity was running on T1-EU1 center and in the second case the activity was running on T1-
JP center. When the activity runsin T1-EU1 center it will start collecting data after 7 hours
(local 9’ oclock time), while when the activity runs in T1-JP center it will start collecting data
from the beginning.

In figure 43 is the output for the numbe of active connections for the case where the
activity runsin T1-EU1 Regiona Center, while in the figure 44 is the output for the number of
active connections for the case where the activity runsin T1-JP Regional Center.
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Fig. 43. The number of active connectionsin the WANs  Fig. 44. The number of active connections in the WANs
when running on T:EU1 when running on T1-JP

In the figures 45 and 46 is a comparison for the amount of data transferred on the major
links parameter in both of the cases. In this tests because there is only one Detector Analysis
running and because we use the Intelligent Data Retrieval Mechanism all the data is taken from
only one single Regional Center, which is TO (CERN) for the first case and T1-USL for the
second case. For instance if we consider the first case, there is alonger distance from T1-EU1 to
any of the other centers than from TO (CERN), so the optimal center is always chosen to be TO.
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Fig. 45. The amount of data transferred on the major Fig. 46. The amount of data transferred on the major
linkswhen r unning on T1-EU1 links when running on T1-JP

In figures 47 and 48 again there is a comparison for the two cases, this time for the
bandwidth used in each of the Regional Centers. This output actually shows the effective
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bandwidth that gets used for transferring data and because the RTT between T1-JP and T1-US1
is of 240 seconds, while the RTT between T1-EU1 and TO (CERN) is of 20 seconds, thereisa
gap in the output values shown in this figures.
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Fig. 47. The bandwidth used in the Regional Center Fig. 48. The bandwidth used in the Regional Center
when running on T-EU1 when running on T1-JP

6.3.2.8. RAW Data Replication activity followed by Production and DST distribution
followed by Re-production and new DST distribution with Detector Analysis activity

After smulating all the activities running alone and after simulating the first three
activities running concurrently we did a number of tests in which we simulated all four
activities running in parallel. From simulating the first three activities running concurrently we
saw that when using a 2.5Gbps bandwidth for the link connecting TO (CERN) and T1-US1 we
encounter a bottleneck. We started those tests by using a value of 3Gbps for that link. Then we
increased that value to 4Gbps, 5Gbps and finally 10Gbps in order to see the effect that this
increase would have on the behavior of the simulations. The rest of the links were running with
2.5Gbps available bandwidth. For this test we chose the Detector Analysis activity to runin T1-
JP.

In figures 49 to 52 are the obtained results for the four cases for the parameter number of
active connections in the Regional Centers. As seen the number of active connections decreases
from case to case. The sudden decrease corresponds with the termination of the activity
Detector Analysis (all data from the last 12 hours are gathered in T1-JP) except for the first case
(with 3Gbps link) where the decrease corresponds with the termination of all the other adivities
(in that case actually more than a day takes to gather data from the last 12 hours). See figure 4
for the result of the times needed by the Detector Analysis to finish.
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Fig. 49. The number of active connections in the WANs
for 3Gbps link

D Migmape sets  Smepil seis  Amalere peis View

Fig. 50. The number of active connections in the WANs
for 4Gbps link
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Fig. 51. The number of active connections in the WANs

for 5Gbps link

Fig. 52. The number of active connections in the WANs
for 10Gbps link

Figures 53 to 56 show the obtained results for the bandwidth used in the Regional
Centers in the different tests done with different values for the bandwidth of the link connecting

TO (CERN) and T2USL.
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Fig. 53. The bandwidth used in the Regional Centers
for 3Gbps link

Fig. 54. The bandwidth used in the Regional Centers
for 4Gbps link
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Fig. 55. The bandwidth used in the Regional Centers
for 5Gbps link

Fig. 56. The bandwidth used in the Regional Centers
for 10Gbps link

In figures 57 to 60 are the obtained results for the four tests for the distribution of the
DST files transfer times per Regional Center. The obtained results for this parameter were
summarized in the figure 2. As seen the time it takes to a DST file to reach its destination
decreased, as more bandwidth is available to the link that connects TO (CERN) and T1-USL
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Fig. 57. The distribution of DST files transfer times per Regional Center for 3Gbps link
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Fig. 58. The distribution of DST files transfer times per Regional Center for 4Gbps link
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Fig. 59. The distribution of DST files transfer times per Regiona Center for 5Gbps link
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Fig. 60. The distribution of DST files transfer times per Regional Center for 10Gbps link

Another comparison was done for the parameter distribution of RAW files transfer times
per Regional Center, with the obtained results shown in figures 61 to 64 and with the conclusion
from figure 3. Again as more bandwidth becomes available to the link connecting TO (CERN)
and T1USL, the RAW data needs less time to reach its destination regional center.
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Fig. 62.The distribution of RAW files transfer times per Regional Center for 4Gbps link

In conclusion we have found out that using a Transfer Agent in the hub T1 centersis
important to save resources for the data replication activities. Also for the assumed values, a
2.5Gbps link from TO (CERN) to US is not enough to keep up with the traffic generated by the
production activity.
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7. Conclusions

The MONARC is atool for the evaluation of the performances of distributed systems,
especidly of their capability of processing data resulted from scientific experiments. However,
it isnot destined only for the physics applications, and can be successfully used in avery
genera framework. It is a particularly useful and well-structured tool in the designing of
distributed systems. The beginning point is a project realised in collaboration by researchers at
both CERN and CALTECH.

The Java programming environment, used extensively to build the MONARC
simulation tool, is very well suited for developing a flexible and distributed process oriented
simulation and equipped with adequate graphical tools.

The MONARC project is in the optimisation phase. It is wished to achieve as high as
possible performances for MONARC, so that it be used to successfully smulate and verify the
architectures of the real distributed systems, even for commercia use.

It is also pursued the using of the already existing classes for the most practical goals as
possible (like the Proof simulation, the TO/T1 data replication and production).

For more information please see the MONARC web page:

http://monarc.cacr.caltech.edu/.
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9. Appendix

Below | have listed the source code for a few of the classes of the application (the most
relevant for my project)
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