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1. Introduction 

1.1. Generalities 

Distributed system s have become very useful especially in the case of scientific 
applications, where there is necessary the processing of a very large data volume, in a very short 
amount of time, as well as the storage of these data.  

Taking into account the tremendous popularity of complex distributed systems, favoured 
by the rapid development of the computing systems, of the high speed networks, and of the 
Internet, it is clear that it is imperative, in order to achieve performances as high as possible, in 
the utilization of these systems, to pick an optimal structure and architecture, but also 
scheduling algorithms, and data replications ones in that distributed system. This thing is 
particularly difficult, but even impossible, to be done by somebody without the help of a 
specialized program, because the prediction of the functioning of a distributed system without 
the aid of the mentioned program is only approximate and there may appear functioning errors 
in that distributed system.  

Therefore, simulators for distributed systems are particularly useful, because they are 
very flexible and easy to use in the testing of certain architectures, scheduling algorithms, the 
same result being much more difficult to achieve by testing real systems.  

The project MONARC 2 is such a simulator for large scale distributed systems, having 
as a purpose the modelling and simulation of distributed systems, with the goal of predicting 
general performances of the applications running on these systems.  

1.2. Theoretical aspects of the simulation 

1.2.1. Introduction 
  

Computerized simulation consists in the designing of a system model, in the execution 
of this model on a digital computer, and in the analysis of the results. 

For the simulation of a physical system, the first step which must be done is the creation 
of a mathematical model to represent it. The model will be executed through the mediation of a 
program which will simulate the passing of the time, modifying the values of the state variables 
which are of interest in the simulation. 
 

1.2.2. The Utility and the implementation of the computer simulation 
  
 This modality of simulation has become the most used in the last decades. Although 
there are a multitude of methods of modelling systems, this kind of simulation proves extremely 
useful in the case in which we have to deal with a very large scale system, in which the 
variables computed at every discrete moment are very many, the components are very 
numerous. There is also useful in the case in which it is wanted as the results of the simulation 
to be obtained in a visual form, as well as in the case in which inside the model we have 
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variables which vary randomly, or even after certain distributions or mathematical computations 
that can be very laboriously computed without the aid of the computer. 
 Another simulation advantage is that it can be used exactly the same execution 
technique for a large number of systems, an especially difficult thing to do through the classical 
solving of the simulations, in the second case being necessary to solve the problem again. To 
conclude, the classical systems may be applie d for a relatively limited number of situations, to 
contrast with the large applicability of the computerized simulations.  
The designers of the distributed systems want to achieve the best performances with the lowest 
price. The computer simulation may be even more precise than the real one. The simulation of 
certain types of architectures is particularly useful before taking the decision of the designing of 
a real system. 
 The simulation may be used not only to optimize performances, but also to verify the 
correctness of the real results. For example, there are simulations made to verify the behaviour 
of a type of cars in extreme conditions, taking into account as accurately as possible all the 
parameters. The errors must be identified and corrected as rapidly as possible, as in final phases, 
the errors are much more difficult and more costly to correct. There are cases in which 
uncorrected mistakes can produce catastrophical results.  
 There exists a multitude of fields in which the computer simulations are largely used: in 
the scientific field, phenomena which can take whole eras: as the genesis of the universe, or in 
general the ones related with the astronomy, or oppositely, the ones which take nano-seconds, 
as the knockings between electrons, can be studied and reproduced with the aid of the computer. 
The simulations may used to create virtual environments, for example the training of the 
fighting planes pilots, who can learn on a simulator manoeuvres that, in the case they do not 
posses, in reality, would make them lose their lives, as well as destroying very valuable 
equipments. 

1.2.3. Simulation Types 
 
 If we classify the computer simulations after the mode in which there appear changes of 
states in the system they model, we will distinguish two categories: 

- continuous time simulation: the state changes appear continuously in time, and the 
system can be described with the aid of differential equations systems; this model is suitable 
for simulating the weather's evolution or the fluid dynamic; 

- discrete time simulation: the events appear instantaneously, only at certain moments in 
time; this model can be used for simulating air traffic, communication networks or 
computing systems. 

 
The simulation models in continuous time are more general and can be converted to 
discrete time simulations, considering that unitary events are instantaneous.  
 
The discrete simulation can be of two types: 

- discrete simulation oriented on time 
- simulation oriented on discrete events 
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1. time-oriented discrete simulation: the time advances in constant -size steps, so 
system is evaluated once in a certain time interval. When choosing the length of the 
time interval we have to make a compromise between  the accuracy of the 
simulation and the time needed for execution; usually the time intervals short 
enough to guarantee the precision we need lead to a longer execution time. If the 
events appear irregularly in time, this model is inefficient. 

2. event-oriented  discrete simulation (Discrete Event Simulation - DES): the system is 
only observed in the moments of time when events appear. The simulator maintains 
an internal clock, which measures the virtual time (the time of the simulated sys tem). 
Each event has a timestamp, which indicates the moment when it appears, and the 
events that must be processed are organized in a priority queue in which a smaller 
value for the timestamp means a greater priority. In a simulation step, the events 
with the minimum timestamp are extracted from the queue and the virtual time 
advances, becoming equal with the timestamp of the events extracted. The 
processing of an event can have as an effect the change of some state variables 
and/or the insertion of some new events into the queue. 

 
In MONARC it is used the second approach – DES, because this variant corresponds 
better with our purpose, which is the simulation of the distributed systems.  

1.2.4. A few other examples of simulators  
 
There are a lot of computing systems simulators, some of them general, and the other 

specific. Below, we have examples of this kind of applications (especially distributed systems 
oriented): 

1. SEDS is a simulator developed at Osaka University 
They have developed a Simulator for Evaluation of the Distributed Systems (SEDS) for 

evaluating not only distributed system (DS) architectures but also distributed algorithms. In 
their simulator SEDS, through using simple format "forms" defined in SEDS, they can describe 
both the hardware conf iguration of a DS and the distributed algorithm implemented on it. 
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 Through the simulation of the problem by SEDS, they show the availability and 
applicability of the SEDS to the wide range of the problem around the DS. 

2. Bricks is a program developed at the Tokyo Institute of Technology, which has the 
role of evaluating the high performance computing systems, and of scheduling algorithms. It is 
written in Java and it simulates the behaviour of different network architectures inside some 
global systems. The users can specify the parameters of the system that will be modelled 
through the scripts. The components of the application may be replace with user defined ones, 
so it can be tested different scheduling algorithms from the ones already implemented. 

3. Proteus  is a high-performance simulator for MIMD multiprocessors. It is faster than 
comparable simulators, as they say, and it can reproduce result s from real multiprocessors, it is 
easily configured to simulate a wide range of architectures. Proteus provides a modular 
structure that simplifies customization and independent replacement of parts of architecture. 
There are typically multiple implementations of each module that provide different 
combinations of accuracy and performance. Finally, PROTEUS provides repeatability, 
nonintrusive monitoring and debugging, and integrated graphical output, which result in a 
development environment superior to those available on real multiprocessors.  

4. GridSim is a simulator projected for the modelling of Grid systems, and of the peer-
to-peer networks. There are supported many types of resources, mono and multi processors, for 
different types of systems. 

5. Peersim has been developed with extreme scalability and support for dynamicity in 
mind. Peer-to-peer systems can reach huge dimensions such as millions of nodes, which 
typically join and leave continuously. Evaluating a new protocol in a real environment, 
especially in its early stages of development, is not feasible. There are distributed planetary-
scale open platforms to develop and deploy network services, but these solutions don't include 
more than 400 nodes.   

Peersim is composed of many simple extendable and pluggable components, with a 
flexible configuration mechanism. To allow for scalability and focus on self-organization 
properties of large scale systems, some simplifying assumptions have been made, such as 
ignoring the details of the transport communication protocol stack. Peersim is developed within 
the Bison project and it is distributed under an open source license. Peersim is written in the 
Java language.  

6. Ptolemy is s system made at Berkeley, with a very large area of utilization, it may 
handle lots of calculus model, with discrete and continuous time. It is written in Java, and has a 
modular structure, containing both generic packages, and specialised packages for every model. 
There are implemented libraries for mathematical functions, graph algorithms, a language 
interpreted for expressions and many others.  
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1.3. Distributed Systems. Generalities. 

1.3.1. History 
 
From the beginning, in 1945, until about 1985, computers were large and expensive. As 

a result, most organisations had only a handful of computers, and for lack of the way to 
interconnect them, they operated independent from one another. 

Starting from the mid 1980’s, however, two advances began to change the situation. The 
first was the development of powerful microprocessors. Initially, they were 8-bit machines, but 
soon 16, 32 and 64 bit CPUs became common. The second development was the invention of 
high-speed computer networks. Local-area networks allow hundreds of machines within a 
building to be connected in such a way that small amounts of information can be transferred 
between machines in a few microseconds. Larger amounts of data can be moved between 
machines at rates of 10 to 1000 million bits/sec. Wide-area networks allow millions of machines 
all over the earth to be connected at speeds varying from 64 Kbps to gigabits per second. 
 The results of these technologies is that it is now easy to put together computing systems 
composed of large numbers of computers, connected by a high-speed network. They are usually 
called computers networks, or distributed systems , in contrast with the previous centralized 
systems (or single processor systems) consisting of a single computer, its peripherals, and 
perhaps some remote terminals. 
  

 1.3.2. Definition and Characteristics  of a Distributed System 
 

A distributed system is a collection of independent computers that appear to its users as 
a single coherent system. 
 The two aspects of this definition are: 
 -One that deals with the hardware; the machines are autonomous.  
 - The second deals with the software: the users think that they are dealing with a single 
system.  
 Characteristics of a distributed system: 
 - The differences between the various computers and the ways in which they 
communicate are hidden from users. 
 - The internal organisation of a distributed system is hidden to the users. 
 - The users and the applications can interact with the distributed system in a consistent 
and uniform way, regardless of where and when interaction takes place.  
  -Distributed systems should also be relatively easy to expand or scale. This 
characteristic is a direct consequence of having independent computers, but at the same time, 
hiding how these computers actually take part in the system as a whole. A distributed system 
will normally be continuously available, although perhaps certain parts may be temporarily out 
of order.  
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 In order to support heterogeneous computers and networks while offering a single -
system view, distributed systems are often organized by means of a layer of software that is 
logically placed between a higher-level layer consisting of users and applications, and a layer 
underneath consisting of operating systems. Such a distributed system is sometimes called 
middleware . 
 

 1.3.3. Several examples of distributed systems  
  
 A first example could be a network of workstations in a university or company 
department. In addition to each user’s workstation, there might be a pool of processors in the 
machine room that are not assigned to specific users, but are allocated dynamically as needed. 
Such a system might have a single file system, with all files accessible from all machines in the 
same way as using the same path name. When a user types a command, the system could look 
for the best place to execute the command, possibly on the user’s own workstation, possible on 
an idle workstation belonging to someone else, and possibly on one of the unassigned 
processors in the machine room. If the system as a whole looks and acts as a classical single -
processor time sharing system (multi-user), it qualifies as a distributed system. 
 As a second example let us consider a workflow information system that supports the 
automatic processing of orders. Such a system is used by people from several departments, 
possibly at different locations. For example people from the sales department may be spread 
across a large region or an entire country. Orders are placed by the means of laptop computers 
that are connected to the system through the telephone network. Incoming orders are 
automatically forwarded to the planning department, resulting in new internal shipping orders 
sent to the stock department. The system will automatically forward the orders to an available 
person. Users are unaware of how orders physically flow through the system: to them it appears 
as if they are all operating on a centralised database. 
 As a final example, let us consider the World Wide Web. The Web offers a simple, 
consistent and uniform model of distributed documents. To see a document, a user need merely 
activate a reference, and the document appears on the screen. In theory, there is no need to 
know from which server the document has been fetched, neither where the server is located. 
Publishing a document is very simple: you only have to give it a unique name in the form of a 
Uniform Resource Locator (URL), that refers to a local file containing the document’s content. 
If the World Wide Web would appear to its users as a gigantic centralized document system, it 
too would qualify as a distributed system.  

1.3.4. The Goals of Distributed Systems 
 

1.3.4.1. Connecting users to resources 
 
The man goal of a distributed system is to make it easy for the users to access remote 

resources, and to share them with other users in a controlled way. Resources can be virtually 
anything, but typical examples include printers, computers, storage facilities, data and files.  

There are many reasons for wanting to share resources. The main obvious reason is that 
of economics. It is cheaper to let a printer be shared by several users, than having to buy and 
maintain a printer for each. Connecting users and resources also make it easier to collaborate 
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and exchange information, as it is best illustrated by the Internet. However, as connectivity and 
sharing increase, security is becoming more and more important.  

 

1.3.4.2. Transparency 
 
An important goal of a distributed system is to hide the fact that its processes and 

resources are physically distributed across multiple computers. A distributed system that is able 
to present itself to users and application as if it were only a single computer system is said to be 
transparent.  

The concept of transparency can be applied to several aspects of a distributed system, as 
we can see below.  

We have transparency for: 
 -Access –there are hidden the differences in data representation and how a 
resource is accessed.  
 -Location - it is hidden where the resource is located 
 -Migration – it is hidden that a resource may move to another location. 
 -Relocation – hide that a resource may be moved to another location while in 
use.  
 -Replication – hide that a resource is replicated.  
 -Concurrency – hide that a resource may be shared by several competitive users. 
 -Failure – hide the failure and recovery of a resource. 
 -Persistence – hide whether a software resource is in memory or on disk.  
 

1.3.4.3. Openness  
 

An open distributed system is a system that offers services according to standard rules 
that describe the syntax and semantics of those services. For example, in computer networks, 
standard rules govern the format, contents, and meaning of the messages sent and received. 
Such rules are formalized in protocols. In distributed systems, services are generally specified 
through interfaces, which are often described in an Interface Definition Language (IDL).  

 

1.3.4.4. Scalability 
 
Worldwide connectivity through the Internet is rapidly becoming very common. 

Scalability of a system can be measured along at least three different dimensions (Neuman, 
1994). First, a system can be scalable with respect to its size, meaning that we can easily add 
more users and resources to the system. Second, a geographically scalable system is one in 
which the users and resources may lie far apart. Third, a system can be administratively 
scalable, meaning that it can still be easy to manage even if it spans many independent 
administrative organisations. Unfortunately, a system that is scalable in one or more of these 
dimensions often exhibits some loss of performance as the system scales up.  
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1.3.5. Hardware concepts 
 

Even though all distributed systems consists of multiple CPUs there are several different 
ways the hardware can be organized, especially in terms of how they are interconnected and 
how they communicate. 

Various classification schemes for multiple CPU computer systems have been proposed 
over the years. We divide all computers into two groups: those that have shared memory, 
usually called multiprocessors, and those that do not, called multicomputers. The essential 
difference is this: in a multiprocessor, there is a single physical address space that is shared by 
all CPUs.  All the machines share the same memory. In contrast, in a multicomputer, every 
machine has its own private memory.  

We can make another further distinction between distributed computer systems: those 
that are homogenous, and those that are heterogeneous. In a homogenous multicomputer, there 
is essentially only a single interconnection network that uses the same technology everywhere. 
Likewise, all processors are the same and generally have access to the same amount of private 
memory.  

 
Multiprocessors 
Multiprocessors systems all share a single key property: all the CPUs have direct access 

to the shared memory. Bus-based microprocessors consist of some number of CPUs, all 
connected to a common bus, along with a memory module.  

 
Homogenous Multicomputer Systems  
In multiprocessors, every CPU has a direct connection to its local memory. The only 

problem left is how the CPUs communicate with each other. Clearly, some interconnection 
scheme is needed here, too, but since it is only for CPU-to-CPU communication, the volume of 
traffic will be several orders of magnitude lower than when the interconnection network is used 
for CPU-to-memory traffic. The homogenous multicomputers are also referred as SANs 
(System Area Networks). In these systems, the nodes are mounted in a big rack and are 
connected through a single, high-performance interconnection network.  

 

Heterogeneous Multicomputer Systems 
Most distributed systems as they are used today are built on the top of a heterogeneous 

multicomputer. This means that the computers that form part of the system may vary widely 
with respect to, for example, processor type, memory sizes, and I/O bandwidth.  In fact, some of 
the computers may actually be high performance parallel systems, such as multiprocessors or 
homogeneous multicomputers. Also, the interconnection network may be highly heterogeneous 
as well.  
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1.4. The Technology used: Java Concurrent Programming 

 

1.4.1. Introduction. Advantages of Java language. 
 

The Java language offers a series of advantages that made it be preferred by many of the 
creators of the simulation programs. The main advantages of the Java language are: 

- Portability: the MONARC simulation can be used not only on PCs with Linux or 
Windows as operating system, but also on other, more powerful machines, possibly multi-
processor, that use different Linux variants. That is why the fact that a Java program can be 
used unmodified practically on any platform has a very important role in convincing us to use 
the Java language. 

- Java is an object oriented programming language, that helps us obtain a modular 
structure of the program, a structure resembling with the real one, and a very easy to change 
code.  
 - The support for multi-threading programming .  Inside a distributed system there 
appear different entities with autonomous behaviour, for example the local networks, or 
database servers, or the tasks executed by the system. For their simulation, we need concurrent 
programming, and Java is one of the few languages that offer a library for the work with 
threads. 
 The main disadvantage of Java language is the relatively low performance, taking into 
account the fact that Java is an interpreted language. However, in the last years, significant 
progress have been made, with the advent of technologies like JIT (Just-In-Time Compiling), 
and of the last versions of virtual machines from Sun and IBM. 

1.4.2. Java and concurrent programming 
 

The term of “concurrency” refers basically to the possibility of executing more actions 
simultaneously; the concurrent programs are used in numerous situations, like: intense 
computational applications in the scientific field, the web services, simulations, I/O processing, 
graphical interface applications. 
There are more ways to achieve concurrency, each of them being appropriate for different kinds 
of applications. Among them are the following: 
 

1.  Processes: a process represents a program in execution, in fact, the process notion is an 
abstract one and depending on the operating system (this is the one that handles the 
process administration). The operating system generates the autonomy, security and 
interferences between processes.  

2.  Threads: their usage represents an alternative for the multi-process programming, the 
advantage being the lower overhead at creation, finishing or commutation between 
them. The threads associated with a process share its memory zone, the opened files, and 
other resources associated with the respective process. The not shared things are the 
general registers, the  stack and the program counter. In the Java language, the 
scheduling policy for the threads is not specified. It can be a nywhere between the most 
costly solution (between the threads of a process is not done any scheduling – they are 
let to “cooperate”), and the most complex –the attaining of a preemptive scheduling.  
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3.  The utilisation of more systems : -it maps every logical unit of the application on a 
different system; the advantage is that the systems are autonomous and can be separately 
administered, but on the other hand the message transfer between the machines can be 
very costly –  in addition it may appear security or other kind of problems. 

  
The concurrent and object oriented programming have been associated from the 

beginning of their existence: the first object oriented language, SIMULA , created around 
1966. Other languages, created ulterior, offered, in a certain measure, support for object 
oriented programming and concurrency. This association between concurrent and object 
oriented programming appears very strongly in Java, which offers two classes (Thread, and 
ThreadGroup), and an interface (Runnable), in the java.lang package. The Thread class and 
the Runnable interface offers support for the work with threads as separate entities, and the 
ThreadGroup class permits the creation of thread gr oups, with the purpose of treating them 
unitary. 

The thread class implements the Runnable interface, and the ThreadGroup objects 
contains many Thread objects. 

 1.4.3. The creation of Threads in Java 
 

To create a thread, the programmer has two possibilities: to create a derived class from 
the Thread class or to create a class that implements the Runnable interface. 

1.4.3.1. The creation of a thread through the derivation of the Thread class 
 

The s teps that must be followed in this case are: 
1. The creation of a class derived from the Thread class. 
2. The superscription of the method public void run() from the Thread class; this 

method must implement what the respective Thread will do.  
3. The instantiation of an object from the created class 
4. The starting of the execution thread, through the calling of the start() method, 

inherited from the Thread class. This call makes that the Java virtual machine to 
create the necessary context for a thread and to call the run() method.   

1.4.3.2. The creation of a thread through the implementation of the Runnable interface 
  
 The programmer may want that a t hread have, through the inheritance, functionalities of 
another Java class. Because in this language the multiple inheritance is not permitted, it is not 
possible that the execution thread to derive both from Thread, and from the class whose 
functionality is necessary. The solution is that, instead of inheriting the Thread class, to 
implement the Runnable interface.  
 
 The necessary operations to create a thread in this way are: 

1. the creation of a class that implements the Runnable interface. 
2. the superscription of the method public void run() from this interface. 
3. the instantiation of an object from the created class (let us call it runnable_object). 
4. the creation of a Thread type object, starting off the Runnable object (this operation 

is necessary to call for the new Thread  the methods from the thread class).    
Thread thread = new Thread(runnable_object); 
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5. the starting of the thread, through the start() method.  

1.4.3.3. The Thread control 

A Thread may be in one of the following states: 

1. created: the Thread object was instanced (through the new() call), but it is not still an 
execution thread. In this moment, for it can be called only the start() method.  

2. ready –  ready to run –the start() method was called and the thread was created, and 
can be executed when the processor is available. 

3. suspended: in this state are the threads that called one of the methods sleep() or 
wait(). The control is given away and they will come back to the ready state, when an extern 
event will appear (time expiring, if it was ca lled the sleep() method, or the notify()/ notifyAll() 
call, if the wait() method was called). 

4.  finished : a thread can be in this state if the run() method execution finished, or if the 
stop() method was called. (this method generates an exception of ThreadDeath type, that can be 
“caught” if some processing are wanted before the thread to be finished). 

 Another special category of Threads are the daemon type ones, that offer services for 
other execution Threads or objects (an example would be the demon that handles the garbage 
collector daemon)  

 Usually, the run() method for the daemon threads contains an infinite cycle. Their 
finishing takes place in the moment when all the threads from this application, that are not 
daemons, finished their execution. To declare a thread as a daemon, it can be called the method 
setDaemon(true), before the call of the start() method. 

 The main methods in the Thread class, with which we control the Threads are: 

• public native synchronized void start() - used to start the execution of a thread; 
after this call the Java Virtual Machine handles the creation of the context for the 
new thread and the execution of its run() method. 

• public final void stop() –   it is forced the stopping of a Thread, in any stage it 
would be. 

• public final void suspend() – stops temporary the execution of the thread, until 
the call of the resume() method. 

• public static native void sleep(long milliseconds) –  temporary stops the thread 
execution, on a time period specified in the argument (in milliseconds ). Because 
the method is static, it is of the Thread class and not the instanced object’s; the 
thread from which the sleep() call takes place will be blocked, regardless of the 
object through which the call is made.  

• public final void join() –  the thread from where the join() method of another 
thread will wait thaqt the latter finish the running (there are variants that specify 
a maximum waiting period). 
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• public static native void yield() –  makes that the thread from which it is called be 
sent in the waiting queue, yielding its place to other concurrent thread (with the 
same priority). 

• public void run() – the method that must be overwritten by the programmer to 
specify the tasks that the thread will accomplish. 

• public void interrupt() – it send an interruption request to the thread (it is useful 
for the case when the thread blocks – it will be reactivated and will throw an 
exception). 

• public void destroy()- it destroys the thread immediately. 

1.4.3.4. The Thread Synchronization 
 

The threads of a process share the same memory zone for data, so they can access, for 
example, the same variable in the same time. In the same case there may be problems if a thread 
tries to read a value that other thread modifies in that moment (the first can receive a wrong 
result), or if two threads write simultaneously in the same memory location (case in which the 
final result depends of the relative speed of execution of the two threads).  

Other situations in which the threads interact is that in which one waits for results from 
other, or that in which more threads cannot start a new series of processing until the previous 
series was not finished by the other execution threads. The cases described below can be 
situated in two categories from the point of view of the relations between threads: these 
relations can be of concurrency and of cooperation. 

 
 In the case of concurrency, the threads try to use the same resources, and this thing must 

be done in a consistent manner (usually, at a given moment, a thread can access common 
resources). In this case, the synchronization role is that of assuring the exclusive access to 
common resources. In this way it appears the notion of critical region, which is a part of code 
that only a thread can execute at a given moment. 

The cooperation of the threads refers at the information exchange between them; this 
exchange must be done only when they are at a certain stage of the execution, or else the sent 
information may be incorrect. So, the synchronisation means that in this case the threads must 
wait one another until they are ready for the information transfer.  

To solve this kind of problems, Java adopted the monitor solution, the concept of 
monitor being used by C. Hoare, and implies the existence of a special object (the monitor), that 
permits only one thread to call one of his method at a given time. The other threads that want to 
call a method of the monitor are suspended until the thread that entered the monitor finishes the 
execution of the certain method. Java implements this concept with slight differences: every 
Java object is an object of type monitor, but this thing is valid only for certain methods or code 
sequences specified by the programmer. This specification is made with the help of the 
synchronized  key-word. An object can have more methods or synchronized  blocks, and, at a 
given moment only a thread can access them (if a thread calls a synchronized method of an 
object, another thread can not call this method or other synchronized  method of the object, until 
the first one is not finished). 

 
 
 
 



 16 

 
We can say that a monitor is in a critical zone in which it can enter only one thread at a 

given moment. Once entered, the thread can call any synchronized method existent in that area. 
For a thread to have access to a method of the zone (this means of the monitor), the first must 
exit from the monitor. 

In the normal mode, the synchronization mechanism is bound to an object, but it is 
possible as a static method to be declared synchronized; in this way the monitor is the class, and 
not one of its objects. Only a thread can execute at a given moment of time a method static 
synchronized  of a certain class.  

Through the use of synchronized  there may be solved the majority of the simultaneous 
resource access problems, but for the threads that are in cooperation relationship, this solution is 
not sufficient.  

In this case there can be used the methods: wait(), notify() and notifyAll() of the Object 
class. The method wait() goes to the blocking of the thread, from where it was called, it 
remaining blocked until other thread will call one of the methods notify() and notifyAll() for the 
same object for which it was called wait(). For a thread to call one of these methods, it must be 
entered in the monitor of the object (with other words, their call can be done only for a 
synchronized sequence of code).  

Through the wait() call it is exited from the monitor, to allow other threads to enter and 
call notify() (or else the thread that called wait() could not be unblocked). There also are 
variants of the wait() method through which there can be specified a maximum amount of time 
for the waiting. Through the notify() call it is unblocked only one thread (if there are more that 
wait for the same monitor, it can not be known which of them can be unblocked). Through 
notifyAll() there are unblocked all the threads that wait at a monitor. 

1.4.3.5. The Scheduling and the Priority Mechanism 
 
Even if apparently the threads  are executed in parallel, in reality this thing cannot be 

happened on a one processor machine. To give the impression that the work threads work in 
parallel, they get the periodical access to resources, on the basis of a scheduling system. 

The Java virtual machine contains a scheduler that handles the thread access to 
resources, but the specifications of the JVM do not establish the rules of its functioning.  

The scheduling algorithm depends on the implementation of the Java machine on a 
certain platform, so the application must not be based on a certain algorithm, or another.  

For example, in the systems of time division, an execution thread runs for a period of 
time, after which it is forced by the planner to yield his place to other thread, which will run for 
a period of time, and so on. This way, even the threads with smaller priorities will gain access to 
resources, avoiding their blocking. In systems without time-division, a thread that received the 
execution right occupies the resources until the moment it passes in the blocked state, finishes, 
yields explicitly the controls (through the yield() method), or another thread with a greater 
priority appears. This way, it may happen that a thread with a greater priority to get the 
resources, and the ones with smaller priorities not to get executed.  

At the start, a thread has an associated priority, which is implicitly equal  with that of the 
tread that was executed.  The priority level can take values between Thread.MIN_PRIORITY 
and Thread.MAX_PRIORITY, constants defined in the Thread class. In the system it is always 
executed the thread with the greatest priority; if a thread with a greater priority than that of the 
one executing enters the system, it will be given the control. 
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2. General Functioning of the MONARC. Implementation 
details. 

2.1. Generalities 

MONARC 2 is a simulation framework whose purpose is to offer a design and 
optimization instrument for the large scale distributed systems, to serve, in a first phase to the 
LHC experiments that take place at CERN. The purpose is to offer a realistic simulation of the 
distributed computing systems, in particularly for the physical data processing, and to offer a 
flexible and dynamic medium to evaluate the performances of a category of processing 
architectures. 

2.2. The Architecture 

One of the strengths  of MONARC is that it can be easily extended, even by users, and 
this is made possible by its layered structure. The first two layers contain the core of the 
simulator (which we call "simulation engine") and models for the basic components of a 
distributed system (CPU units, jobs, databases, networks, job schedulers); these are the fixed 
parts on top of which some particular components (specific for  the simulated systems) can be 
built. The particular components can be different types of  jobs, job schedulers with specific 
scheduling algorithms or database servers that support data replication. 

The following diagram represents the MONARC layers and the way they could interact 
with a monitoring system: 
 

 
 
 

Fig. 1. MONARC 2 layers 
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MONARC 2 consists of three main packages: engine , network and monarc; the 
first two of them only contain basic components, while the last one also includes specific 
components and can be extended with classes added by users. 

The engine package contains the core of the simulator, mana ging the tasks and the 
events and providing the mechanism through which the tasks interact. The network package 
simulates the data traffic on LANs and WANs, according to different protocols; the ones 
implemented so far are TCP and UDP. The monarc package is more complex than the other two 
and contains sub packages needed to implement models for the  entities in the regional centres 
(CPUs, jobs, job schedulers etc.) and other useful features: the graphical interface, the output 
clients, the parsing of the  configuration files, the generation of random numbers wit h specific 
distributions. 

2.3. The Components of the System 

To offer a simulation as realistic as possible, all the components of the system and the 
interactions between them had to be made abstract. The simulation engine is designed to be 
generic for any distributed systems. The model chosen for Monarc is based on regional centres: 
the system is composed from (more) interconnected regional centres. Every regional centre has 
a farm of workstations (named CPUs), database servers, data heaping units, one or more LANs; 
there also exists a scheduler for the jobs which are submitted, and a waiting queue for the jobs 
that can not be processed at the certain moment of time.  
 
 Beside those components that reside to the layout of the simulated systems the 
application also handles some components for the simulation of processes that occur in those 
components. The basic component is the job. The job simulates the behaviour of a real-world 
thread that must do something. The job is injected into the system in the beginning by a 
component called Activity. Also, the job is scheduled for execution in the system by another 
component called job scheduler. The job executes itself on another component called active job. 
The active job is the simulation of a real-world thread on which the job is mapped and executed. 
 
 Any regional centre can instantiate dynamically a set of “Users” or “Activity” Objects 
which are used to generate data processing jobs based on different scenarios. Inside a regional 
centre different job scheduling policies may be used to distribute the jobs to processing nodes. 
 
 With this structure it is now possible to build a wide range of computing models, from 
the very centralized (with reconstruction and most analyses at CERN) to the distributed 
systems, with a n almost arbitrary level of complication (CERN and multiple regional centres , 
each with different hardware configuration and possibly different sets of data replicated). 
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These components are represented in the image below: 
 

 
Fig. 2 . The System A rchitecture 

 

2.4. Component Model - Multitasking Data Processing Model 

Multitasking operating systems share resources such as CPU, memory and I/O between 
concurrently running tasks by scheduling their use for very short time intervals. However, 
simulating the detail of how tasks are scheduled in the real system would be too complex and 
time consuming, and thus it is not suitable for our purpose. Therefore we need to model the 
multitasking data processing.  

Our model for multitasking processing is based on an "interrupt" driven mechanism 
implemented in the simulation engine. An "interrupt()" method, implemented in the "active 
object" which is the base class for the running jobs, is a key part of our multitasking model.  

The way it works is shown schematically in the next figure:   
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Fig. 3 . The task model 

When a first job starts, the time it needs for completion is evaluated and the associated 
"active object" enters into a waiting state for this amount of time, or until it is interrupted. If a 
new job starts on the same hardware it will interrupt the first one.  

Both will share the same CPU power and the time to complete for both of them is 
computed assuming that they share the CPU equally. Both active jobs will enter into a wait state 
and are listeners to interrupts. When a job is finished it also creates an interrupt to re-distribute 
the resources for the remaining ones.  

This model is in fact assuming that resource sharing is done continuously between any 
discrete events in the simulation time (e.g. new job submission, job completion) while on real 
machines it is done in a discrete way but with a very small time interval. This provides an 
accurate and efficient model for multiprocessing tasks. 

2.5. Task functioning and their states 

At a moment of time, a task can be in one of 5 possible states: created, ready, running, 
waiting and finished . A new task is in the created state until the scheduler finds in the pool a 
worker thread that can execute it; then, the task goes into the ready state. The scheduler will let 
all the ready tasks run (and set their state to running) after it finishes processing the events from 
the current simulation step. In the  running state, the RUN() method of the task is executed by 
the worker thread; the classes inheriting from Task must override this method according to the 
behaviour that they simulate. When a task must stop its execution (for example, if it has to wait 
for an event), it goes into the waiting state. The transitions between the last three states are done 
with the aid of a semaphore that each task maintains: when the task can start running, a V() 
operation is done on the semaphore, and when the task must block - a P()operation.  
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The possible states of the tasks and the transitions between them are represented in the 
diagram below: 

 
   Fig.4. The states of the tasks 

2.6. The scheduling algorithm (from the engine package) 

As mentioned before, the simulation tasks and events are coordinated by a Scheduler 
object; the scheduler maintains a priority queue with the future events (events that haven’t been 
processed yet), and another priority queue with deferred events (these events happened in the 
past, but their destination tasks were not expecting them, i.e. the tasks were not in the waiting  
state at that moment. So the events are moved to the “deferred” queue, and the destination tasks 
will eventually look for them here).    

At every simulation step, the scheduler executes the following operations: 

1.      Look at each simulation task and: 

a.       If the task is in the created  state, assign it to a worker thread from the pool 
and change the task’s state to ready 

b.      If the task is in the ready state, restart its execution by making a V() on the 
semaphore 

c.       If the task is in the finished state, remove it 

2.      Wait until all the tasks that were running block again or finish their execution 

3.      Process the events: 

a.       Take from the future queue the event(s) with the minimum time stamp. 
The simulation time advances, becoming equal to that time stamp.  

b.      For each event taken from the que ue, look for the destination task. If it is 
waiting for an event (i.e., it is in the waiting  state), deliver the event to the 
task. Else, put the event into the deferred  queue. 
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These steps are executed until there are no more alive tasks  and  no more eve nts in the 
queues. The next diagram illustrates some of the steps of this algorithm.  

 

   Fig. 5 . The event queue 

We represented a task (which is an active job, named AJob_5) that, at some moment of 
time (t0) sends an event to another task (AJob_30); this event is inserted into the future queue. 
The scheduler waits until all the tasks block (at the moment t1), then starts processing events, 
i.e. it takes from the queue the two events with the minimum time stamp and delivers them to 
AJob_18 and AJob_26. The event sent by AJob_5 will be extracted from the queue in a future 
step.  

2.7. The Network Package  

The network package offers support for simulating the data traffic in both local and wide 
area networks. Since in most of the real cases that we simulate the amounts of data are very 
large and the network topology is not precisely known, the traffic simulation at a packet level 
would be impossible. Instead, we chose a larger scale approach, based on an "interrupt" scheme 
similar with the one used for evaluating the tasks' completion time. 

The main entities of the network package are: 

• NetworkEntity: this is the base class which describes the general behaviour of a 
network entity - LAN , WAN or LinkPort. A network entity is characterized, among 
other things, by the bandwidth that it offers; it keeps track of the messages that are 
traversing it at the current moment and of the bandwidth they consume.   
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• LinkPort: describes the physical device that connects a computer to the network; it is 
associated with a network address which, in our model, has an IP-like format. The 
network messages are always exchanged between two link ports. The link ports also 
determine, when a message must be sent, its route and initial speed.  

• LAN: simulates a local area network. A LAN object has references to the LinkPorts 
corresponding to the computers from the network; it can be attached to a wide area 
network.  

• WAN: simulates a wide area network. A WAN can have several LANs attached to it and 
can communicate with one or more routers.  

• Router: a router connects two or more wide area networks (in our model, a route 
between two wide area networks goes through a router). Depending on its configuration, 
the router can introduce a delay in the data transfer.  

• Message : this is the base class used to represent network messages. Every message is 
characterized by a number of parameters such as the source and destination addresses, 
the data length, the current speed etc. The classes derived from Message describe 
protocol-specific messages (TCPMessage , UDPMessage).   

• Protocol: each message has a Protocol object which calculates its initial speed, informs 
the network entities when the message  enters or leaves them etc. Protocol is a base class, 
extended by other classes which model specific protocols (TCP, UDP).  

 
 The approach used to simulate the data traffic is again based on an “interrupt” scheme 
described below: 
 

 
Fig. 6 . Network model 

 
  
 When a message transfer starts between two end points in the network, the time to 
completion is calculated.  
  
 This is done using the minimum speed value of all the components in between, which 
can be time dependent, and related to the protocol used. The time to complete is used to 
generate a wait statement which allows to be interrupted in the simulation. If a new message is 
initiated during this time an interrupt is generated for the LAN/WAN object.  
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The speed for each transfer affected by the new one is re-computed, assuming that they 
are running in parallel and share the bandwidth with weights depending on the protocol. With 
this new speed the time to complete for all the messages affected is re-evaluated and inserted 
into the priority queue for futur e events. This approach requires an estimate of the data transfer 
speed for each component. For a long distance connection an “effective speed” between two 
points has to be used. This value can be fully time dependent. 

 
 This approach for data transfer can provide an effective and accurate way to describe 
many large and small data transfers occurring in parallel on the same network. This model 
cannot describe speed variation in the traffic during one transfer if no other transfer starts or 
finishes. This is a consequence of the fact that we have only discrete events in time. 
 
 However, by using smaller packages for data transfer, or artificially generating   
additional interrupts for LAN/WAN objects, the time interval for which the network speed is 
considered constant can be reduced. As before, this model assumes that the data transfer 
between time events is done in a continuous way utilizing a certain part of the available 
bandwidth.   
  

The following diagram represents the components of the network package and the 
relationships between them:  
 

 
Fig. 7 .  The functioning of the network package 

 
 

As shown in the theoretical part the network simulates the behaviour of the TCP/IP 
network model. In order to do that every layer is implemented by some modules in our project.  
 

The first layer deals with the components that make out the network. A network can be 
composed from link port (the physical device that connects a computer to the network), LAN (a 
medium that connect together link ports in order to provide communication between them), wan 
(a medium that connect together lans in order to provide the necessary communication 
infrastructure between link ports situated in different parts of the simulation) and router (it 
connects together wans in order to provide communication over different regional centres).  
 

The second layer deals with what is the effective unit that moves from one link port to 
another. This is the message. A message must contain a destination ip destination address and 
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has a source ip destination address). The message if effectively moved by the means of events. 
The event is moved between tasks, which in term contains inside a network message. The 
network message also contain inside data that are carried. Some other parameters such as 
message length are used in order to provide a mean by which the message time to arrival will be 
computed. Also the message can take out parameters (such as the time it took in order to arrive 
at the destination or the bandwidth that occupies) for the output clients. 

 
The third layer deals with the way the message moves through the network. This is 

implemented by the Protocol. In the project there were implemented two kinds of transport 
protocols. Those are TCPProtocol and UDPProtocol. The protocol moves the message from one 
task from its route to the next until the destination is reached. The way in which the message is 
moved is the actual way in which the given protocol functions in the real world. That is, for the 
tcp protocol for instance, the message is first fragmented, then each part is given to the next task 
after a delay that is computed based on the size of fragment and the bandwidth available. Then, 
after a number of fragments the protocol sends back an acknowledgement in order to simulate 
the windowing problem described in the theoretical chapter.  
 
 The fourth layer is represented by the applications that use the network communication 
that is the jobs that implements the sending and receiving of messages. 
 

In the following we will describe in more detail the basic units presented above. 
 

The link port is the entity that received and sends messages. Every message is exchange 
only between the link ports. Also every entity involved in the simulation has a network link port 
(interface) attached to it in order to practically participate in the network simulation.  
 

Every link port is unique through the ip address of it. So, if a job says he wants to send a 
message to a given address, there is only one link port that will receive the message. But in the 
simulation a special kind of addressing was provided. A link port can also be described by the 
unit to which he is attached. Also, in order to provide  more dynamism the addresses of the link 
ports are allowed not to be unique, in which case the message will be sent to the closer to the 
sender found link port. 

2.8. Job Scheduling and Execution 

 
The jobs are submitted to the regional centres by the Activity classes, which instantiate 

Job objects and send them to the centre via the addJob() method. At the moment of (simulated) 
time when an activity calls addJob(), the regional centre’s farm receives an event associated 
with the new job, and sends the job to the job scheduler.   

The job scheduler first tries to find an available CPU unit to execute the job. The job 
might need to be executed on a specific CPU unit, and in this case the scheduler doesn’t search 
anymore – it knows exactly where to send it. Otherwise, the scheduler takes a decision 
according to the strategy it implements. The basic scheduler sends the job on the CPU unit with 
the minimum load (by load we understand the total amount of memory used by the jobs that are 
already running on the CPU). A job can be executed on a CPU unit if the memory needed by 
the job, added with the current load of the CPU, doesn’t exceed the amount of memory that the 
CPU has. If a CPU was found, the scheduler also looks for an active job (AJob object) to assign 
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the job to it, the active jobs objects being held in a pool. If there is no CPU or no AJob 
available, the job is added to a waiting queue, ordered by the jobs' priorities.  

When a new job is scheduled on a CPU, the other jobs that are executing on the same 
CPU are interrupted because the unit's power is reallocated. The jobs (including the new one) 
estimate the time needed for completion, according to the new amount of power offered by the 
CPU; then, they wait until a new change of state (beginning/ending of a job)  appears, or until 
the time needed for completion expires (this mechanism is explained in more detail in the next 
section). 

The following diagram represents the process described above, in three steps (job 
submission, job scheduling and the re-evaluation of the time needed to complete). 

 
Fig. 8. The job Scheduling and execution model 
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3. The simulation of the Proof Cluster  

3.1. Introduction 

Proof is a facility for distributed data under a Root structure, developed at CERN. 

3.2. The Proof parallel model based on ROOT. The CERN perspective 

The LHC experiments begun at CERN were challenges for the old systems used until 
then, because in these experiments, the data quantities that followed to be simulated and 
analysed are with a few magnitudes grater than what was seen before. 

The ROOT project was developed in the NA49 experiment context at CERN. It 
generated impressive data quantitie s, of approximately 10 TB of raw data on a run. So, the NA 
49 experiment is the ideal development and testing medium of the new generation of tools of 
study of these data quantities.  

The ROOT system offers a set of object oriented medium, with all the necessary 
functionality to handle the analysing of large quantities of data in a very efficient way. Having 
the data organised as a set of objects, there are used specialized methods of stocking, to have a 
direct access to separate attributes of the selected objects, without any need to analyse the pure 
data. There are included histogram methods in 1, 2, or 3 dimensions, function evaluations, 
minimisations, graphics and visualisation classes, which to offer a system analysis to process 
the data. 
 From the CERN point of view, the development of the ROOT Parallel Facility, Proof, 
permits a physician to analyse much larger sets on a much smaller scale time. Root uses the 
event parallelism and implements an architecture that optimises the I/O and the CPU utilisation 
in heterogenic clusters with distributed stocking mechanisms. 
  The system offers transparent and interactive access at Giga-bytes level.   
 Proof is an extension of the ROOT system, which makes possible the analysis of a vast 
set of ROOT files, in parallel on remote computer clusters (which lie at large geographical 
distances from one another).    
 The main purposes for the Proof systems are: 

- transparency 
- scalability 
- adaptability   

Through transparency it can be understood that it must be a as small as possible 
difference between a local ROOT session and a parallel remote PROOF session, both of them to 
be interactive, and to give the same results.   

Through scalability it is understood that the base architecture should not require any 
implied limitation on the number of computers that may be used in parallel. 

Through adaptability it can be understood that the system must be capable to adapt to 
the variations of the remote environment (the networks interrupts, the switching of the load in 
the cluster nodes). 
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Being an extension of the ROOT system, PROOF is designated to work on ROOT type 
objects. Being a logical extension of the ROOT system, PROOF is designated to work on 
ROOT type objects. Through the logical grouping of many ROOT type files in only one very 
big object, there may be created data sets. In a local cluster environment, these data can be 
distributed on the disks of the cluster nodes, or made available through a NAS or SAN type 
solution. 

In the close future, through the usage of Grid technologies, it is scheduled the Proof 
extension from unique clusters to virtual global clusters. In such an environment, the processing 
can take more, un-interactive, but the user will be presented only one result, as if the processing 
be made locally. 

3.3. The Proof System (made at CERN) Architecture  

The Proof consists in a 3 level architecture: 
- The ROOT client session 
- The Master Proof server 
- The Slave Proof servers 
 
The user connects from his ROOT session to a Master slave, on a remote distributed 

cluster, and the master server, in his turn, creates slave servers on all the cluster nodes. The 
inquiries are processed in parallel by all the slave servers. 

Using a certain protocol, the slave servers ask the master for packages with what they 
have to do, and this permits the master to distribute the packages to every slave server. The 
slower slaves take smaller work packages, while the fast ones process more packages. 

In this scheme, the parallel processing performance is a function of the duration of each 
job, packet, and depends also by the available bandwidth and network latency. Because the 
bandwidth and the latency of a cluster are fixed, the main parameter that may be adjusted in this 
scheme is the dimension of the package. If the dimension of the package is chos en too small, 
the parallelism will suffer, as too many packages are sent over the network, between the master 
and slave servers. If the dimension of the package is too big, then the effect of the difference in 
performance of each node is not balanced enough. 

This allows to the Proof system to adapt itself at the performance and load on each 
individual cluster node, and to optimize the job execution time.   

3.4. The Architecture and premises of Proof simulation 

 3.4.1. The Architecture  
 

A Proof configuration consists of several clusters; the computers from a cluster run 
master and slave processes, as the following diagram shows in detail, which presents a possible 
Proof architecture: 
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The typical scenario for data processing with Proof contains the followin g phases: 

1. a client sends a request to a master, specifying a dataset to be processed  

2. the master identifies the files that contain the needed data and determines their 
location; the data can be stored on a central server or on the slave stations  

3. each slave enters a loop in which it asks the master for a work packet (which 
specifies a number of events to be processed), it executes the task and sends the 
result back to the master  

4. the master assigns work to the slaves taking into account the location of the files (a 
slave is first assigned the files that it has on the local disk) and the relative 
performance of the slaves  

There are three possibilities for the slaves to obtain the data they are assigned: from the 
local disk, from a server or from other slave stations, with the aid of the rootd  server (rootd is a 
daemon that allows remote access to Root database files).  

There also are several possible policies for determining the size of the work packets that 
the master assigns to the slaves. For this simulation we chose a fixed size package, equivalent to 
a file. 
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3.4.2. The example description 
 

The simulated scenario is based on the one described above: 

• the working cluster contains n master stations, m slave stations and s data servers (we 
tested with n=20 and m=500, and with different values for s) 

• each master receives a data processing request from a client; we assumed that the client 
needs to process a set of files with the same length, containing analysis data for a certain 
number of events. We also tested some cases in which the clients repeatedly send 
requests to the masters, with pause intervals between requests. 

• when asking the master for work, a slave is assigned one file which is assumed to be 
available on the slave's local disk with a certain probability; if not available, the file is 
taken from a data server 

• it was assumed that the master takes some time to handle a work request from a slave 
and to process the partial results returned by a slave; if there are several slaves that send 
work requests or partial results at the same time, their messages will be processed by the 
master sequentially  

  The behaviour of the system was studied by varying several parameters such as: 

•  the number of slave processes created by each master (on a slave station there can be 
more than one slave process; in our test cases, the minimum number of processes on a 
slave station was 1, corresponding to 25 slave processes created by each master - as we 
have 20 masters and 500 slave nodes) 

•  the probability of having the data on the local disk at the slave nodes  

•  the LAN bandwidth  

•  the number of data servers available in the cluster 

3.4.3. The actual implementation  
 

The implementation of the simulation is achieved in the following classes: 
 
 -ActivityCaltech , where for each Caltech Client it is requested the respective master to 
take the work and assign them to the slaves. In is then waited the answer form the 
JobMasterCollector with the results. 
 -ActivityCern , where the masters create MasterJob  objects that send the data to the 
slaves, and JobMasterCollect objects, that receive the processed data back from the slaves.  
 -The JobMasterCollect receive the processed data back from the slaves, and then send it 
to the Caltech Clients. 
 -The JobMaster, that creates the JobServer for the servers to function, creates the 
JobMasterCollect objects, and sends them their addresses, and sends the data to the JobSlaves. 
 -The JobServer, which waits the requests for files from the clients, and then sends them 
the requested files.  
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-The JobS lave objects, that receives the data from the masters, if they need data from the 
file servers, then they request it, wait the answer from the Servers , process the data, and then 
send the results to the JobMasterCollector entities. 

3.4.4. The Two different Scheduling Variants  
 

We have implemented two different scheduling variants of the way the master chooses 
the files to give to the servers that requests work from them.  
 Let us take the two cases. We have clients in the Caltech regional centre that give work 
to the masters in the CERN regional Centre. Each master has his own slaves to give them work. 
The slaves, when they are free (do not have anything to do) request work from the masters. The 
works consists in the processing of some files. The files are processed in some way by the 
servers (it does not matter what processing is done). The files, numbered from 1 to 
numberOfFiles can be found on the local disk of the slave that has to do the processing, or it is 
not found, and then, the slave has to take it through the network from a database server that has 
all the files.  
 The two scheduling variants differ exactly in the manner the master gives work to the 
slaves, depending on what they have or not on the local disk. 
 
 1. The random variant of scheduling – The files numbers do not count. The masters 
have events to give to the slave to deal with (events are parts of the files, that are given to the 
slaves for processing). The master pure and simply randomly generate a number between 0 and 
1 and if the number is smaller than a parameter read from the configuration file:  
localDataProbability, then it will consider that the data file will be found on the slave disk. Else 
the file is taken from the local file server. This a good policy for the simulation, but a rather 
simple scheduling policy 
 
 2. The variant corresponding to the reality scheduling variant –  There are 
numberOfFiles files that can be given to the slaves. Initially, on the master, for every slave it is 
retained the list of files existent on the local disk, in a Hashtable. Then, when a slave requests 
from the master to work, it is first searched in his list of files from the local disk, and if there is 
any file not processed and available on its local disk, the file is given to the slave for work. Else 
there will be generated a request for the data file server from the slaves. This is a more realistic 
scheduling policy. 

3.4.5. The results 

3.4.5.1. The Influence of the LAN Bandwidth  
 
The improvement of the LAN bandwidth has the effect of increasing the throughput (computed 
as number of jobs processed per hour). For this series of simulations, we assumed that the 
cluster has 2 data servers and each master creates 50 slave processes.  

The LAN bandwidth was given the values of 100Mbps, 500Mbps and 1Gbps. As shown in Fig. 
2, with a 100Mbps network we don't obtain an acceptable throughput when more than a half of 
the data files are taken from the network. 
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.  
 

  Fig. 1. Throughput variation at different LAN bandwidth values 
 
The next figure represents the CPU utilization in the farm for two values of the local data 
probability (0.25 and 0.75): 

 
Fig 2. a) 
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Fig. 2. b) 

 CPU utilization on the slave nodes (test case with 50 slave processes created for each master 
and 1Gbps LAN bandwidth): a) 0.25 probability of having the data on the local disk; b) 0.75 

probability of having the data on the local disk. 
 

As expected, for 0.75 local data probability the total processing time is smaller and the CPUs 
are used more efficiently. The next figure represents the bandwidth utilization for the same two 

test cases: 
 

 
Fig. 3. a) 
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Fig. 3. b) 
 Bandwidth utilization on the slave nodes (test case with 50 slave processes created for each 

master and 1Gbps LAN bandwidth): a) 0.25 probability of having the data on the local disk; b) 
0.75 probability of having the data on the local disk. 

3.4.5.2. The Influence of the Data Se rver Processing Time  
The following graph shows another possible cause for low throughput: the time taken by 

the data server to process a request. This is more visible when the data servers are single 
threaded, as they are in this set of simulations.  When reducing the processing time at the data 
servers from 50ms from 20ms, we obtained a substantial improvement in throughput. 

 
 

 Fig. 4. Throughput improvement when the processing time at the data server is reduced 
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3.4.5.3. The effect of introducing additional data servers 
 

One way to reduce the delays caused by the data server is to introduce several other 
servers in the clus ter. Having 5 data servers is a lmost equivalent to having one server that 
processes requests instantaneously. The graph from Fig. 7 corresponds to a test case with 50 
slave processes created by each master. 
 

 
Fig. 5. The throughput is increased by growing the number of data servers. 

 

3.4.5.4. The Optimum Number of Slave Processes 
 

The advantage of having several slave processes on a machine is that while some of 
them are waiting for data from the network, the others can do CPU-intensive operations. 
However,  there is also a disadvantage of having more slave processes: they can create network 
bottlenecks and waiting queues at the data server and at the master (when requesting work 
packe ts and sending results). 
The graph from Fig. 8 represents the total processing time of a constant number of jobs in three 
situations: when each master creates 25, 50 and 100 slave processes. In this test case, when the 
data server is single threaded, the optimum number of slaves is the smallest one (25). 
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Fig. 6. Total processing time with different numbers of slave processes. 
 

3.4.5.5. The Simulation of Longer Periods of Activity 
 

As mentioned above, we also simulated the situation in which the clients send several 
requests to the masters, with breaks between requests. An average request would take about 
1.5h to be processed on a single CPU, but only takes about 5min to be processed in the cluster. 
The breaks between requests also have the average value of 5min  (their lengths are normally 
distributed). 
In this case, having more slave processes on a station leads to a better throughput, because the 
station has a greater probability of being active even if not all the masters are processing a 
request at that moment. We simulated test cases with 25, 50 and 100 slave processes created by 
each master (that is 1, 2 and 4 slave processes per station), and computed the average CPU 
usage for different local data probabilities. These ave rage values are shown in  the figure bellow: 
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Fig. 7. Average CPU usage in three test cases: 25, 50 and 100 slave processes per master 

 
The following figure represents the CPU and bandwidth utilization in the cluster for the test 
with 100 slave processes and 75% probability of having the data on the local disk. The 
bandwidth utilization has a low average, as in this test case the number of network transfers is 
small; when one of these transfers occurs, the bandwidth utilization reaches a peak value for a 
very short period of time. 
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Fig. 8. CPU and bandwidth utilization on the slave nodes (test case with 100 slave processes per 

master, 75% local data probability). 
 

 

4. The Optimiz ation of the networking part of the MONARC 

4.1. Objective 

The message sending on a single thread from the same source CPU. The receiving of the  
message on a single thread for the same destination CPU. 

4.2. Implementation details 

 4.2.1. The explanation of the problem  
 
 It is wanted the creation of a single thread to handle all the messages which originate 
from the same source CPU. The same, it is created only one thread which handles all the 
messages that have the same CPU destination. 
 The packages that implements the before specified problem is monarc.job.opt message , 
which handle only the messages, and monarc.job.opt which handles both messages and 
processing jobs. 
 The JobOpt class is the Optimized Job. His main purpose is to optimize the running time 
and the memory of the simulation, using only one Java thread that handles receiving or the 
sending of all the messages addressed to one Cpu. The class handles all the messages that are 
sent from the same Cpu, receiving from the activity object created by the user an addJob 
request. This job is scheduled, and it is sent a TAG_START_MESSAGE event.  
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 The JobOptScheduler class functions as a scheduler that handles all the events that refer 
to JobOpt. Initially, for the message receiving on one CPU part, it was derived from the 
Protocol class in the network package, but then I gave up to this derivation, choosing the 
solution that every JobOptScheduler to contain an object from the Protocol class, for which we 
call different methods of computing the time necessary for the message to arrive at destination, 
of bandwidth distribution to the messages, and so on. 
 This optimisation method has the great advantage on the normal message sending, that it 
offers much less context switching .  

In the not optimized version (the old one), for every new message that was necessary to 
be sent, it was created a Task  type object (AJob), which handles the sending of the message, and 
in the other side, at the receiver, it is created another AJob that handles the reception of the 
message (it listens until it is received the TAG_ARRIVE_MESSAGE tag, which signifies the 
message receiving). This version has the advantage of parallelism, but because of the context 
switching and synchronisation, this advantage is in fact a big disadvantage. 
 My approach (the optimised version) has a significant advantage; it functions very well 
even on a multiprocessor machine. In the case of the jobs injected by the Activity objects of the 
users, with very many message to send through the network, which means a very large number 
of Events that are sent, the overhead produced by the increasing of the number of threads 
becomes very great. To conclude, for very many network interrupt events, the classical system 
fails to achieve better results than the optimised one, because of the context switching, the great 
overhead, and the great number of synchronisations. 
 The new system behaves very well, even on a multi-processor system, in the case in 
which the thread number, so implicitly the network interrupts number is very great. The optimal 
variant must be used in simulations in which is created a very number of threads, and is 
generated a large amount of interruptions. 

 4.2.2. The functioning of the optimised variant 
 
The functioning on a single thread can be graphically seen in the following way: 
 

  

Message 
START t1 

Time    

Affected messages 

Message STOP 
t2’ 

Message START  t3 

Message STOP 
t4 

 
Message 
STOP t4’ 

Only one Thread 
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The functioning mode of the message sending is (simplified) the following: 
 

- For the start it is done the message adding form the activity object through the 
addJob  method. This method schedules a TAG_START_MESSAGE event in the 
JobOpt class. In the JobOptScheduler it is called the run method, which treats 
sequentially all the messages that are sent from the CPU that sends this message. We 
have a server (run), which is a thread that, in that way, it runs forever, waiting for 
events with different tags. (Evidently, at the finishing of the simulation when there 
are no more Job-s, this thread is terminated). 

-  For the first version of the program we had a “waitForEvent” method called, which 
was waiting for an event, and then was processing it, and then passed through the 
Scheduler, the core of the program, to pick the next event. This approach was 
inefficient, because in the Scheduler we lost a lot of time, so we replaced the 
“waitForEvent”  method with a “waitForAllEvents” method, which takes all the 
events in that step of the simulation, puts them in a Vector objects, and then satisfies 
all of them, before passing to the next step. In this way we save a lot of time and 
operations, which were necessary before, to take through the Scheduler again.  

- In the “JobOptScheduler” class we catch all the events. (It is waited, unblocking, the 
event, in order to be treated any of the events caught). The events not treated in that 
moment is put by the Scheduler in the future queue, to be treated afterwards.  

- If we receive a TAG_START_MESSAGE event, we will schedule the 
TAG_STOP_MESSAGE event, for the moment of time we compute that the 
message will be fully sent. 

- If we receive a TAG_STOP_MESSAGE event, the message will be considered sent 
and it will be called the after the message is sent handler, to be specific the 
actionPerformed method (the handler specifies another action to do after the sending 
of the message finishes). 

- If it is received a TAG_INTERRUPT_MESSAGE event (this event is produced the 
moment when a message appears in the affectedmessages vector of the current 
message, and it is necessary the re-computing of all the times (when appears a new 
message, when a message finishes – so at the START or STOP event of a message, 
all the affected messages will be sent a TAG_INTERRUPT_MESSAGE event). 
Then, it is re-computed the STOP time of the respective message, the old STOP 
event being taken out, and instead of him it is inserted another event with the new 
stop time.  

- If it is received a new TAG_ARRIVE_MESSAGE event – this event is received by 
the receiving station- then it will be called the “servemessage” method, in which the 
times are recalibrated, other new times are recomputed, the message is put in the 
served messages list, and the contents of the message is taken and sent to the 
destination CPU.  

The message was successfully sent.  
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4.2.3. The performance testing of the optimised version. Simulations. 
 

4.2.3.1. Simulations  
  

In order to test the performances of the new system compared with the new one, we 
have attained several simulations. 

1. The first simulation has 3 regional centres, every one of them with one cpu (the 
purpose of these simulations are to be as simple as possible in order to test and interpret the 
results of the simulation the best as possible). It is created only one thread, one for the messages 
that leave or arrive on the same CPU. 

 
 

 

 
 Every CPU from every regional centre sends messages to the other 2 regional ce ntres. 
Therefore, in this topology there will be sent in every step 6 messages. This configuration was 
initially tested for different parameters.  
 For each processor we have scheduled one Job that receives and the other one that 
sends.  So, we had more jobs than it was necessary for the optimal simulation. (we had too 
many jobs –there was necessary only one job that send and one that receives for all the 
messages send or received from one processor). Because of this deficiency of the simulation, 
the new algorithm did not have better results than the old one. 
 

2. We passed to a simulation in which we had two CPUs in two regional centres, the 
one sends, and the other one receives, in the first version with delays between the 
message sending, in the second, all the messages one, in a burst, specially to 
generate queuing, therefore with very many network interruptions.  

 
 
 
 

Cpu 1 Cpu 2 

Regional 
Centre 1, 
CPU 1 

Regional 
Centre 2, 
CPU 1 

Regional 
Centre 3, 
CPU 1 
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Another more complicated simulation, starting off this one, is the one in which the next 
message will be sent in the finishing handler of the current message. This means, immediately 
after the current message is sent, the next message will be sent and so on. 
 This is a version without queuing, but which suits very well with the serial version (with 
only one thread), because if we created new threads for every message it will be too much 
context switching for a job which will work better sequentially.  
  

3. The simulation which presents the best results of the optimal variant is the 
following: 

 
We have two CPUs, every one of them in a different regional centre, which send each 

other messages (to create as much queuing as possible).  
 

 This time, however, regardless the number of the sent messages, for the optimal variant 
we will have only two threads, created calling JobOpt. The normal version will function 
through the creation of a job (Ajob) of send and receive fo r every message which is sent.  
 
 Varying the parameters’ values I observed a far much better of the optimal algorithm, 
from all the view points.  

- The maximum memory used by the simulator is better in the optimised case 
compared with the un-optimal one. Evidently, the average memory at every moment 
of time is much better for the optimised case, because in this case it is lost much less 
memory with the context switching between threads, and with synchronisation.  

- The execution time until the simulation is ended is smaller in the optimal case. So, 
we have attained an optimisation of the execution time. It matters very much. The 
optimal variant behaves the better the bigger the number of interrupt events is.  

- The thread number is incomparably less for the optimised variant. It is invariable 
two (one for the process which sends, and the other for the receiving process), while 
in the case of the un-optimized variant it can live up to the order of hundreds or even 
thousands. 

 

4.2.3.2. Results 
 
Below we have the results of the optimized algorithm, compared with the un-

optimised algorithm. 
 
We have tested the optimised version for two cases (in each of them varying the 

parameters to attain a different number of interruptions). 
 
1. The case for which the time difference between the sending of the jobs is 2.0 s. 

This is a case of pretty pronounced queuing (taking into account the network’s parameters, in 
this amount of time the messages can not be sent integrally, so the messages will accumulate, 
generating very many interruptions). 

 
The execution time is far better in the optimised case. 
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The execution time depending on the 
number of interrupts
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Below is given the execution time, varying depending of the interruptions number, 
in both cases. The execution time is smaller for the optimal variant: 

 

 
 

The same graphic, but with only the first results, to observe in detail the good 
behaviour of the optimal variant: 
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The maximum amount of used memory is smaller in the optimal case, as we can see 
from the following dependence: 

 
 
 
The number of A-jobs is far smaller in the optimised case, as we can see from the following 
dependence: 
 

 
 

2. The case in which the delay with which the message is sent after another is 3.0 s. 
The queuing is smaller in this case, but it still remains (the messages accumulate one another – 
before finishing sending one message, another is scheduled for transmission). 
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The maximum used memory in each of the two cases (optimised/ not –  optimised) is: 

 
 
 
The execution time is, in this case also, better for the optimised version: 
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 The number of used A-Jobs is much better for the optimized version:  
  

 
 
 
 

5. The Optimiz ation of the Job Processing of the MONARC 
 

5.1. Objective 

The processing on a single thread of all the jobs running on one CPU. This problem is 
related with the problem presented in the chapter described above. In the final I will give some 
results both for the message optimisation and for the job processing optimisation.  
  

5.2. Implementation details 

5.2.1. The explanation of the problem  
 
 It is wanted the creation of a single thread to handle all the jobs running on a CPU. The 
packages that implements the before specified problem is monarc.job.optprocess, which handle s 
only the job processing, and monarc.job.opt which handles both messages and processing jobs. 
 The JobOpt class is the Optimized Job. His main purpose is to optimize the running t ime 
of the simulation, using only one Java thread that handles all the processing jobs running on one 
Cpu. The class handles all the jobs that run on a cpu, receiving from the activity object created 
by the user an startJob  request. This job is scheduled, and it is sent a TAG_START_RUN_JOB 
event.   
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 The JobOptScheduler class functions as a scheduler that handles all the events that refer 
to JobOpt. 
 This optimisation method has the great advantage on the normal message sending, that it 
offers much less context switching .  
 In the not optimized version (the old one), for every new job, it was created a Task  type 
object (AJob), which handles the processing. This version has the advantage of parallelism, but 
because of the context switching and synchronisation, this advantage is in fact a big 
disadvantage. 
 My approach (the optimised version) has a significant advantage; it functions ve ry well 
even on a multiprocessor machine. In the case of the jobs injected by the Activity objects of the 
users, with very many jobs to process for one Cpu, which means a very large number of Events 
that are sent, the overhead produced by the increasing of the number of threads becomes very 
great. To conclude, for very many network interrupt events, the classical system fails to achieve 
better results than the optimised one, because of the context switching, the great overhead, and 
the great number of synchronisations. 
  

 5.2.2. The functioning of the optimised variant 
 
The functioning mode of the job processing is (simplified) the following: 
 

- For the start it is done the job adding from the activity object through the startJob  
method. This method schedules a TAG_START_RUN_JOB event in the JobOpt 
class. In the “JobOptScheduler” it is called the run method, which treats 
sequentially all the  jobs that will run on the same CPU. We have a server (run), 
which is a thread that, in that way, it runs forever, waiting for events with different 
tags. (Evidently, at the finishing of the simulation when there are no more Job-s, this 
thread is terminated). 

- In the “JobOptScheduler” we have a  “waitForAllEvents” method, which takes all 
the events in that step of the simulation, puts them in a Vector objects, and then 
satisfies all of them, before passing to the next step. In this way we save a lot of time 
and operations, which were necessary before, to take through the Scheduler again.  

- In the “JobOptScheduler” class we catch all the events. (It is waited, unblocking, the 
event, in order to be treated any of the events caught). The events not treated in that 
moment is put by the Scheduler in the future queue, to be treated afterwards.  

- If we receive a TAG_START_RUN_JOB event, we will schedule the 
TAG_STOP_RUN_JOB  event, for the moment of time we compute that the job will 
be finished. 

- If we receive a TAG_STOP_RUN_JOB event, the job will be considered finished 
and it will be called the after the job is done handler, and the stopJobProcessng  
method. 

- If it is received a new TAG_CPU_CHANGED event, all the times for the other jobs 
will be recomputed (estimate dTimeForJob), the old TAG_STOP_RUN_JOB event 
will be removed from the queue, and the new one will be sent.  

The processing job was successfully run on the Cpu.  
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5.3. The performance testing of the optimized version. Simulations and 
results. 

5.3.1. Simulations 
 
In order to test the performances of the new system compared with the new one, we 

have done a relevant simulation, which works both for messages and for job processing. 
It is called the optimizeJobProcess simulation (it can be found in examples), and it 

consists in a single processor in one regional centre which: 
• using the first option it is scheduled for it a series of 

proc essing jobs to do, using the optimised algorithm and the 
old one. 

• using the second option it sends itself (he is also the sender 
and the receiver) messages. 

We will analyze the performances in both cases (optimised/normal) for both messages 
and processing jobs. 

5.3.2. Results 
 

The Job Processing Data Results : 
 

For the time between the insertions of the processing jobs of 0.0 s (The queuing 
phenomenon appears here) 
  
 

The NORMAL case The OPTIMAL case 

The 
iterations 
number 

The number 
of 

interruptions 

The 
running 

time of the 
execution 

(ms) 

The 
number of 

jobs 

The 
running 
time of 

the 
execution 

(ms) 

The 
number of 

jobs 

50 2550 1436 50 977 1 
100 10000 3385 100 1917 1 
200 40000 31107 200 7311 1 
300 90000 47107 300 20966 1 
400 160000 115837 400 61984 1 
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The results in the graphical form can be seen below.  
 First, the execution time depending on the interruptions number. 
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 Second, the job number in both cases – optimised and normal: 
  

The job number in both cases

0
50

100
150
200
250
300
350
400
450

0 50000 100000 150000 200000

The Interruptions number

Th
e 

Jo
bs

 n
um

be
r

Normal

Optimal

 
 
 

For the time between the insertions of the processing jobs of 10.0 s. 
 

The NORMAL case The OPTIMAL case 

The 
iterations 
number 

The number 
of 

interruptions 

The 
running 

time of the 
execution 

(ms) 

The 
number of 

jobs 

The 
running 
time of 

the 
execution 

(ms) 

The 
number of 

jobs 

50 2550 1940 50 1309 1 
100 10000 5407 100 3494 1 
200 40000 18958 200 10256 1 
300 90000 43989 300 22833 1 
400 160000 86383 400 44977 1 
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The results in the graphical form can be seen below.  
 The execution time depending on the number of interruptions: 
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The Results for the Message variant of the simulation: 
 

The NORMAL case The OPTIMAL case 

The 
iterations 
number 

The 
running 
time of 

the 
execution 

(ms) 

The 
simulation 

time (s) 

The 
number 
of jobs 
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maximum 

amount 
of 

memory 
used 
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g time 
of the 

executi
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The 
simulati
on time 

(s) 
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numbe

r of 
jobs 

The 
maximum 
amount of 
memory 

used 

50 502 500 100 719384 209 500 1 696784 
100 873 1000 200 753760 305 1000 1 698992 
200 1304 2000 400 854760 413 2000 1 816376 
300 1635 3000 600 931936 533 3000 1 873632 
400 2044 4000 800 1025536 647 4000 1 934032 

 
The results in the graphical form can be seen below.  

 First, the execution time depending on the iterations number (in these results I have used 
the number of iterations): 
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Second, the maximum memory used in both cases, depending on the num ber of 

iterations: 
 

The maximum memory used in both cases

0

200000

400000

600000

800000

1000000

1200000

0 100 200 300 400 500

The number of iterations

T
h

e 
m

em
o

ry
 u

se
d

Normal

Optimal

 
 
 

 Third, job number in both cases –  optimised and normal: 
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6. The Simulation T0/T1 Data Production and Replication 
(CernTier Simulation) 

6.1. Introduction 

 The scale, complexity and worldwide geographical spread of the LHC computing and 
data analysis problems are unprecedented in scientific research. The complexity of processing 
and accessing this data is increased substantially by the size and global span of the major 
experiments, combined with the limited wide area network bandwidth available. This 
simulation study aims to describe the physics analysis processes and the means by which the 
experiments bands together to meet the technical challenges posed by the storage, access and 
computing requirements of LHC data analysis. 

6.2. Problem explanation 

 The general concept developed by the two largest experiments, CMS and ATLAS, is a 
hierarchy of distributed Regional Centres working in close coordination with the main centre at 
CERN.  This simulation study follows this concept and describes several major activities; 
mainly the data transfer on WAN between the T0 (CERN) and a number of several T1 Regional 
Centres. The topology describing the connectivity of the Regional Centres is presented in figure 
1. 
 
 

 
Fig. 1. The network topology considered for the connectivity between the T0 and the T1 Regional Centers 
 
 We assume that the three T1 Regional Centres in Europe are connected independently, 
in a network similar to GEAT.  In a simplified model this can be approximated with a “mega -
router” in which each T1 regional centre is connected through a link. We also consider a 
transatlantic link connecting T0 with the two T1 regional centres in US and another link 
connecting the T1 regional centres in Japan. In order to make the file transfer efficient we 
assume that a transfer Agent runs on all the centres. When it is necessary to send a file to 
several or all of these centres we have assumed that this is done using the Agent mechanism to 
provide effective data transfers. In case the same file needs to be transferred to both T1 regional 
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centres in US, the file is transferred only once over the transatlantic line and than copied from 
T1-US1 to T1-US2 or / and T1-JP. 
 
 For the WAN links we assumed the following RTT values: 
  
 

 RTT (ms) 
T1-EU1 <-> T0 (CERN) 20 
T1-EU2 <-> T0 (CERN) 25 
T1-EU3 <-> T0 (CERN) 30 
T1-US1 <-> T0 (CERN) 120 

T1-US1 <-> T1-US2 60 
T1-US1 <-> T1-JP 240 

 
 
 Those RTT values are used in evaluating the efficiency of using the available bandwidth 
for “ftp”  like transfers.  
   

Using this topology we simulated a number of Activities specific for Physics data 
production, as follows: 
 

1)  RAW Data Replication.  
From the experiment we assumed a mean rate of recording raw data equal to 200 MB/s. 
This information is stored in 2GB (normal distributed with 10% sd) data files. These 
files are replicated in a round robin manner to all 6 T1 regional centres. (The first file is 
sent to T1-EU1, the second to T1-EU2…) 

2)  Production and DST distribution. 
At T0 all raw data are processed and DST files are generated. The DST files are 10 
times smaller in size than the RAW files. We considered again a normal distribution (sd 
10%). The DST files created at T0 are sent to all T1 centres. For the T1-US2 and T1-JP 
the agent transfer syste m is used to make this operation effective and avoid sending the 
same file more than once over the same link. 

3)  Re -production and new DST distribution. 
After a certain time the RAW data in each T1 centre is re-processed and new DST data 
is created. Each T1 centre will reprocesses 1/6 of the RAW data. The DST  data 
generated at each regional centre are sent to all the other. Again the agent system is used 
to effectively transfer data. 

4)  Detector Analysis. 
This activity starts in certain T1 regional centres at given moments of time and 

collects all RAW data from the other regional centres produced over the last hours. We 
chose local 9 o’clock as the time this activity starts in the given regional centres  and also 
we chose to gather the RAW data for the last 12 hours. The RAW data is gathered 
dynamically, meaning from all the regional centres that have the requested data it is 
chosen the one that maximizes the performance of the transfer, based on the network 
load, proximity and database load.  
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6.3. Simulation Results 

 6.3.1. Generalities and Explanations  
 

We simulated the described activities alone and then combined. The tests that we have 
done are shown below in the following order: 
 

1. Comparison for Production and DST distribution done with and without the Data 
Transfer Agent; 

2. RAW Data Replication activity; 
3. Production and DST distribution; 
4. Reproduction and DST distribution; 
5. RAW Data Replication activity followed by Production and DST distribution; 
6. RAW Data Replication activity followed by Production and DST distribution 

followed by Re-production and new DST distribution; 
7. Detector Analysis activity; 
8. RAW Data Replication activity followed by Production and DST distribution 

followed by Re-production and new DST distribution with Detector Analysis 
activity. 

 
We simulated approximately 1 day of running these activities. 
In the following figures are some conclusions obtained when running all four activities 

in parallel. We assumed a mean rate of recording raw data of 200 MB/s. The information is 
stored in 2GB data files (normally distributed with 10% sd). DST files are produced in the 
second activities involved at T0 (CERN) from all the RAW data and then are distributed to all 
the T1 regional centres. The data transfer agent described above is then used. After a certain 
period of time each T1 centre will start to re-process the raw data stored locally and to generate 
a new set of DST. Each T1 has ~1/6 from the entire raw data and will generate new DST which 
should be replicated to all the other regional centres. As before, in this case we also assume that 
transfer agents are running on all the centres involved (T0, T1-US1) for an effective replication. 
Finally, the Detector Analysis activity runs on T1-JP regional centre and starts at 9 o’clock local 
time. Then it will gather the RAW data produced in the last 12 hours from the others centres 
using a get-optimum-performance algorithm as mentioned above.  

 
Using this configuration we did a series of tests in which we have varied the available 

bandwidth between T0 (CERN) and T1-US1. In the following figures are the obtained results. 
 
In the figure 2 is the representation of how varies the time with which the DST files are 

served in different T1 centres for the test cases in which the available bandwidth between T0 
(CERN) and T1-US1 varies between 3Gbps and 10Gbps. As seen the DST files transfer time 
tends to decrease proportionally with the amount of bandwidth available between T0 (CERN) 
and T1-US1 centres. The series “all Series” represents the average value of the DST files 
transfer time considering all the T1 tiers in the simulation. 
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Fig. 2. The DST files transfer time in different T1 centers with different values for the available bandwidth between 

T0 (CERN) and T1-US1 
 

In the figure 3 is the representation of the way the RAW f ile transfer time varies in 
different T1 centres in the tests in which we have varied the amount of available bandwidth 
between T0 (CERN) and T1-US1. As seen the RAW files transfer time tends to decrease 
proportionally with the amount of bandwidth available between T0 (CERN) and T1-US1 
centres. The series “all Series” represents the average value of the RAW files transfer time 
considering all the T1 tiers in the simulation.  

 

 
Fig. 3. The RAW files transfer time in different T1 centers with different values for the available bandwidth 

between T0 (CERN) and T1 -US1 
 
 In the figure 4 is the representation of the variation of time needed to complete the 
Detector Analysis activity in the tests done for different values for the amount of available 
bandwidth between T0 (CERN) and T1-US1. As said above this activity gathers the RAW data 
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from the last 12 hours, but as seen here when using a 3Gbps link it takes almost 24 hours to 
finish, while when using a 10Gbps link between T0 (CERN) and T1-US1 it takes around 15 
hours to finish.  
 

 
Fig. 4. Time needed for the Detector Analysis activity to finish for the tests done centers with different values for 

the available bandwidth between T0 (CERN) and T1 -US1 
 
 
 

 6.3.2. Results 
 

 6.3.2.1. Comparison for Production and DST distribution done with and without 
the Data Transfer Agent 

 
 In the first series of tests we tried to see the role of the Data Transfer Agent in the 
simulated activities. For that we have simulated the Production and DST distribution activity 
test first using the Data Transfer Agent and then without using it and compare the obtained 
results. 
 
  In the Production and DST distribution activity test at T0 (CERN) regional centre are 
produced DST files from the recorded RAW data, which are then distributed to all the T1 
regional centres. The Data Transfer Agent is used on the T1-US1 regional centre and will 
forward the DST data received in that centre from T0 (CERN) further to T1-US2 and T1-JP 
regional centres (see figure 1). This means that at T0 (CERN) when using t he Data Transfer 
Data the DST files will be sent only to T1-EU regional centres and to T1-US1, while the agent 
will handle the further transfer of those files from T1-US1 to the rest of the regional centres.  
 
 For the average used bandwidth on the major links the obtained results are shown in 
figures 5 and 6. As seen the average bandwidth used on the CERN link is greater when we do 
not use the Data Transfer Agent since more data get transferred from that regional centre. 
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Fig. 5. The used bandwidth on the major links output 
obtained for the test done using the Data Transfer 
Agent 

 
Fig. 6. The used bandwidth on the major links output 
obtained for the test done without using the Data 
Transfer Agent 

 
 Furthermore, the difference between the two tests is better seen in the figures 7 and 8, 
which show the results obtained for the parameter average used bandwidth again on the major 
links, but on each direction on each link (from CERN to EU, from CERN to US1, etc).  The 
results are explained if we look into the deeper details of the tests done. In both tests at T0 
(CERN) regional centre are produced DST files with a continuous rate. The desired purpose in 
this test is, as already mentioned, to distribute those DST files from this regional centre to all 
the other regional centres. One of the tests uses a Data Transfer Agent on T1-US1 that will 
transfer further the files to T1-US2 and T1-JP. So, in both tests from T0 (CERN) to T1-EU is 
transferred the same amount of data (see link CERN->EU in the graphics below). But the 
difference consists in the amount of data that is transferred from T0 (CERN) to T1-US1. When 
using the Data Transfer Agent only one file gets transferred on that connection for all three 
regional centres (the T1-US1 will act as a proxy for that file), while in the test done without 
using the Data Transfer Agent one file will be transferred through that link to each of the three 
regional centres. In the graphics below this is represented by the link Lus ->CERN and as seen 
the report is 1:3 as expected in the bandwidth that gets used. The link Lus->Ljp represents the 
connection from T1-US1 to the other two regional centres, and in both tests two files are 
transferred through it. Ljp->Lus represents the link that arrive at T1-JP, so again in both tests 
only one file gets transferred each time through it. 
 

  
 
Fig. 7. The used bandwidth on the major links on each 
direction output obtained for the test done using the 
Data Transfer Agent 

 
Fig. 8. The used bandwidth on the major links on each 
direction output obtained for the test done without 
using the Data Transfer Agent 
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 A difference can be observed also in figures 9 and 10 where are the results obtained for 
the total amount of data that gets transferred through each major link. As explained above we 
expected a report of 4:6 between the amount of data that gets transferred through the CERN link 
when using the Data Transfer Agent and the same parameter in the test done without using the 
Data Transfer Agent. 
 

  
 
Fig. 9. The amount of data that is transferred through 
the major links in the test done using the Data Transfer 
Agent 

 
Fig. 10. The amount of data that is transferred through 
the major links in the test done without using the Data 
Transfer Agent 

 
 One more parameter that was compared for the two tests done was the distribution of the 
DST files transfer time, for which the results are the ones shown in figures 11 and 12. Because 
the Data Transfer Agents acts as a proxy, meaning in order to transfer one file from T0 (CERN) 
to T1-JP the file will first get fully transferred to T1-US1 and then will get transferred to T1-JP, 
in the test done without using the agent the times needed to transfer files to T1-JP and T1-US2 
is lower than in the other test, but because in the test done using the agent in T0 (CERN) more 
bandwidth is available the time needed to transfer data to T1-EU is higher. 
 

 
 

Fig. 11. The distribution of DST file transfer times for each regional center  
obtained in the test done using the Data Transfer Agent 
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Fig. 12. The distribution of DST file transfer times for each regional centre  
obtained in the test done without using the Data Transfer Agent 

 
 

6.3.2.2. RAW Data Replication 
 
 In this test we simulated the RAW Data Replication activity. This activity involves the 
creation of RAW Data files at T0 (CERN) regional centre with a mean rate of 200 MB/s. The 
produced RAW data is stored in 2GB size data files (where this size is normally distributed with 
10% sd) and then each of this file is replicated in a round robin way to all the six T1 regional 
centres. This means that the first file is sent to T1-EU1, the second file is sent to T1-EU2, etc. 
Also the WAN links have 2.5Gbps available bandwidth. 
 
 In figure 13 is the output obtained for the total amount of data transferred on the major 
links (CERN, Lus and Ljp shown in Figure 1). This parameter shows the quantity of data 
transferred through a given link from the beginning of the simulation until the present moment 
of time.  
 
 Figure 14 shows the plot obtained for the parameter average bandwidth in WAN used in 
the Regional Centres.  
 

  
 
Fig. 13. The total amount of data transferred on the 
major links 

 
Fig. 14. The average bandwidth in WAN used in the 
Regional Centres 
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 In figure 15 is the representation of the distribution of the transfer time for the RAW 
data file for each Regional Centre. 
 

 

Fig. 15. The distribution of the transfer 
time for the RAW data file for each 
Regional Centre. 

 

 

6.3.2.3. Production and DST Distribution 
 
 The second case we have simulated was the Production and DST Distribution activity. 
In this test at T0 (CERN) regional center are produced DST files from the recorded RAW data, 
which are then distributed to all the T1 regional centers.  

 
In order to minimize the transportation cost for the DST files a data transfer agent is 

used in each regional center. In this case the DST file is sent from T0 (CERN) only to T1-US1, 
and at this center the transfer data agent will replicate the file to T1-US2 and T1-JP. In this way 
we avoid sending the same file more than once over the same link. 

 
Again in this case we have chosen the speed of 2.5Gbps for all WAN links between 

regional centers. Below are the results for the different parameters that we have obtained. 
 
In figure 16 is the output for the total amount of data transferred on the major links in 

this test case. Compared with the output from figure 13 the amount of data transferred in T0 
(CERN) for example is 0.4 times lower. This is because the DST data files are 10 times smaller 
then the RAW data files, but in this case the DST files are sent from T0 (CERN) to T1-Eux 
regional centers and also to T1-US1 in the same time.  
 

In figure 17 is the output for the bandwidth used in the major links. Compared with 
figure 14 we can again observe the same 0.4 fractions for this parameter in different regional 
centers. 
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Fig. 16. The total amount of data transferred on the 
major links 

 
Fig. 17. The bandwidth used on the major links 

 
 Figure 18 shows the output for the distribution of file transfer time per regional 

center. When computing the time it takes to one DST data file to reach from the source to its 
destination we take into consideration the sum of the times needed by that file to pass through 
all different centers on route. Because in this test we are using a data agent in T1-US1 the time 
needed for a file to arrive in T1-US2 and / or T1-JP means the time it takes to that file to arrive 
completely to T1-US1 from T0 (CERN) and then the time it takes to the file to arrive 
completely from T1-US1 to T1-US2 or T1-JP. This explains the difference in the distribution of 
file transfer time in the case of T1-US2 and T1-JP compared with the output from the figure 15. 

 

 
 

Fig. 18. The distribution of file transfer time per Regional Center 
 
 The results from this test were compared to another test done in the same conditions, but 
without using the Data  Transfer Agent. The obtained results show that the Data Transfer Agent 
has a great importance in reducing the amount of used bandwidth on the major links and also in 
influencing the time it takes to a DST file to reach its destination.  
 

6.3.2.4. Re-production and new DST Distribution 
 
 After a certain period of time each T1 regional center will start to re-process the RAW 
data stored locally and to generate a new set of DST. Each T1 regional center has approximately 
1/6 from the entire RAW data and will generate new DST data that should be replicated to all 
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the other regional centers. As in the case of Production and DST Distribution activity, in this 
case we also assume that transfer agents are running on all the centers involved (T0, T1-US1) 
for an effective replication.  
  
 Between the regional centers the links have 2.5Gbps available bandwidth. Below are the 
obtained results. 
 
 Figure 19 shows the values for the total amount of data transferred on the major links. In 
the first activity tested (RAW Data Replication – see 6.3.2.2) the amount of data transferred was 
larger because of the size of the RAW files that were transferred, in the second activity tested 
(Production and DST distribution – see 6.3.2. 3) the amount of data transferred was a little 
smaller because of the smaller files that were transferred (DST files) while in this third case of 
simulated activity the amount of transferred data is the smallest and this is the result of the fact 
that in this case the amount of files transferred is lower (just 1/6 of the number of files from the 
second test is transferred from each regional center) and also a result of the use of the Data 
Transfer Agent who makes it possible to transfer f or example only one file from T1-EU1 to T0 
(CERN) instead of transferring four files, one for each of the other regional centers others than 
T1-EU. 
 
 In figure 20 is the output obtained for the parameter used bandwidth in each regional 
center. Also compared to the outputs from the other activities of the bandwidth in the regional 
centers in this case of simulated activity we obtained the lower amount of used bandwidth.  
 

  
 

Fig. 19. The total amount of data transferred 
on the major links 
 

 
Fig. 20. The bandwidth used in the Regional 
Centers 

 
 Further details for the bandwidth used are the ones from the figure 21 which is the result 
obtained for the parameter used bandwidth on the major links per each direction of the link. 
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Fig. 21. The bandwidth used on the major links in each direction of the link  
 
 In figure 22 is the result for the distribution of DST file transfer times in each regional 
center. 

 

 
 

Fig. 22. The time distribution of file transfer times per Regional Center 
 
 

6.3.2.5. RAW Data Replication activity followed by Production and DST distribution 
 
 After simulating each of the activities alone (see 6.3.2. 2, 3 and 4) we have done a 
number of tests in which we have combined the activities. This is a test in which we have 
simulated the RAW Data  Replication activity and the Production and DST distribution activity 
running concurrently. For this test we have also assumed a 2.5Gbps bandwidth for the links 
connecting the regional centers.  
 
 In figure 25 is the obtained output for the parameter number of active connections in the 
regional centers. For comparison in figures 23 and 24 are the results for the same parameter 
obtained for the cases when each activity was running alone. 
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Fig. 23. The number of active connections in the WANs 
when running RAW Data Replication alone 

 
Fig. 24. The number of active connections in WANs 
when running Production and DST distribution alone 

 
 As seen the number of active connections increases significantly when running both 
activities concurrently. 
 

  
 
Fig. 25. The number of active connections in the WANs 

 
Fig. 26. The total amount of data transferred on the 
major links 

 
 In figure 26 is the output for the total amount of data transferred on the major links in 
this case. The obtained values for this parameter are sum of the correspondent values obtained 
in the cases when running each of the activities alone. 
 
 Figure 27 shows the result for the used bandwidth in each of the regional center. More 
bandwidth is used when running the activities concurrently, but as seen the system is able to 
keep up with the generated traffic. Similarly figure 28 shows the output obtained for the 
parameter used bandwidth on the major links in the simulation. 
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Fig. 27. The bandwidth used in the Regional Centers 

 
Fig. 28. The bandwidth used on the major links 

 
 Another parameter that we were interested in was the distribution of the file transfer 
times. In figure 29 is the output obtained for this parameter in the case of the DST files, while in 
figure 30 is the output obtained for this parameter in the case of the RAW files. 
 

 
 

Fig. 29. The distribution of DST files transfer times per Regional Cent re 
 

 
 

Fig. 30. The distribution of RAW files transfer times per Regional Center 
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 The mean time to transfer RAW files increased significantly from the case where we 
simulated the RAW Data Production activity alone (see 6.3.2.2), but the system is able to keep 
up with the generated traffic. 
 
 
 

6.3.2.6. RAW Data Replication activity followed by Production and DST distribution 
followe d by Re -production and new DST distribution 
 
 
 After seeing the results for the first two activities running concurrently we went even 
further and simulated all the three activities (RAW Data Replication, Production and DST 
distribution and Re-production and new DST distribution) running in parallel. 
  
 The available bandwidth for the links connecting the Regional Centers was chosen as 
2.5Gbps. As seen from the obtained outputs below in this case the system was not able to keep 
up with the total transfer rate (the rate with which the network transfers occurred in the system 
was higher than the rate with which the started transfers were terminated and for that reason it 
wasn't possible to simulate a whole day of running activities). The link T0 (CERN) <-> T1-US1 
(see figure 1) became the bottleneck and for that reason we did a second test again with all three 
activities running concurrently but in which we increased the available bandwidth for that link 
to 5Gbps. The obtained results are also shown below in this section. 
 

In figure 31 is the output for the number of active connections in each of the Regional 
Centers. Compared with the output from the figure 25 in this case there are more active 
connections in each center at any given moment of time. In the figure 32 is the output for the 
amount of data transferred through the major links. Again, compared with the output from 
figure 26 more data get transferred through each of the links. 
 

  
 
Fig. 31. The number of active transfer connections in 
the WANs 

 
Fig. 32. The total amount of data transferred on the 
major links 

 
 In the figure 33 is the output for the bandwidth used in each of the Regional Centers. 
The output shows the effective bandwidth that gets used, so the bandwidth in the T0 (CERN) 
center is actually used at full capacity. In figure 34 is the output for the used bandwidth per each 
direction of each of the links. From this output it can be seen that the connection between T0 
(CERN) and T1-US1 is acting as a bottleneck in this case. 
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Fig. 33. The bandwidth used in the Regional Centers 

 
Fig. 34. The bandwidth used on the major links in each 
direction of the link  

 
 In figures 35 and 36 are the outputs for the distribution of the files transfer times per 
each Regional Center, first for the DST file s and then for the RAW files. As seen above the link 
T0 (CERN) <-> T1-US1 becomes a bottleneck and as a consequence the RAW data transfer 
time starts to increase continuously compared with the output from figure 30.  
 

 
 

Fig. 35. The distribution of the DST files transfer times per Regional Center 
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Fig. 36. The distribution of the RAW files transfer times per Regional Center 
 
 We have also done a second test with the three activities running concurrently in which 
we have increased the available bandwidth for the link T0 (CERN) <-> T1-US1 to 5Gbps.  
 
 In figure 37 is the output for the parameter number of active connections per Regional 
Center obtained in this case. Compared with the output from figure 31 at each moment of time 
there are fewer connections in each center.  
 
 In figure 38 is the output for the amount of data transferred through each of the major 
links.  
 

  
 
Fig. 37. The number of active connections in the WANs 

 
Fig. 38. The amount of data transferred on the major 
links 

 
 In figure 39 is the output obtained in this case for the parameter used bandwidth in each 
of the Regional Centers. It can be seen that in this case no link acts as a bottleneck for the 
transferred data (the link T0 (CERN) <-> T1-US1 has 5Gbps available bandwidth and less than 
half of it gets used). In figure 40 is the output for the bandwidth used on the major links per 
each direction of each link.  

  
 
Fig. 39. The bandwidth used in the Regional Centers 

 
Fig. 40. The bandwidth used on the major links in each 
direction of the link  

 
 In figures 41 and 42 are the outputs for the DST and RAW files transfer times 
distributions. The RAW files transfer times distribution is more stable in this case than in the 
case when using the link of 2.5Gbps, as seen when comparing figures 36 and 42. 
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Fig. 41. The distribution of DST files transfer times per Regional Center 
 
 In this case the system can cope with the three activities and the distribution of the 
transfer time for both types of files is not very different compared with the cases in which each 
activity was considered independently. 
 
 

 
 

Fig. 42. The distribution of RAW files transfer times per Regional Centers 
 
 As a conclusion for the two cases (when using a 2.5Gbps link and when using a 5Gbps 
link between T0 (CERN) and T1-US1) it can be seen that if a bottleneck occurs in the system 
all the parameters that we have observed are being negatively influenced by this phenomenon.  
 

6.3.2.7. Detector Analysis activity 
 
 Beside the three simulated activities we have constructed a fourth one, named Detector 
Analysis. This activity starts in certain T1 regional centers at given moments of time and 
collects all RAW data from the other regional centers produced over the last hours. We choused 
local 9 o’clock as the time this activity starts in the given regional centers and also we choused 
to gather the RAW data for the last 12 hours. The RAW data is gathered dynamically, meaning 
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from all the regional centers that have the requested data it is chosen the one that maximize the 
performance of the transfer, based on the network load, proximity and database load.  
 
 First we have simulated this activity running alone in two cases. In the first case the 
activity was running on T1-EU1 center and in the second case the activity was running on T1-
JP center. When the activity runs in T1-EU1 center it will start collecting data after 7 hours 
(local 9’oclock time), while when the activity runs in T1-JP center it will start collecting data 
from the beginning.  
 
 In figure 43 is the output for the number of active connections for the case where the 
activity runs in T1-EU1 Regional Center, while in the figure 44 is the output for the number of 
active connections for the case where the activity runs in T1-JP Regional Center. 
 

  
 
Fig. 43. The number of active connections in the WANs 
when running on T1-EU1 

 
Fig. 44. The number of active connections in the WANs 
when running on T1-JP 

 
 In the figures 45 and 46 is a comparison for the amount of data transferred on the major 
links parameter in both of the cases. In this tests because there is only one Detector Analysis 
running and because we use the Intelligent Data Retrieval Mechanism all the data is taken from 
only one single Regional Center, which is T0 (CERN) for the first case and T1-US1 for the 
second case. For instance if we consider the first case, there is a longer distance from T1-EU1 to 
any of the other centers than from T0 (CERN), so the optimal center is always chosen to be T0.  

  
 
Fig. 45. The amount of data transferred on the major 
links when r unning on T1-EU1 

 
Fig. 46. The amount of data transferred on the major 
links when running on T1 -JP 

 
 In figures 47 and 48 again there is a comparison for the two cases, this time for the 
bandwidth used in each of the Regional Centers. This output actually shows the effective 
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bandwidth that gets used for transferring data and because the RTT between T1-JP and T1-US1 
is of 240 seconds, while the RTT between T1-EU1 and T0 (CERN) is of 20 seconds, there is a 
gap in the output values shown in this figures. 
 

  
 
Fig. 47. The bandwidth used in the Regional Center 
when running on T1-EU1 

 
Fig. 48. The bandwidth used in the Regional Center 
when running on T1-JP 

 
 
 

6.3.2.8. RAW Data Replication activity followed by Production and DST distribution 
followed by Re -pro duction and new DST distribution with Detector Analysis activity 
 
 After simulating all the activities running alone and after simulating the first three 
activities running concurrently we did a number of tests in which we simulated all four 
activities running in parallel. From simulating the first three activities running concurrently we 
saw that when using a 2.5Gbps bandwidth for the link connecting T0 (CERN) and T1-US1 we 
encounter a bottleneck. We started those tests by using a value of 3Gbps for that link. Then we 
increased that value to 4Gbps, 5Gbps and finally 10Gbps in order to see the effect that this 
increase would have on the behavior of the simulations. The rest of the links were running with 
2.5Gbps available bandwidth. For this test we chose the Detector Analysis activity to run in T1-
JP. 
  

In figures 49 to 52 are the obtained results for the four cases for the parameter number of 
active connections in the Regional Centers. As seen the number of active connections decreases 
from case to case. The sudden decrease corresponds with the termination of the activity 
Detector Analysis (all data from the last 12 hours are gathered in T1-JP) except for the first case 
(with 3Gbps link) where the decrease corresponds with the termination of all the other activities 
(in that case actually more than a day takes to gather data from the last 12 hours). See figure 4 
for the result of the times needed by the Detector Analysis to finish.  
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Fig. 49. The number of active connections in the WANs 
for 3Gbps link  
 

 
Fig. 50. The number of active connections in the WANs 
for 4Gbps link 

  
 
Fig. 51. The number of active connections in the WANs 
for 5Gbps link 

 
Fig. 52. The number of active connections in the WANs 
for 10Gbps link 

 
 Figures 53 to 56 show the obtained results for the bandwidth used in the Regional 
Centers in the different tests done with different values for the bandwidth of the link connecting 
T0 (CERN) and T1-US1.  
 

  
 
Fig. 53. The bandwidth used in the Regional Centers 
for 3Gbps link 
 

 
Fig. 54. The bandwidth used in the Regional Centers 
for 4Gbps link 
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Fig. 55. The bandwidth used in the Regional Centers 
for 5Gbps link 

 
Fig. 56. The bandwidth used in the Regional Centers 
for 10Gbps link 

 
 In figures 57 to 60 are the obtained results for the four tests for the distribution of the 
DST files transfer times per Regional Center. The obtained results for this parameter were 
summarized in the figure 2. As seen the time it takes to a DST file to reach its destination 
decreased, as more bandwidth is available to the link that connects T0 (CERN) and T1-US1. 
 

 
 

Fig. 57. The distribution of DST files transfer times per Regional Center for 3Gbps link 
 

 
 

Fig. 58. The distribution of DST files transfer times per Regional Center for 4Gbps link 
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Fig. 59. The distribution of DST files transfer times per Regional Center for 5Gbps link 
 

 
 

Fig. 60. The distribution of DST files transfer times per Regional Center for 10Gbps link 
 

 Another comparison was done for the parameter distribution of RAW files transfer times 
per Regional Center, with the obtained results shown in figures 61 to 64 and with the conclusion 
from figure 3. Again as more bandwidth becomes available to the link connecting T0 (CERN) 
and T1-US1, the RAW data needs less time to reach its destination regional center. 
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Fig. 61. The distribution of RAW files transfer times per Regional Center for 3Gbps link 
 

 
 

Fig. 62.The distribution of RAW files transfer times per Regional Center for 4Gbps link 
 
 

 In conclusion we have found out that using a Transfer Agent in the hub T1 centers is 
important to save resources for the data replication activities. Also for the assumed values, a 
2.5Gbps link from T0 (CERN) to US is not enough to keep up with the traffic generated by the 
production activity.  
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7. Conclusions 
 
 

The MONARC is a tool for the evaluation of the performances of distributed systems, 
especially of their capability of processing data resulted from scientific experiments. However, 
it is not destined only for the physics applications, and can be successfully used in a very 
general framework. It is a particularly useful and well-structured tool in the designing of 
distributed systems. The beginning point is a project realised in collaboration by researchers at 
both CERN and CALTECH.  

The Java programming environment, used extensively to build the MONARC 
simulation tool, is very well suited for developing a flexible and distributed process oriented 
simulation and equipped with ade quate graphical tools. 

The MONARC project is in the optimisation phase. It is wished to achieve as high as 
possible performances for MONARC, so that it be used to successfully simulate and verify the 
architectures of the real distributed systems, even for commercial use. 

It is also pursued the using of the already existing classes for the most practical goals as 
possible  (like the Proof simulation, the T0/T1 data replication and production). 

For more information please see the MONARC web page: 
http://monarc.cacr.caltech.edu/. 
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9. Appendix 
 
Below I have listed the source code for a few of the classes of the application (the most 
relevant for my project) : 

 
 
 
 
 
 

 
 
 
 

 
 


