

1

Abstract

Nowadays, there are more and more data intensive applications requiring high file
transfer over high bandwidth-delay networks. In order to take advantage of the new
backbone capacities, which are advancing rapidly to 10Gbps, there is an obvious need
for a transport protocol that provides more than 1Gbps of throughput end-to-end.

TCP is the most common protocol used for transferring data reliably over IP
networks. Although TCP has shown a remarkable ability to adapt to vastly different
networks, it has been shown that TCP is inefficient when the bandwidth and the
latency increase.

The purpose of this paper is to present GridDT (Grid Data Transport), a version of
TCP that has been modified in order to improve its performance when used over
networks with a high bandwidth-delay product. Other approaches to improving TCP,
such as FAST will be presented and tested comparatively with GridDT.

The paper is divided into six chapters: Introduction, a description of the current
TCP and its limitations, TCP Evolution and actual status, describing the
improvements TCP has suffered over time and other approaches to improving TCP,
Designing GridDT, a brief presentation of the design guidelines for GridDT,
Implementation , describing the implementation of mechanisms such as Limited Slow
Start and Delayed Congestion Response in GridDT, Testing and Evaluating GridDT,
presenting test results, and Conclusions.

2

1. Introduction

This chapter will briefly present the current version of TCP (Transmission
Control Protocol), and some of the weak points of the current protocol. The
purpose of this paper is to present GridDT-Grid Data Transport Protocol (whose
implementation consists of a patch for the Linux kernel), and how does this
protocol plan to address some of the issues encountered by TCP.

1.1 What is TCP and how does it work?

TCP – Transmission Control Protocol is a connection-oriented data transport
protocol used for transferring data reliably.

In order to provide reliability, TCP does the following:
- breaks application data into what TCP considers the best sized segments

- When TCP receives data from the other end, an acknowledgment is sent. TCP
uses expectational acknowledgments; this means that the acknowledgment
number represents the sequence number of the segment that is expected to
arrive next.

- when TCP sends a segment, it also sets a timer, waiting for the other end to
acknowledge the reception of the segment. If that timer expires, a
retransmission is performed.

- TCP maintains a checksum on its header data; if a segment with an invalid
checksum is received, it is discarded

- TCP sends data encapsulated IP datagrams, which can arrive out of order at
the destination, or can get duplicated. TCP solves this problem by assigning a
sequence number to each segment

- TCP also provides flow control. Each TCP connection has a limited buffer
space, a TCP receiver will allow the other end to send only as much data as its
buffers can hold.

As acknowledging every TCP segment would be inefficient, a windowing

mechanism is used. The w indow defines the amount of data the TCP sender can inject
in the network without waiting for an acknowledgment. The window used by TCP is a
sliding window, which means that it’s size can vary. The sliding window mechanism
is used by the TCP receiver to impose flow control, as it will correlate the advertised
window size with the amount of free buffer space for that connection.

Some TCP related terms will be used extensively throughout this paper:
- RTT – Round Trip Time – the time between sending a segment and receiving

the acknowledgment
- Bandwidth-delay product (BDP) – the product between the bandwidth and the

delay of a link

3

- AIMD – Additive Increase Multiplicative Decrease – algorithm used during
congestion avoidance; the congestion window is increased additively during
periods when congestion is not present, and multiplicatively decreased when
congestion is experienced

Also, in order to further understand the operation of the Transport Control

Protocol, a short presentation of the header that is attached to each segment is needed.

Figure 1 : The encapsulation of a TCP segment

 0 15 16 31

16-bit source port number 16-bit destination port number

32-bit sequence number

32-bit acknowledgement number

4-bit
header
length

Reserved
(6 bits) U

R
G

A
C

K

PS
H

R
ST

SY
N

FI
N

16-bit window size

16-bit TCP checksum 16-bit urgent pointer

Options (if any)

Data (if any)

Figure 2 : The TCP Header

The source port and destination port 16 bit fields are used to identify the sending

and receiving application. The association of an IP address with a port number is
called a socket. A socket pair uniquely identifies a connection.

The sequence number field identifies a certain byte in the data stream from the
sender to the receiver. TCP assigns a sequence number to each byte.

The acknowledgment number field contains the sequence number of the next
expected segment that the sender of the acknowledgment expects to receive.

The header length field contains the length of the TCP header measured in 32 bit
words.

4

 There are six flag bits in the TCP header:
- URG – the urgent pointer
- ACK – the acknowledgment number is valid; it is set on all ACKs
- PSH – Push – the receiver should deliver this data to the application as soon as

possible
- RST – used to reset a connection
- SYN – Synchronize sequence numbers; used during the connection

establishment phase
- FIN – used to terminate a connection
The checksum covers both the header and data.
The urgent pointer is valid only if the URG flag is set. This pointer is a positive

offset that must be added to the sequence number field of the segment to yield the
sequence number of the last byte of urgent data. TCP's urgent mode is a way for the
sender to transmit emergency data to the other end.

As a connection-oriented transport layer protocol, TCP works by establishing

connections between a sender and a receiver. A TCP connection’s lifetime can be
divided into three phases:

- connection establishment
- sending of the actual data
- connection termination

In order to establish a connection between a sender and a receiver TCP uses a

mechanism called three-way handshake.
During this connection establishment phase, the initial sequence numbers (ISN)

are chosen for both the sender and the receiver.
The end initiating the connection sends a TCP segment containing its Initial

Sequence Number in the sequence field and the SYN flag set. The receiver will
acknowledge this segment with a segment that has its ISN in the sequence field, the
SYN flag set, and the sender ISN+1 in the acknowledgment field. The last segment of
the three-way handshake mechanism is a segment from the sender with the ACK flag
set, and the receiver’s ISN+1 in the acknowledgment field.

After the connection establishment phase has ended, the sender starts to send the
actual connection data to the receiver. Two TCP mechanisms control how this is
done: slow start and congestion avoidance. Related to these two mechanisms are the
following TCP variables:

- cwnd – congestion window
- sshthresh – slow start threshold
The congestion window is used in conjunction with the receiver advertised

window, the minimum of the two will be used when transmitting. The slow start
threshold dictates the end of the slow start phase and the beginning of the congestion
avoidance phase.

Initially, cwnd is set to 1 and ssthresh to 65535. During the slow start phase, cwnd
is incremented by 1 for each received ACK. The slow start phase will end when cwnd
reaches sshthresh. After this, the congestion avoidance phase begins, and during this
phase cwnd is incremented by 1/cwnd for each received ACK. Also, the cwnd is
never incremented by more than 1 during one RTT.

5

If packet loss indicated by a timeout is detected, ssthresh is set to cwnd/2, cwnd is
set to 1, and slow start is performed. If more than three duplicate acknowledgments
are detected, retransmission is done without waiting for the timer to expire (this is
called fast retransmit) and congestion avoidance is performed instead of slow start
(this is called fast recovery).

A TCP connection is usually ended when one end sends a segment with the FIN

flag set.

1.2 Shortcomings of the current TCP.

Even though TCP has proven to be very scalable and adaptable during the
unpredicted evolution of the Internet, it has been proved that there are some issues
related to its performance when used over high bandwidth-delay networks.

It has been shown that when the bandwidth and the delay of a certain link
increase, TCP is likely to become unstable.

Inefficiency is another problem that the current TCP will be facing as the
capacity of the links in the Internet increases. The current approach to increasing
the congestion window is not very efficient when it comes to filling high
bandwidths. As presented in the previous section, the current approach is:
- use slow start until the congestion window reaches ssthresh; the congestion

window is increased by 1 for every received ACK
- after the slow start phase ends, start congestion avoidance; the congestion

avoidance rules state that the congestion window should not be increased by
more than 1 during one RTT. On the high bandwidth delay links, this
approach can make TCP wait for thousands of RTTs in order to increase the
congestion window to a level where bandwidth utilization approaches the
maximum value, even though bandwidth is available.
Another potential problem is the aggressiveness of the slow-start phase. When

TCP is used over links with a high bandwidth-delay product, the congestion
window can reach large values. If the increase in the slow-start phase is too
aggressive, a large number of simultaneous drops can occur, drops which will
slow TCP down (TCP could enter the congestion avoidance phase with a very
small congestion window, and, as a result of this, it will take a large number of
RTTs until the original congestion window is recovered). A solution to this
problem is implementing Limited Slow Start, as specified in RFC 3742.

Also, there are some issues related to fairness: during the congestion
avoidance phase, cwnd is increased by 1/cwnd for each received ACK (and no
more than 1 per RTT), this increase does not depend on the characteristics of a
certain flow. This generates unfairness between flows with different Maximum
Transfer Units (MTU) and different RTTs.

6

1.3 GridDT

GridDT is a modifed TCP, whose development has started during 2002. The

GridDT implementation consists of a patch for the Linux Kernel.The first version of
this patch addressed only some of the issues related to the poor performance of TCP,
and was developed for the 2.4.20 version of the Linux Kernel.

This paper presents GridDT 3.1, a patch for the 2.4.26 and 2.6.5 versions of the
Linux Kernel, which also includes new enhancements.

GridDT v3.1 will implement the following:
- a modified congestion avoidance mechanism, that will increase the congestion

window during the congestion avoidance phase with a value which depends on
the MTU and RTT of the flow

- a mechanism used during congestion avoidance in order to smooth the
increase of the congestion window over one RTT

- Limited Slow Start, the mechanism used to limit the increase of the congestion
window during slow-start; implemented as specified in RFC 3742

- DCR – Delayed Congestion Response, a mechanism which is useful in
networks where packet reordering is an usual phenomenon; recent studies
have revealed that the current Internet is such a case.

A series of comparative tests will also be performed in order to rate GridDT’s

performance against the performance of other enhanced TCP’s.

7

2. TCP: Evolution and actual status

Looking back in time, it will be noticed that TCP did not initially have the

efficiency it has proved during the last twenty years. The tremendous adaptability
that TCP has shown was made possible by some small enhancements
implemented during its evolution.

TCP has traversed the following stages:

- Vanilla TCP – Slow start and congestion avoidance
- Tahoe TCP – Slow start, congestion avoidance + the Fast Retransmit

algorithm was implemented (this algorithm allows a TCP sender to retransmit
a segment when more than three duplicate acknowle dgments are received,
even if the retransmission timer has not expired)

- Reno TCP – also implemented the Fast Recovery algorithm which stated that
after a fast retransmit, congestion avoidance, and not slow start should be
performed

- New-Reno TCP – it brings a small change to Reno TCP: a retransmission
timer expiration will not be waited when multiple packets are lost from a
window. The change reflects in a sender’s behavior during Fast Recovery,
when a partial ACK (an ACK acknowledging only some of the packets that
were outstanding at the start of the Fast Recovery period). In Reno TCP, a
partial ACK would take TCP out of the Fast Recovery state, by decreasing the
usable window to the size of the congestion window. In New -Reno TCP,
partial ACKs received during Fast Recovery are treated as an indication that
the next packet after the acknowledged segment has been lost and should be
retransmitted. When multiple packets are lost New-Reno can recover without
waiting for a retransmission timer, by retransmitting one lost packet per RTT,
until all lost packets have been retransmitted

- SACK TCP = Selective ACK TCP – also useful when multiple packets from
one window are lost. It is implemented as a TCP option, the SACK option
field in the TCP header Options contains a number of SACK blocks, where
each SACK block reports a non-contiguous set of data that has been received
and queued

Attempting to alleviate some of the problems faced by the Transmission Control

Protocol as regards high bandwidth-delay networks is currently a common goal
throughout the scientific community. Research is being conducted in this field by an
increasing number of researchers worldwide. However, there are two main ideas
debated by this community. The first group of researchers approaches this problem by
maintaining the traditional AIMD approach used in the congestion avoidance
algorithm and trying to bring modifications to this algorithm in order to better suit the
needs of today’s networks. Those who feel that the mechanisms used for congestion
detection and avoidance in the current TCP no longer pertain to the network
topologies used today form the second group.

8

2.1 HSTCP – HighSpeed TCP

HighSpeed TCP is a modification to TCP's congestion control mechanism for use

with TCP connections with large congestion windows. It was proposed by Sally Floyd
and is specified in RFC 3649.

It has been shown that in a steady-state environment, when the packet loss rate is
p, the current TCP’s congestion window is ~1.2/sqrt(p) segments. This limits the
congestion window size that can be achieved by TCP in today’s network
environments. For example, a standard TCP connection with 1500 byte packets,
100mss RTT, achieving a steady-state 10 Gbps throughput would require an average
size of the congestion window of 83,333 segments, which would result in unrealistic
requirements: an average packet drop rate of at most 2*10^(-10), which corresponds
to a bit error rate of at most 2*10^(-14), which is virtually impossible to achieve with
current networks.

HSCTP describes a modified TCP response function (the function mapping the
steady-state packet drop rate to TCP's average sending window). Because HighSpeed
TCP's modified response function would only take effect with higher congestion
windows, HighSpeed TCP does not modify TCP behavior in environments with heavy
congestion, and therefore does not introduce any new dangers of congestion collapse.
rate in packets per round-trip time) for regimes with higher congestion windows.

The design goals for HSCTP were:
- Achieve high per-connection throughput without requiring unrealistically low

packet loss rates.
- Reach high throughput reasonably quickly when in slow -start.
- Reach high throughput without overly long delays when recovering from

multiple retransmit timeouts, or when ramping-up from a period with small
congestion windows.

- No additional feedback or support required from routers
- No additional feedback required from TCP receivers
- TCP-compatible performance in environments with moderate or high

congestion (e.g., packet drop rates of 1% or higher)
In order to specify a modified response function for HSCTP, three parameters are

used: Low_Window, High_Window and Low_P. To ensure TCP compatibility, the
HighSpeed response function uses the same response function as Standard TCP when
the current congestion window is at most Low_Window, and uses the HighSpeed
response function when the current congestion window is greater than Low_Window.
The HSTCP RFC suggests a value of 38 MSS sized segments for Low_Window,
which corresponds to a pac ket drop rate of 10 -̂3 for TCP. In order to specify the
upper end of the HighSpeed response function, the packet drop rate needed in the
HighSpeed response function to achieve an average congestion window of 83000
segments is taken into account. This is the window needed to sustain 10 Gbps
throughput, for a TCP connection with the default packet size and round-trip time
used in the example above. For High_Window set to 83000, a value for High_P of
10^-7 is specified. This means that a packet drop of 10^-7 will allow HSTCP to
achieve an average congestion window of 83.000 segments.

TCP the HighSpeed response function has to be translated into additive increase
and multiplicative decrease parameters. The HighSpeed response function cannot be

9

achieved by TCP with an additive increase of one segment per round-trip time and a
multiplicative decrease of halving the current congestion window. Those AIMD
parameters are a(w) and b(w). HighSpeed TCP increases the congestion window by
a(w)

segments per round-trip time in the absence of congestion, and decreases it to
w(1-b(w)) segments in response to a round-trip time with one or more loss events.
With Standard TCP, a(w) = 1 and b(w) = 1/2, regardless of the value of w.
HighSpeed TCP uses the same values of a(w) and b(w) for w <=Low_Window.

When w = High_Window,

a(w) = High_Window^2 * High_P * 2 * b(w)/(2-b(w)).

The High_Decrease parameter has a suggested value of 0.1, with b(83000)=0.1.

For other values w > Low_Window, the following formula is used:

b(w) = (High_Decrease - 0.5) (log(w)-log(W)) / (log(W_1) -log(W)) +0.5

with W = Low_window and W_1 = High_window.

a(w) can then be computed as follows:

 a(w) = w^2 * p(w) * 2 * b(w)/(2-b(w)), with p(w) being the packet drop rate for

congestion window w.

A series of tests has been conducted, comparing the current TCP with HSTCP.
The first test presented the behavior of a single TCP flow compared to the one of a
HSTCP flow. The results revealed that TCP had a slower growth than HSTCP. TCP
needed 300 seconds to reach the bandwidth limit in congestion avoidance, HSCTP
reached this limit in 50 seconds. A second test presented the behavior of both TCP
and HSTCP with a larger number of flows. The results showed that HSTCP can
achieve 100% bandwidth utilization with a smaller number of flows.
Another test has revealed that HSTCP is also better when it comes to bursty traffic.
With a level of bursty traffic that reaches 10% bandwidth utilization, TCP flows
dropped their bandwidth by almost 70%. HSTCP was also affected, but not as
dramatically as TCP. Other tests used include tests carried out on lossy links and
links with a constant simulated loss of 10e-5.
However, the results of all of these tests pointed out to the expected conclusion:
HighSpeed TCP performs better than TCP for high speed long distance links. Even in
the presence of systemic losses, HSTCP flows were able to use almost double the
bandwidth used by TCP flows. A single point of concern was discovered during
testing: HSTCP has some issues related to being able to insure fairness with TCP
flows at low speeds. It has been concluded that a better relation with TCP may be
achieved by adjusting the three parameters used by HSTCP, especially Low Window.

10

2.2 STCP – Scalable TCP

Scalable TCP is an alternative TCP version with improved performance over
high-speed networks. Scalable TCP was designed by Tom Kelly, and consists of a
simple sender side alteration of the AIMD congestion window update algorithm. It
offers a robust mechanism to improve performance in high-speed wide area networks
using traditional TCP receivers. A design goal for STCP was to be incrementally
deployable and to exhibit the same behavior as traditional TCP stacks when small
windows are used.

STCP describes a modified response function with cwnd(T)=a/b * 1/p(T), with p
= the packet loss rate. The figure below presents a comparison between STCP’s
response function and the one used by the current TCP (cwnd=1.2/sqrt(p)).

Figure 3 : Comparison between response functions for STCP and TCP

The Scalable TCP algorithm is used only when the congestion window has

increased over a certain size. Good resource sharing with traditional TCP connections
is insured by choosing the point at which the response curves intersect.

The STCP congestion window algorithm uses two parameters:
- a = the increase in the congestion window
- b = the decrease used when congestion occurs
The equations used by the SCTP congestion window update algorithm are:

cwnd = cwnd + a (per ack)
cwnd = cwnd – b*cwnd

The recommended values for these two parameters are: a=1/100 and b=1/8.

Tests have been conducted over high bandwidth-delay links (1Gbps, 120ms
delay) in order to measure the performance gain in Scalable TCP. The results
revealed that the performance increase was between 34-175%. The interaction
with the current TCP was tested by running Web traffic using the standard TCP in

11

parallel with several Scalable TCP flows performing bulk transfers. The results
showed a negligible impact on the TCP flows. It can be concluded that the design
goals of Scalable TCP have been accomplished.

2.3 H-TCP – TCP for high-speed networks

H-TCP is a TCP version modified for high-speed networks, designed by Doug

Leith and Robert Shorten at the Hamilton Institute.
Some of H-TCP’s design goals include:

o fairness when deployed in homogenous networks
o friendly when competing with conventional TCP sources
o rapidly respond to bandwidth as it becomes available
o utilize bandwidth in an efficient manner

The approach used by H-TCP is the same as STCP’s: only change the

congestion window update algorithm. The parameters used by H-TCP for AIMD
are:
- a = the increase in the congestion window
- b = the decrease used when congestion occurs
In order to meet the requirement according to which H-TCP should perform like
conventional TCP when it is not used with high-speed networks, the congestion
window update algorithm operates in two modes: high-speed, and conventional. A
mode switch is defined, allowing the transition from one mode to the other. The
values of the parameters used by the congestion window update algorithm depend
on the operating mode. After a predefined period (∆L), the transition to using the
high performance parameters is done.
 The equation defining the values for the AIMD parameters are:

If ? i = ? L: a = 1;
Else if ? i > ? L: a = 1 + 10(? i - ? L) + [(? i - ? L)/2]2

 where ? i is the time since the last congestion event has occurred.,

If | [B imax(k+1) - Bimax(k)] / Bimax(k) | > 0.2: b = 0.5

Else: b = RTTmin/RTTmax

Where Bimax throughput achieved by source i immediately after a congestion
event.

12

2.4 FAST TCP

FAST is an alternative to the current TCP developed by a team of researchers
at Caltech University. As seen by the FAST research team, the weak points of
TCP that make it inefficient in networks w ith large bandwidth-delay products are:

- at the packet level, linear increase by one packet per RTT is too slow, and

multiplicative decrease per loss event is too drastic
- at the flow level, maintaining large average congestion windows requires an

extremely small equilibrium loss probability
- at the packet level, oscillation is unavoidable because TCP uses a binary

congestion signal (packet loss)
- at the flow level, the dynamics is unstable, leading to severe oscillations that

can only be reduced by the accurate estimation of packet loss probability and a
stable design of the flow dynamics

The FAST design goals map closely to solving those issues that conventional TCP
is facing.
 All the protocols that have been presented so far belong to the first group, as
classified in the introductive part of this chapter (protocols that maintain the loss-
based congestion detection mechanisms). FAST belongs to the second group, as
its congestion detection mechanism is totally different: it proposes a delay-based
solution, using network buffer delay as an implicit congestion signal as opposed to
drops. If network buffer delay can be controlled and used as a signaling
mechanism, it should be possible to run the network at very high utilizations.
Delay-based congestion control has a small advantage over the loss-based
approach, but a decisive one at high speed.
It has been pointed out that delay can be a poor or untimely predictor of packet
loss, and therefore using a delay-based algorithm in addition to the AIMD
congestion window update algorithm of the conventional TCP is the wrong
approach. FAST TCP uses a new approach, which exploits delay as a congestion
measure in addition to loss information.

Using queuing delay as a congestion measure has two main advantages.
First, queuing delay can be more accurately estimated than loss probability

because packet losses in networks with large bandwidth-delay products are rare
events and because loss samples provide less granular information than queuing
delay factor. Second, the dynamics of queuing delay seems to have the right
scaling with respect to network capacity. This helps with maintaining stability as
the network scales in capacity.

As regards the architecture of FAST TCP, the congestion control mechanism
is separated into four components, which are functionally independent and can be
modified so that they can be designed separately and upgraded independently.
Figure 4 below presents this separation.

13

Data Control Window
Control

Burstiness
Control

Estimation

TCP Protocol Processing

Figure 4 : FAST TCP Architecture

The data control component is the one determining which packets to transmit,

window control decides how many packets to transmit, and burstiness control
determines the moment when those packets are transmitted. The difference
between the last two components is that window control regulates packet
transmission over one RTT, while burstiness control is more granular, working at
a smaller timescale. All of those components make decisions based on information
provided by the estimation component. Each of these components will be briefly
analyzed in the following part of this chapter.

Estimation

This component provides estimations of various input parameters to the other

three decision-making components. It generates a multi-bit queuing delay sample
and a one bit loss-or-no loss sample for each data packet. When a positive
acknowledgment is received, the estimation component calculates the RTT for the
corresponding data packet and updates the average queuing delay and the
minimum RTT. If a negative acknowledgment is received (retransmission timer
timeout or three duplicate acknowledgments), it generates a loss indication for this
data packet to the other components.

Data Control

This component’s task is to select the next packet to send from three pools of

candidates: new packets, packets that were lost, and transmitted packets that have
been acknowledged yet. When there is no loss, new packets are sent in sequence
as old packets are acknowledged. This is called self-clocking , or ack-clocking .
During loss recovery, the options are to retransmit lost packets, to keep
transmitting new packets, or to retransmit old packets that are neither
acknowledged nor marked as lost. The data control makes the decision on how to
mix packets from the three candidate pools.

This decision becomes very important when the bandwidth-delay product is
large. For example, at a window size of 15,000 packets, a single loss event can
lose 7,000 packets, or even more. Those packets have to be retransmitted quickly,
but this has to be done in a manner that does not create more congestion and lead
to more losses or even timeouts.

A compromise must be done here: the longer we wait, the more certain we are
that packets are sent and received, but by waiting we prolong loss recovery. It is

14

also necessary to transmit a sufficient number of new packets in order to maintain
reliable RTT measurements.

Window Control

The Window Control component determines the congestion window based on

congestion information provided by the estimation component: queuing delay and
packets loss. The congestion control mechanism used with FAST TCP reacts to
both queuing delay and packet loss.

Under normal network conditions, FAST periodically updates the congestion
window based on the average RTT and average queuing delay provided by the
estimation component. When a packet loss is detected, FAST halves its window
and enters loses recovery. This is however only a temporary solution, the intended
approach is to use the same algorithm for window computation regardless of the
sender state.

Burstiness Control

The Burstiness Control component smoothes out the transmission of packets

in order to track available bandwidth. It is very important in networks with high
bandwidth-delay product, where large bursts of packets may create long queues
and even massive losses.

Two burstiness control mechanism are employed:
- Burstiness reduction – decides how many packets to send when an ACK

advances the congestion window by a large amount, and attem pts to limit the
burst size on a timescale smaller than one RTT

- Window pacing – determines how to increase the congestion window over the
idle time of a connection to the target determined by the window control
component.

An extensive series of tests have been performed by the FAST research team,

comparing FAST to TCP Reno, HSTCP, STCP. The results showed the following
facts:

- FAST achieved the best overall performance in each of the four evaluation

criteria: throughput, fairness, responsiveness and stability
- Both HSTCP and STCP improved the responsiveness of Linux TCP, but they

have also presented fairness and instability problems.

FAST TCP has become publicly available for testing since April 2004. It consists

of two patches for the Linux-2.4.22 Kernel. Several tests comparing GridDT and
FAST will be included in the Chapter 5 of the present paper

15

2.5 TCP Westwood

TCP Westwood (TCPW) is a sender-side-only modification to TCP NewReno,

designed to better handle large bandwidth-delay product paths, with potential packet
loss due to transmission or other errors. Its design goals are similar with those of the
other protocols:

- improved behavior in networks with high-bandwidth delay products
- only modify the TCP sender
- friendliness to the current TCP.

TCP W bases its operation on information deduced from the received stream of

acknowledgments, information, which is used in order to set appropriate values for
the congestion control parameters.

TCPW works by estimating an “Eligible rate”, used by the sender to update
ssthresh and the congestion window when loss is detected. Also , it introduces an
“Agile Probing” phase, which is a proposed replacement for the Slow Start
mechanism. Also, TCPW uses a mechanism called Persistent Non Congestion
Detection (PNCD) is used to detect persistent lack of congestion and induce an Agile
Probing phase in order to use large dynamic bandwidth.

TCP Westwood has been tested by the author, but it seems like its performance
level is not yet satisfactory.

16

2.6 GridDT – Grid Data Transport

GridDT is an enhanced TCP version, which keeps the loss-based approach to

detecting congestion, but implements several simple mechanisms in order to
improve TCP’s performance in networks with a high bandwidth delay product.

The development of Gr idDT started in 2002, and has incorporated the efforts
of three: Sylvain Ravot (Network Engineer at Caltech University, currently
working at CERN), Adrian Sarbu (Politehnica University Bucharest, Computer
Science Faculty), and the author of this paper, student at the Computer Science
Faculty, Politehnica University Bucharest.

GridDT is based on modifying the standard TCP, in order to improve the
congestion window update algorithm. This algorithm has been modified in order
to achieve a more aggressive increase of the congestion window during the
congestion avoidance phase. Also, the new algorithm is less aggressive when
decrementing the congestion window when congestion occurs. In order to avoid a
large number of dropped packets during slow -start, the Limited Slow Start
mechanism proposed by RFC 3742 has been implemented.

The GridDT design goals map closely to the problems of the current TCP.
They are related to achieving better throughput in networks with high bandwidth-
delay products and improving the protocols packet loss handling capabilities.
Also, in order to benefit from these improvements, only the sender should be
modified, and no additional feedback or support should be required from routers
or receivers.

Aspects concerning designing and implementing GridDT, as well as test
results, will be explored in depth in the following chapters of this paper.

17

3. GridDT Design

This chapter describes the steps taken in designing GridDT, the design goals
and the decisions taken throughout the design process.

3.1 Design goals

The design goals that governed the GridDT design process are:

- Achieve high per-connection throughput
- Reach high throughput without overly long delays when recovering from

multiple retransmit timeouts, or when ramping-up from a period with small
congestion windows.

- Improved fairness between TCP flows
- No additional feedback or support required from routers
- No additional feedback required from TCP receivers
- Sender side modifications only
- Smooth interaction with conventional TCP

3.2 Designing GridDT

GridDT consists of a patch for the Linux Kernel. The GridDT version
proposed by this paper will result in patches for the Linux kernel versions 2.4.26
and 2.6.5. The first versions of GridDT consisted of patches for Linux 2.4.20.

During the design process of GridDT a series of modifications were proposed.
The first one aimed at improving the fairness of the current TCP, which during the
congestion avoidance phase, increases the congestion window in the same manner
for all flows(the congestion window is increased by 1/cwnd each time an ACK is
received, and no more than one per RTT), without taking into account the
parameters that characterize that flow (MTU, RTT). GridDT addresses this
problem by implementing a modified congestion avoidance function and a
function that calculates the increment used during congestion avoidance by taking
into account the MTU and RTT of that flow. This function will calculate the
increment add_val as the product of two variables, which are obtained by
comparing the current MSS and the RTT value reference values configurable via
sysctl.

Another improvement that GridDT will benefit from is the implementation of
the Limited Slow Start mechanism, as proposed by RFC3742. This mechanism is
useful in environments where TCP gets to use a large congestion window
(thousands or tens of thousands), such as high bandwidth-delay networks. It limits
the aggressiveness of the conventional TCP during slow start. With conventional
TCP, the current slow -start procedure can result in increasing the congestion
window by thousands of segment in a single RTT, increase that can lead to the

18

loss of a large number of packets in one RTT, which can drastically limit TCP’s
performance.

Limited Slow Start introduces a parameter “max_ssthresh”, and modifies the
slow-start mechanisms for values of the congestion window greater than
max_ssthresh. The modified algorithm is:

While cwnd<=max_ssthresh, cwnd is increased by one MSS for each arriving
ACK during slow-start

When cwnd exceeds max_ssthresh, Limited Slow Start is used:
For each arriving ACK in slow-start:
if (cwnd <= max_ssthresh)
 Cwnd+=MSS;
else
 K=int(cwnd/(0.5 max_ssthresh));
 Cwnd+= int(MSS/K);
RFC 3742 recommends a value of 100 for max_ssthresh.
Another improvement proposed by this GridDT version is the implementation

of a simple mechanism that would limit the burst generated by the new congestion
window increase function used during congestion avoidance, by spreading this
increase over one RTT.

The latest enhancement added was the implementation of the Delayed
Congestion Response (DCR) mechanism. DCR is a simple modification to the
TCP congestion control algorithm to make it more robust to non-congestion
events. The details of this mechanism are currently specified in a IETF draft.

 In the absence of an explicit notification from the network, conventional TCP
considers three duplicate acknowledgments an indication of congestion and
performs retransmission. This is not always the correct approach, especially in
wireless networks with channel errors or networks where excessive packet
reordering, as the duplicate acknowledgments can be an just an indication that
packets where received out-of-order. It has been shown that the current Internet
can sometimes be prone to excessive reordering, contrary to the general belief that
packet reordering within the Internet is a rare phenomenon. When this is the case,
retransmitting wastes bandwidth, and TCP’s efficiency drops. DCR suggests that
it would be better to wait longer before responding to congestion. For each
duplicate ACK received while delaying the response to congestion, a new packet
will be sent and the congestion window will still be incremented.

DCR is based on the following design guidelines:
- improve the robustness of TCP to non-congestion eve nts
- maintain the end-to-end TCP semantics
- require a minimal amount of modification to the network infrastructure
- after the modification, compatibility with existing the flavors of TCP should

be maintained
The sender can implement the delay in congestion response (tau) by using

either a timer or by modifying the threshold on the number of duplicate
acknowledgements to be received before triggering fast retransmit/recovery. The
timer-based implementation is quite straight forward, but is influenced by the
coarseness in the clock granularity. In the ack-based delay implementation, the
sender could delay responding to congestion for the number of duplicate
acknowledgements corresponding to the delay required. Thus, if 'tau' is chosen to

19

be one RTT, the sender w ould wait for the receipt of 'W' duplicate
acknowledgements before responding to congestion, where 'W' is the size of the
congestion window when the packet loss is detected. This is the approach that
GridDT will use.
 It is recommended to use TCP-DCR with TCP-SACK to ensure that the

performance can be maintained high even under the conditions of multiple losses per
round trip time. When used with TCP -SACK, the only thing modified by TCP -DCR
is the time at which the fast retransmit/recovery algorithm is trig gered in response to
dupacks generated by the first loss within a window of packets. All subsequent losses
within the same window (irrespective of whether they are congestion related or non-
congestion events) are handled in exactly the same way as TCP-SACK would in the
absence of TCP -DCR modifications. If the receiver is not SACK-capable, however,
then the sender will have to use TCP-DCR with NewReno.

Another issue that must be considered during the design phase is that when TCP-
DCR is used, the receiver will need to have additional buffer space to accommodate
the extra packets corresponding to the delay 'tau', when a packet is lost due to
congestion. Having these extra buffers allows TCP-DCR to achieve the best
performance.

20

4. Implementation

This chapter presents the implementation details for the mechanisms added to the

TCP code in the Linux kernel throughout the development of GridDT. Since GridDT
is a patch for the Linux kernel, a brief introduction to the TCP code in the Linux
kernel and information on writing a Linux kernel patch will be included. The
implementation details for the mechanisms presented in the previous chapter will be
detailed later in this chapter, for both Linux 2.4.26 and 2.6.5.

4.1 Linux kernel networking code

The code implementing TCP is thought to be the most complex part of the

networking code in the Linux kernel. The files that contain the networking code are
located in net/ipv4, net/core, net/sched. The header files are in include/linux,
include/net.

Before presenting the actual structure of the TCP code in Linux, a general
presentation of the particularities of the Linux TCP implementation is necessary. The
first notable difference refers to the congestion window. Traditionally, the congestion
window is evaluated against the difference between the highest data segment
transmitted and the first unacknowledged segment. The Linux TCP sender determines
the number of packets currently outstanding in the network. Then, the sender
compares the number of outstanding packets to the congestion window when making
decisions on how much to transmit. Another difference is that Linux keeps track of
the number of outstanding segments in units of full sized packets. Other
implementations compare cwnd to the number of transmitted octets. This makes
Linux more conservative compared to the byte-based approach when the TCP payload
consists of small segments.

When a TCP connection is established, many TCP values need to be initialized
with some fixed-values. In order to improve efficiency at the beginning of the
connection, the Linux TCP sender stores in its destination cache the slow -start
threshold, the variables used for the RTO (Retransmit TimeOut) estimator, and an
estimator measuring the likeliness of reordering after each TCP connection. When
another connection is established to the same destination IP address that is found in
the cache, the cached values are used to get adequate initial values for the new TCP
connection.

Another notable difference is related to the RTO timer calculation. Some
implementations use a coarse-grained retransmission timer, with granularities of up to
500ms and the samples used to compute the value for this timer are measured once in
a RTT. Linux TCP has a retransmission timer granularity of 10ms, and takes a RTT
sample for each segments. Also, the minimum limit for the RTO is 200ms.

Linux TCP also supports the TCP Timestamp option, which helps it to insure
accurate RTT measurement for retransmitted segments also.

21

A state machine with 5 states defines the Linux TCP sender’s operation. These
states are defined in include/linux /tcp.h.

The five states are as follows:
- Open – the normal state of the TCP sender. When an acknowledgement is

received, the sender increases the congestion window. The way the congestion
window is increased depends on weather slow -start or congestion avoidance is
performed.

- Disorder – this state is entered when duplicate or selective ACKs are
detected. The congestion window is not updated, but each incoming packet
triggers the transmission of a new segment.

- CWR – The TCP sender may receive congestion notifications either by
Explicit Congestion Notification, ICMP source quench, or from a local
device. When receiving such a notification, Linux does not reduce the
congestion window at once, but by one segment for each incoming ACK, until
the window size is halved. When the sender is in the process of reducing the
congestion window and it does not have outstanding retransmissions, it is in
CWR (Congestion Window Reduced). CWR can be interrupted by the
Recovery or Loss states.

- Recovery – After a certain amount of successive duplicate ACKs were
received, the sender retransmits the first unacknowledged segment and enters
Recovery state. The default threshold for entering the Recovery state is three
duplicate ACKs. During the Recovery state, the congestion window is reduced
by one segment for each second incoming ACK, until the window size is equal
to sshthresh. The congestion window is not increased during the Recovery
state, and the sender either retransmits the segments marked lost, or makes
transmissions of new data. The Recovery state is exited when all segments that
were outstanding when the Recovery state was entered are successfully
acknowledged. After exiting the Recovery state, the TCP sender enters the
Open state. The Recovery state can be interrupted by a retransmission timeout.

- Loss – When a retransmission timer expires, the senders enters the Loss state.
All outstanding segments are marked lost, and the congestion window is set to
one segment. Slow-start is performed in order to increase the congestion
window. An important difference between the Loss and Recovery states is that
in the Loss state the congestion window is increased after the sender has reset
it to one segment. Also, the Loss state cannot be interrupted by any other state,
thus the sender exits to the Open state only after all data outstanding when
Loss state began have successfully been acknowledged.

Before presenting the TCP code in the Linux kernel, a short description of some

general structures used in the networking code is necessary.
The networking part of the kernel uses two main data structures: one is used to

keep track of the state of a connection (this structure is called sock), and another one
used for keeping the data and status of both incoming and outgoing packets, called
sk_buff (socket buffer). A third structure, tcp_opt, is part of the sock structure and is
used to maintain the TCP connection state.

The sk_buff structure is defined in include/linux/skbuff.h . When the kernel
processes a packet, coming either from user space or from the network card, a sk_buff
structure is created. Changing a field in a packet is achieved by updating a field of this

22

data structure. In the networking code, virtually every function is invoked with an
sk_buff (the variable is usually called skb) passed as a parameter.

struct sk_buff {
/* These two members must be first. */
 struct sk_buff * next; /* Next buffer in list */
 struct sk_buff * prev; /* Previous buffer in list */
 struct sk_buff_head * list; /* List we are on */
 struct sock *sk; /* Socket we are owned by */
 struct timeval stamp; /* Time we arrived */
 struct net_device *dev; /* Device we arrived on/are

leaving by */

The first two fields are pointers to the next and previous sk_buffs in the linked list

(packets are frequently stored in linked lists or queues); sk_buff_head points to the
head of the list. The socket that owns the packet is stored in sk (note that if the packet
comes from the network, the socket owner will be known only at a later stage). The
time of arrival is stored in a timestamp called stamp. The dev field stores the device
from which the packet arrived, if the packet is for input. When the device to be used
for transmission is known (for example, by inspection of the routing table), the dev
field is updated correspondingly.

The section referring to the transport control protocol in this structure is a union
that points to the corresponding transport layer structure.

/* Transport layer header */
union { struct tcphdr *th;
 struct udphdr *uh;
 struct icmphdr *icmph;
 struct igmphdr *igmph;
 struct iphdr *ipiph;
 struct spxhdr *spxh;
 unsigned char *raw;
 } h;

The network layer header points to the corresponding data structures (IPv4, IPv6).

/* Network layer header */
 union {
 struct iphdr *iph;
 struct ipv6hdr *ipv6h;
 struct arphdr *arph;
 struct ipxhdr *ipxh;
 unsigned char *raw;
 } nh;

The link layer is stored in a union called mac :

/* Link layer header */
 union {

23

 struct ethhdr *ethernet;
 unsigned char *raw;
 } mac;
 struct dst_entry *dst;

Other information regarding the packet length, data length, checksum, packet

type, etc.

char cb[48];
 unsigned int len;
 /* Length of actual data */
 unsigned int data_len;
 unsigned int csum;
 /* Checksum */
 unsigned char __unused,
 /* Dead field, may be reused */

 cloned, /* head may be cloned (check refcnt to be
sure) */

 pkt_type, /* Packet class */
 ip_summed; /* Driver fed us an IP checksum */
 __u32 priority; /* Packet queueing priority */
 atomic_t users; /* User count - see datagram.c,tcp.c

*/
 unsigned short protocol; /* Packet protocol from

driver */
 unsigned short security; /* Security level of packet

*/
 unsigned int truesize; /* Buffer size */
 unsigned char *head; /* Head of buffer */
 unsigned char *data; /* Data head pointer*/
 unsigned char *tail; /* Tail pointer */
 unsigned char *end; /* End pointer */

The sock structure keeps data about a specific TCP connection. When socket is

created in user space, a sock structure is created.

struct sock {
 /* Socket demultiplex comparisons on incoming packets.

*/
 __u32 daddr; /* Foreign IPv4 addr */
 __u32 rcv_saddr; /* Bound local IPv4 addr */
 __u16 dport; /* Destination port */
 unsigned short num; /* Local port */
 int bound_dev_if; /* Bound device index if != 0 */

The first fields contain information about the source an destination addresses and

ports of the socket pair. The sock structure also contains protocol specific
information:

24

union {
 struct ipv6_pinfo af_inet6;
 } net_pinfo;
 union {

 struct tcp_opt af_tcp;
 struct raw_opt tp_raw4;
 struct raw6_opt tp_raw;
 struct spx_opt af_spx;
 } tp_pinfo;
 };

The most important part of the sock structure as concerns tcp is the tcp_opt field.

TCP uses a large number of variables in order to store information about its
connections. These variables are stored in the fields of the tcp_opt structure.

struct tcp_opt {
 int tcp_header_len; /* Bytes of tcp header to send
 */

/*
 * Header prediction flags
 * 0x5?10 << 16 + snd_wnd in net byte order
 */
 __u32 pred_flags;

/*
 * RFC793 variables by their proper names. This means you
can
 * read the code and the spec side by side (and laugh ...)
 * See RFC793 and RFC1122. The RFC writes these in capitals.
 */
 __u32 rcv_nxt; /* What we want to receive next */
 __u32 snd_nxt; /* Next sequence we send */

 __u32 snd_una; /* First byte we want an ack for */
 __u32 snd_sml; /* Last byte of the most recently
transmitted small packet */
 __u32 rcv_tstamp; /* timestamp of last received ACK
(for keepalives) */
 __u32 lsndtime; /* timestamp of last sent data packet
(for restart window) */

The fields presented above are related to sequence number management. Among
them: rcv_next – is the sequence of the next expected segment, snd_next – the
sequence of the segment that will be sent next, snd_una – the first byte for which an
acknowledgment is expected.

25

/* RTT measurement */
 __u8 backoff; /* backoff */
 __u32 srtt; /* smothed round trip time << 3 */
 __u32 mdev; /* medium deviation */
 __u32 mdev_max; /* maximal mdev for the last rtt period */
 __u32 rttvar; /* smoothed mdev_max */
 __u32 rtt_seq; /* sequence number to update rttvar */
 __u32 rto; /* retransmit timeout */

 __u32 packets_out; /* Packets which are "in flight" */
 __u32 left_out; /* Packets which leaved network */
 __u32 retrans_out; /* Retransmitted packets out
 */

These fields are related to the measurement of the RTT, which is used by the
algorithm that computes the Retransmit TimeOut (RTO).

/*
 * Slow start and congestion control (see also Nagle, and
Karn & Partridge)
 */
 __u32 snd_ssthresh; /* Slow start size threshold */
 __u32 snd_cwnd; /* Sending congestion window */
 __u16 snd_cwnd_cnt; /* Linear increase counter */
 __u16 snd_cwnd_clamp; /* Do not allow snd_cwnd to grow
above this */
 __u32 snd_cwnd_used;
 __u32 snd_cwnd_stamp;

The part of the tcp_opt structure that is presented above, is used defines ssthresh,
the limit up until which slow -start is performed, and also contains variables
(snd_cwnd_cnt and and snd_cwnd_clamp) which are used during congestion
avoidance, in the tcp_cong_avoid() function. Snd_cwnd_clamp defines a maximum
limit for the growth of the congestion window.

A large number of fields from this structure have been skipped, as the in-depth
description of this structure is not within the purpose of this paper. Only the fields
directly related to understanding the modifications proposed by GridDT were
presented.

The main files that contain the TCP code are located in net/ipv4 (the headers are
located in include/net). Those files are:

- tcp_input.c – functions that deal with incoming packets from the network are
implemented here

- tcp_output.c – contain functions that deal with sending data to the network
- tcp.c – general TCP code
- tcp_ipv4.c – TCP code that is IPv4 specific
- tcp_timer.c – functions that deal with managing the timers used by TCP
- tcp.h – contains definitions of TCP constants

26

TCP Input is the largest portion of the TCP code. The sender and receiver
code is tightly coupled as an entity can be both at the same time.

Incoming packets delivered to the TCP routines from the IP layer by
ip_local_delivery(). For IPv4 this routine gives the packet to tcp_v4_rcv() which
calls tcp_v4_do_rcv(). Tcp_v4_do_rcv() calls another function depending on the
TCP state of the connection.

If the connection is established (state is TCP_ESTABLISHED), it calls
tcp_rcv_established().

This is the main case and will be described in depth. If the state is
TIME_WAIT, it calls tcp_timewait_process(). All other states are handled by
tcp_rcv_state_process(). For example, this function calls
tcp_rcv_sysent_state_process() if the state is SYN_SENT.

For some TCP states (e.g., CALL_SETUP), tcp_rcv_state_process() and
tcp_timewait_process() have to initialize the TCP structures. They call
tcp_init_buffer_space() and tcp_init_metrics(). The latter initializes the congestion
window by calling tcp_init_cwnd().
The function tcp_rcv_established() has two modes of operation: fast path and
slow path.

In the code corresponding to the slow path, the seven steps specified in RFC
793 are implemented (plus a few other supplementary operations):

- tcp_checksum_complete_user() is called in order to calculate the checksum
for a packet . If it is incorrect, the packet is discarded.

- PAWS - The Protection Against Wrapped Sequence Numbers is done with
tcp_paws_discard().

The seven steps RFC793 specifies are:

STEP 1: The sequence number of the packet is checked. If it is not in

sequence, the receiver sends a DupACK with tcp_send_dupack().

STEP 2: The RST (connection reset) bit is checked. If it is on, it calls

tcp_reset() and error must be passed to the upper layers.

STEP 3: It checks security and precedence (not implemented yet)

STEP 4, part 1: It checks the SYN bit. If it is on, it calls tcp_reset(). This

synchronizes sequence numbers to initiate a connection.
STEP 4, part 2: It calculates an estimative for the RTT (RTTM) by calling

tcp_replace_ts_recent().

STEP 5: It checks the ACK bit. If this is on, the packet brings an

acknowledgment and tcp_ack() is called.

STEP 6: It checks the URG (urgent) bit. If it is on, it calls tcp_urg(). This

makes the receiver tell the process listening in the socket that the data is urgent.

STEP 7, part 1: It processes data on the packet. This is done by calling

tcp_data_queue(). This function is responsible for giving the data to the user.

27

STEP 7, part 2: It checks if there is data to send by calling
tcp_data_snd_check(). This function calls tcp_write_xmit() on the TCP output
sector.

STEP 7, part 3: It checks if there are ACKs to send with tcp_ack_snd_check().
This may result in sending an ACK straight away with tcp_send_ack() or
scheduling a delayed ACK with tcp_send_delayed_ack(). The delayed ACK is
stored in tcp->ack.pending().

Another important function is tcp_ack(), which is called every time an ACK is

received. The first task this function accomplishes is checking if the ACK is valid
(that is, if it is within the right hand side of the sending window). If everything is
normal, the sender’s TCP sliding window is updated with
tcp_ack_update_window() and/or tcp_update_wl(). An ACK is considered normal
if it acknowledges the next section of contiguous data starting from the pointer to
the last fully acknowledged block of data. If the ACK is dubious (duplicate), fast
retransmit is entered with tcp_fastretrans_alert().If the ACK is normal and the
number of packets in flight is not smaller than the congestion window, the
congestion window is increased by entering slow start/congestion avoidance with
tcp_cong_avoid(). This function implements both the exponential increase in slow
start and the linear increase in congestion avoidance as defined in RFC 793. When
in congestion avoidance, tcp_cong_avoid() utilizes the variable snd_cwnd_cnt to
determine when to linearly increase the congestion window.

The fast path is entered in certain conditions in tcp_rcv_established().

The code related to TCP output deals with both data packets and ACKs. The

function tcp_transmit_skb(), is the most important part in this code section, and
executes the following tasks:
- check sysctl() flags for timestamps, window scaling and SACK
- build TCP header and checksum
- Set SYN packets
- Set ECN (Explicit Congestion Notification) flags
- Increment TCP statistics
- Call ip_queue_xmit (this function is part of the IP code and is the first to

process packets coming from the upper layers, TCP in this case) which in turn
calls the output part, ip_output().

If there is no error, this function returns. Otherwise, tcp_enter_cwr() is called.
Errors appea r when the output queue is full.

The main files that were modified in the GridDT patches: include/net/sock.h,
tcp_input.c, sysctl.h, sysctl_ipv4.c, include/net/tcp.h and include/linux/tcp.h.

28

4.2 Writing a Linux kernel patch

Since GridDT is a Linux kernel patch, the present section will briefly explain this

concept and the tools and procedures used for creating and applying patches.
A kernel patch is a file that contains the difference between two kernel versions. It

is a very convenient way of applying modifications to the kernel source code, because
such a file is usually very small and thus easily distributed. However, it should be
noted that the patch can only be applied the kernel version it was created for.

Writing a kernel patch consists of a few simple steps:
- first, a copy of the Linux kernel source tree should be created. The desired

modifications will be applied to the files in this copy. The original kernel
source tree should be kept unaltered.

- The desired modifications will be applied
- The resulting kernel must be tested, and if the results are the expected one, the

patch file should be created
In order to create a kernel patch, the diff program is used. It’s syntax is:

diff [options] from-file to-file

The most used options when creating a kernel patch are:

-N, or –new-file – in a directory, if a file is found in only one directory, it is

treated as present but empty in the other directory
-r – when comparing directories, recursively compare any subdirectory found
-u - Use the unified output format, showing lines (an integer) lines of context,

or three if lines is not given. For proper operation, patch typically needs at least two
lines of context.

The diff output should be redirected to a file, as it is done in the example below:

Example: diff –Nur linux-2.4.26/ linux-2.4.26-gridDT-lss-dcr > patch-2.4.26-

gridDT-lss-dcr

Applying the kernel patch is done using the patch program:

patch –p0 < patch-2.4.26-gridDT-lss-dcr

 After this, the new kernel should be compiled and used.

4.3 Implementing GridDT

This section describes the modifications applied to the Linux kernel (versions

2.4.26 and 2.6.5) as part of GridDT v3.1. Some of these modifications are new, and
the others are enhancements kept from the previous versions. Each implemented
mechanism uses some parameters, which are configurable using the Sysctl kernel
interface. The sysctl interface is a simple and convenient way of modifying kernel

29

parameters by using the sysctl command or by writing a value in the file
corresponding to that parameter, located on the proc filesystem which is mounted in
/proc.

4.3.1 The enhanced congestion window update algorithm

As it has been shown in the previous chapters, the AIMD congestion window

update function used by conventional TCP has several issues. First, during congestion
avoidance phase the increase of the congestion window is too small (1/cwnd per ACK
but no more than one per RTT), which makes it hard for TCP to use high bandwidth-
delay product links efficiently. The second issue relates to fairness, and it is raised by
the fact that the congestion window is always increased the same, without considering
flow parameters such as MTU and RTT. The new congestion window update
algorithm implemented in GridDT tries to address those issues. This mechanism was
inherited from GridDT version 3. In order to avoid the generating of a burst with this
increase, in version 3.1 a mechanism used to smooth the increase of the congestion
window over one RTT was also implemented.

Also, the halving of the congestion window when loss occurs is considered too
drastic. Another mechanism has been implemented, which allows the congestion
window to be decremented by cwnd/x, where x is configurable via sysctl.

4.3.1.1 Modifications for Linux 2.4.26

The first file that was modified was include/sysctl.h. The enumeration for

/proc/sys/net/ipv4 was modified, and the following lines have been added:
NET_IPV4_TCP_MSS_REF=97,
NET_IPV4_TCP_RTT_REF=98,
NET_IPV4_TCP_CWND_DECR=99,

Also, net/ipv4/sysctl_net_ipv4.c was modified, the following lines were added to

the ipv4_table[] vector:
 {NET_IPV4_TCP_MSS_REF, "tcp_mss_ref",

 &sysctl_tcp_mss_ref, sizeof(int), 0644, NULL,
 &proc_dointvec},
 {NET_IPV4_TCP_RTT_REF, "tcp_rtt_ref",
 &sysctl_tcp_rtt_ref, sizeof(int), 0644, NULL,
 &proc_dointvec},
 {NET_IPV4_TCP_CWND_DECR, "tcp_cwnd_decr",
 &sysctl_tcp_cwnd_decr, sizeof(int), 0644, NULL,
 &proc_dointvec},

The include/net/tcp.h file was also modified, by adding the following lines:

extern int sysctl_tcp_mss_ref;
extern __u32 sysctl_tcp_rtt_ref;
extern int sysctl_tcp_cwnd_decr;

30

The first two correspond to the sysctl parameters used by the function that

calculates the increment during congestion avoidance, sysctl_tcp_mss_ref and
sysctl_tcp_rtt_ref. The third corresponds to sysctl_tcp_cwnd_decr, which controls the
tcp_cwnd_down() function that is called when loss is encountered and TCP is in the
recovery state. The default TCP behavior is to decrement the congestion window each
second ACK, resulting in a halving of the congestion window at the end of the
recovery state. The new tcp_cwnd_down() function applies the following formula:
cwnd=cwnd-cwnd/sysctl_tcp_cwnd_decr.

The default values for these parameters were defined in net/ipv4/tcp_input.c.

int sysctl_tcp_mss_ref=1500;
__u32 sysctl_tcp_rtt_ref=10;
int sysctl_tcp_cwnd_decr=2;

In order to change these values, the sysctl interface is used:
sysctl –w net.ipv4.tcp_mss_ref= new_value
sysctl –w net.ipv4.tcp_rtt_ref=new_value
sysctl –w net.ipv4.tcp_cwnd_decr=new_value

The tcp_opt structure was also modified, by adding the following new members:

int snd_cnwd_inc;
__u32 snd_cwnd_add_cnt;
__u32 snd_cwnd_div_inc;
__u32 old_cwnd;

The first variable, snd_cwnd_inc is used to store the additive increment for the

congestion window. Snd_cwnd_add_cnt, snd_cwnd_div_inc and old_cwnd are used
by the mechanism that spreads the increase of the congestion window by
snd_cwnd_inc over one RTT. The use of these variables will be explained later in this
chapter, when referring to the tcp_cong_avoid() function.

The function that calculates the additive increment used in the new congestion

window update algorithm was included in net/ipv4/tcp_input.c, and is called add_inc:

int add_inc(struct sock *sk)
{
 struct tcp_opt *tp=&(sk->tp_pinfo.af_tcp);
 int mssval, addval, rttval;

if tcp_current_mss(sk)>=sysctl_tcp_mss_ref)
mssval=1;

 else mssval=sysctl_tcp_mss_ref/tcp_current_mss(sk);

 /* min RTT over the life of the connection */
 if (tp->srtt<tp->min_rtt || tp->min_rtt==0) tp-

>min_rtt=tp->srtt;

31

 if (tp->min_rtt <= sysctl_tcp_rtt_ref) rttval=1;
 else {
 rttval=tp->min_rtt/sysctl_tcp_rtt_ref;
 rttval*=rttval;
 }
 addval=mssval*rttval;
 return addval;
}

This function calculates the increment used during congestion avoidance by

comparing the values of the MSS and RTT with a set of default values. Those default
values are: 1500 bytes for sysctl_tcp_mss_ref and 10 ms for sysctl_tcp_rtt_ref. The
increment used is the product of two components: mssval and rttval. Mssval will be 1
if the current MSS is greater than the reference value, and sysctl_tcp_mss_ref divided
by the current MSS value else; rttval takes a value of 1 if the minimum RTT for that
connection is less than the reference value, and a value of minimum RTT divided by
the reference value in the other cases.

The add_inc function is called from the tcp_cong_avoid() function, during the
congestion avoidance phase. Tcp_cong_avoid() is called from tcp_ack() when the
congestion window must be increased after an ACK has been received.
Tcp_cong_avoid() separates the state of a TCP connection in two areas: the safe area,
when the congestion window is less than the slow start threshold, and slow-start is
performed by incrementing the congestion window by one for each ACK received,
and the dangerous area, when the congestion window size is above the slow start
threshold, and the congestion window is increased by 1/cwnd for each received ACK,
but never with more than one in a RTT (this is the behavior of the original function).
Both tcp_cong_avoid() and tcp_ack() have been modified. The original
tcp_cong_avoid() function was:

static __inline__ void tcp_cong_avoid(struct tcp_opt *tp)
{
 if (tp->snd_cwnd <= tp->snd_ssthresh) {
 /* In "safe" area, increase. */
 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
 tp->snd_cwnd++;
 } else {

/* In dangerous area, increase slowly.
* In theory this is tp->snd_cwnd += 1/tp-
>snd_cwnd

 */
 if (tp->snd_cwnd_cnt >= tp->snd_cwnd) {
 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
 tp->snd_cwnd++;
 tp->snd_cwnd_cnt=0;
 } else
 tp->snd_cwnd_cnt++;
 }
 tp->snd_cwnd_stamp = tcp_time_stamp;
}

The new tcp_cong_avoid function is:

32

static __inline__ void tcp_cong_avoid(struct sock *sk)
{
 struct tcp_opt *tp=&(sk->tp_pinfo.af_tcp);
 if (tp->snd_cwnd <= tp->snd_ssthresh) {
 /* In "safe" area, increase. */
 if (tp->snd_cwnd < tp->snd_cwnd_clamp)
 tp->snd_cwnd++;
 } else {
 /* GriDT: In dangerous area, increase slowly.
 * In theory this is tp->snd_cwnd+=a(RTT, MSS)/tp-

>snd_cwnd
 * a(RTT, MSS) evaluated by add_inc()
 * Note: Jacobson's congestion avoidance <=> a(RTT,

MSS)=1
 */

 if (tp->snd_cwnd_cnt==0) {
 tp->snd_cwnd_add_cnt=0;
 tp->snd_cwnd_inc=add_inc(sk);
 tp->old_cwnd=tp->snd_cwnd;
 tp->snd_cwnd_div_inc=tp->snd_cwnd/tp->

snd_cwnd_inc;
 if(!tp->snd_cwnd_div_inc) tp->snd_cwnd_div_inc=1;
 }

 tp->snd_cwnd_cnt++;

 if(tp->snd_cwnd_add_cnt==tp->snd_cwnd_div_inc-1)

{
 tp->snd_cwnd++;
#ifdef DEBUG_GridDT
 monitor_TCP(tp);
#endif
 tp->snd_cwnd_add_cnt=0;
 }

 if (tp->snd_cwnd_cnt==tp->old_cwnd)
 tp->snd_cwnd_cnt=0;
 else tp->snd_cwnd_add_cnt++;

 }
 tp->snd_cwnd_stamp = tcp_time_stamp;

}

The tcp_cong_avoidance() function has suffered the following modifications:

- it is called with a parameter that is now a pointer to a sock structure, because
the add_in c function calculates the increment for the congestion window
based on information contained by the sock structure. This did not create any
complications because the tcp_cong_avoid() was previously called with a
struct tcp_opt argument, which is a member of the sock structure.

33

- The increment computed by add_inc is now used to increase the congestion
window during congestion avoidance: tp->snd_cwnd_inc is used to store the
value of the additive increment, as returned by the add_inc() function. When
entering the tcp_cong_avoid function with snd_cwnd_cnt=0, tp -
>snd_cwnd_inc is initialized, the value of the current congestion window is
stored in tp->old_cwnd. (this is necessary, as the value of the congestion
window will be increased) and cwnd divided by snd_cwnd_inc is stored in
snd_cwnd_div_inc. Each time tcp_cong_avoid() is called during congestion
avoidance, both snd_cwnd_cnt and snd_cwnd_add_cnt are increased. When
snd_cwnd_add_cnt reaches snd_cwnd_div_inc, the congestion window is
incremented by one and snd_cwnd_add_cnt is reset. This is done until
snd_cwnd_cnt reaches old_cwnd. When this happens, snd_cwnd_cnt is reset to
zero, and the process starts again.
The tcp_ack() function was also changed in order to call tcp_cong_avoid()

with the new parameter. This was not a problem, since one of the parameters for
tcp_ack() is a struct sock.

The tcp_cwnd_down() function, used in order to reduce the size of the

congestion window during recovery, has also been modified.
The original function that standard TCP uses was:

static void tcp_cwnd_down(struct tcp_opt *tp)
{
 int decr = tp->snd_cwnd_cnt + 1;
 __u32 limit;

 if (!(limit = tcp_westwood_bw_rttmin(tp)))
 limit = tp->snd_ssthresh/2;

 tp->snd_cwnd_cnt = decr&1;
 decr >>= 1;

 if (decr && tp->snd_cwnd > limit)
 tp->snd_cwnd -= decr;

 tp->snd_cwnd = min(tp->cwnd_cwnd,

tcp_packets_in_flight(tp)+ 1);
 tp->snd_cwnd_stamp = tcp_time_stamp;
}
This function decreases the congestion window by one for every second

received ACK, resulting in the halving of the congestion window at the end of the
recovery phase.

The modified functions is:

static void tcp_cwnd_down(struct tcp_opt *tp)
{
 int decr = 0;
 __u32 limit;

 if (!(limit = tcp_westwood_bw_rttmin(tp)))
 limit = tp->snd_cwnd_decr_limit;

 if (tp->snd_cwnd_cnt == sysctl_tcp_cwnd_decr - 1) {

34

 decr=1;
 tp->snd_cwnd_cnt=0;
 } else tp->snd_cwnd_cnt++;

 if(decr && tp->snd_cwnd > limit) {

 tp->snd_cwnd-=decr;
#ifdef DEBUG_GridDT

 printk("\nDecreasing cwnd: snd_cwnd=%d", tp->snd_cwnd);
#endif
 }

 tp->snd_cwnd = min(tp->snd_cwnd, tcp_packets_in_flight(tp) +

1);
 tp->snd_cwnd_stamp = tcp_time_stamp;
}
The new tcp_cwnd_down() function decrements the congestion window by

one for every sysctl_tcp_cwnd_decr received ACKs. At the end of the recovery
phase, cwnd = cwnd – cwnd/sysctl_tcp_cwnd_decr.

The tcp_recalc_ssthresh() function, that calculates the new sshthresh when

recovery state is entered, has also been modified. Now it also calculates the new
congestion window decrement limit, which no longer is sshthresh/2. The original
function was:

static inline __u32 tcp_recalc_ssthresh(struct tcp_opt *tp)

{
 return max(tp->snd_cwnd >> 1U, 2U);
}

The modified function is:

static inline __u32 tcp_recalc_ssthresh(struct tcp_opt *tp)
{

tp->snd_cwnd_decr_limit = max(tp->snd_cwnd-(tp-> snd_cwnd /
sysctl_tcp_cwnd_decr), 2U);

 return max(tp->snd_cwnd >> 1U, 2U);
}

The tcp_complete_cwr function(), which is called when the CWR (Congestion

Window Reduced) state ends, was also modified. The original function was:

static __inline__ void tcp_complete_cwr(struct tcp_opt *tp)
{
 if (tcp_westwood_cwnd(tp))
 tp->snd_ssthresh = tp->snd_cwnd;
 else
 tp->snd_cwnd = min(tp->snd_cwnd, tp-> snd_ssthresh/ 2);
 tp->snd_cwnd_stamp = tcp_time_stamp;
}

The modified function is:

static __inline__ void tcp_complete_cwr(struct tcp_opt *tp)

35

{
 if (tcp_westwood_cwnd(tp))
 tp->snd_ssthresh = tp->snd_cwnd;
 else
 tp->snd_cwnd = min(tp->snd_cwnd, tp->snd_cwnd_decr_limit);
 tp->snd_cwnd_stamp = tcp_time_stamp;
}

4.3.1.2 Modifications for Linux 2.6.5

Modifications applied to the Linux kernel 2.6.5 were basically the same. Some
minor differences appeared though, as the architecture of the 2.6.5 version of the
Linux kernel has slightly changed:

- the definition of the tcp_opt structure was moved from include/linux/sock.h to
include/linux/tcp.h

- the format of the ctl_table structure was chaged, so now the definition of a
member for ipv_table[] in net/ipv4/sysctl_net_ipv4.c looks like this:

{
 .ctl_name = NET_IPV4_TCP_MSS_REF,
 .procname = "tcp_mss_ref",
 .data = &sysctl_tcp_mss_ref,
 .maxlen = sizeof(int),
 .mode = 0644,
 .proc_handler = &proc_dointvec,

 },

4.3.2 Limited Slow Start

GridDT version 3.1 also implements Limited Slow Start, a mechanism specified

by RFC 3742, which limits the increase of the congestion window during slow -start.
It works by defining a new threshold, max_ssthresh. While cwnd < max_ssthresh ,
slow-start is performed as usual, by increasing the congestion window with one MSS
for each received ACK. When max_ssthresh<=cwnd<ssthresh, the following
algorithm is used:

For each arriving ACK in slow-start:
if (cwnd <= max_ssthresh)
 Cwnd+=MSS;
else
 K=int(cwnd/(0.5 max_ssthresh));
 Cwnd+= int(MSS/K);
RFC 3742 recommends a value of 100 for max_ssthresh.

36

4.3.2.1 Modifications for Linux 2.4.26

The first file that was modified was include/sysctl.h. The enumeration for

/proc/sys/net/ipv4 was modified, and the following lines have been added:
NET_IPV4_TCP_MAX_SSTHRESH=100,

Also, net/ipv4/sysctl_net_ipv4.c was modified, the following lines were added to

the ipv4_table[] vector:
 {NET_IPV4_TCP_MAX_SSHTHRESH, "tcp_max_ssthresh",

 &sysctl_tcp_max_ssthresh, sizeof(int), 0644, NULL,
 &proc_dointvec},

The include/net/tcp.h was also modified, by adding the following line:

extern int sysctl_tcp_max_ssthresh;

This corresponds to the sysctl parameter used to set the max_ssthresh limit. The

default value for this parameter was defined in net/ipv4/tcp_input.c.

int sysctl_tcp_max_ssthresh=100;

In order to change these values, the sysctl interface is used:
sysctl –w net.ipv4.tcp_max_ssthresh=new_value

Two new members have been added to the tcp_opt structure defined in

include/net/sock.h:

__u32 snd_cwnd_slow_start_cnt /* Limited Slow Start: Counter
to update */
__u32 snd_cwnd_slow_start_inc /* Limited Slow Start increment
*/

The new tcp_cong_avoid() function resulted after the modifications presented in

section 4.3.1.1, was modified by replacing the the entire “safe” area with the
following lines:

if (tp->snd_cwnd <= tp->snd_ssthresh) {
 /* In "safe" area, increase. */
 if (tp->snd_cwnd < tp->snd_cwnd_clamp) {

if(tp->snd_cwnd < sysctl_tcp_max_ssthresh)
 tp->snd_cwnd++;
 else{ /* limited slow start */
 tp->snd_cwnd_slow_start_inc=tp->snd_cwnd/(sysctl_tcp_max_ssthresh >>

1);
 if(tp->snd_cwnd_slow_start_cnt < tp->snd_cwnd_slow_start_inc)
 tp->snd_cwnd_slow_start_cnt++;
 else {
 tp->snd_cwnd_slow_start_cnt=0;
 tp->snd_cwnd++;
 }

37

 }
}

The congestion window will be updated as usual during slow-start, while the
congestion window is smaller than the limited slow start threshold, max_ssthresh.
After this threshold is reached, the increment used during Limited Slow Start (K) is
computed and stored in snd_cwnd_slow_start_inc. The Limited Slow Start rules
specify that the congestion window should be increased by MSS/K when an ACK is
received. The Linux implementation would not permit this, so we count ACKs in
snd_cwnd_slow_start_cnt and increase cwnd by one when this counter reaches
snd_cwnd_slow_start_inc.

4.3.2.2 Linux 2.6.5

As regards the 2.6.5 version of the Linux kernel, the differences are those
mentioned in section 4.3.1.2.

4.3.3 Implementing TCP DCR – Delayed Congestion Response

Normally, TCP responds to congestio n after a timeout is encountered or after

three duplicate acknowledgments are received. Treating three duplicate
acknowledgments as an indication of congestion is not always correct, especially in
wireless networks and network with excessive packet reordering. Recent studies have
revealed that the current Internet, contrary to the well established belief, is a network
where packet reordering can appear.

The IETF draft that specifies the details of the DCR mechanism state that the limit
of three duplicate ACKs is heuristic, and no longer pertains to the network
environments today, and concludes that a mechanism used for further delaying the
response to congestion is needed.

Two approaches to implementing DCR are possible: the sender can implement the
delay in congestion response (tau) by using either a timer or by modifying the
threshold on the number of duplicate acknowledgements to be received before
triggering fast retransmit/recovery.

The timer-based implementation is quite straight forward, but is influenced by the
coarseness in the clock granularity. In the ack-based delay implementation, the sender
could delay responding to congestion for the number of duplicate acknowledgements
corresponding to the delay required. Thus, if 'tau' is chosen to be one RTT, the sender
would wait for the receipt of 'W' duplicate acknowledgements before responding to
congestion, where 'W' is the size of the congestion window when the packet loss is
detected.

GridDT uses the latter approach. DCR is implemented with a default tau of one
RTT, but a mechanism used in order to allow tau to be set to a fraction of RTT is also
implemented.

 It is recommended to use TCP-DCR with TCP-SACK to ensure that the
performance can be maintained high even under the conditions of multiple losses per
round trip time. Another issue that must be considered is that when TCP-DCR is used,

38

the receiver will need to have additional buffer space to accommodate the extra
packets corresponding to the delay 'tau', when a packet is lost due to congestion.
Having these extra buffers allows TCP -DCR to achieve the best performance. The
dimension of the TCP buffers will be modified anyway during testing, as large
windows will be used. Modifying these buffers is straightforward and is achieved by
modifying some sysctl parameters. The exact procedures will be described in the
chapter that refers to testing.

4.3.3.1 Modifications for Linux 2.4.26

The first file that was modified was include/sysctl.h. The enumeration for

/proc/sys/net/ipv4 was modified, and the following lines have been added:
NET_IPV4_TCP_DCR=102,
NET_IPV4_TCP_DCR_DIV=103,

Also, net/ipv4/sysctl_net_ipv4.c was modified, the following lines were added to

the ipv4_table[] vector:
 {NET_IPV4_TCP_DCR, "tcp_dcr",

 &sysctl_tcp_dcr, sizeof(int), 0644, NULL,
 &proc_dointvec},

 {NET_IPV4_TCP_DCR_DIV, "tcp_dcr_div",
 &sysctl_tcp_dcr_div, sizeof(int), 0644, NULL,
 &proc_dointvec},

The include/net/tcp.h file was also modified, by adding the following line:

extern int sysctl_tcp_dcr;
extern int sysctl_tcp_dcr_div;

This corresponds to the sysctl parameter used to control DCR. The default value

for this parameter was defined in net/ipv4/tcp_input.c. The first one, sysctl_tcp_dcr
dictates whether or not to use DCR. The second one is used as a divisor, allowing the
DCR implementation in GridDT to use a value for tau that corresponds to a fraction
of RTT.

int sysctl_tcp_dcr=1;
int sysctl_tcp_dcr_div=1;

In order to change these values, the sysctl interface is used:
sysctl –w net.ipv4.tcp_dcr=new_value
sysctl –w net.ipv4.tcp_dcr_div=new_value

Two new members have been added to the tcp_opt structure defined in

include/net/sock.h:
int dcr_fastretrans_thresh;
int dcr_last_dupack;

39

dcr_fastretrans_thresh is the new threshold, and dcr_last_dupack holds the

sequence number of the last seen duplicate acknowledgment.
The tcp_init_metrics() function defined in /net/ipv4/tcp_input.c was modified, in

order to initialize the tp ->dcr_fastretrans_thresh to
TCP_FASTRETRANS_THRESH, a constant with a value of 3, defined in
include/net/tcp.h. The value of dcr_fastretrans_thresh is updated when duplicate
ACKs are received.

The tcp_ack() function, which is called when an ACK is received, has also been
modified, to be exact the part testing if an ack is dubious. The original code was:

if (tcp_ack_is_dubious(tp, flag)) {
 /* Advance CWND, if state allows this. */
 if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp->

snd_cwnd && tcp_may_raise_cwnd(tp, flag))
 tcp_cong_avoid(sk);
 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets,

flag);
}

The modified code:

if (tcp_ack_is_dubious(tp, flag)) {

/* Advance CWND, if state allows this. */
if ((flag&FLAG_DATA_ACKED) && prior_in_flight >= tp-

>snd_cwnd && tcp_may_raise_cwnd(tp, flag))
 tcp_cong_avoid(sk);
/* DCR */
if (tp->snd_una == prior_snd_una && !(flag&FLAG_NOT_DUP))

 if (sysctl_tcp_dcr && (tp->snd_cwnd/sysctl_tcp_dcr_div >

TCP_FASTRETRANS_THRESH) && ack!=tp->dcr_last_dupack)
 {
 tp->dcr_last_dupack=ack;
 tp->dcr_fastretrans_thresh=tp

>snd_cwnd/sysctl_tcp_dcr_div;
#ifdef DEBUG_GridDT
printk("\nGot dupack! Setting threshold to %d", tp-

>dcr_fastretrans_thresh);
#endif
 }

/* DCR */

 tcp_fastretrans_alert(sk, prior_snd_una, prior_packets,
flag);
}

The modifications added are simple: we test if we have a duplicate ACK, and if
this is true, test if the congestion window divided by the DCR divider is greater than
three (TCP_FASTRETRANS_THRESH), as it would be pointless to update the
threshold otherwise. We also test if the sequence number of the newly received

40

acknowledgement is different than the sequence number of the last seen duplicate
acknowledgment. This verification is necessary as the update of
dcr_fastretrans_thresh must be performed only when congestion is detected (when
the first duplicate ACK in a series is received), and not for all subsequent duplicate
ACKs. If the conditions mentioned above are true, tp ->dcr_fastretrans_thresh is
updated to tp->snd_cnwd/sysctl_tcp_dcr_div. With the default value of one for
sysctl_tcp_dcr_div, congestion delay response is delayed for one RTT.

Another function modified was tcp_init_metrics(). This is were tp -
>dcr_fastretrans_threshold is initialized to TCP_FASTRETRANS_THRESH (this is
the default value, which is modified when dupacks are received).
The tcp_time_to_recover() function has also been modified, by replacing
sysctl_tcp_reordering(which was previously used to statically modify the fast
retransmit threshold) with tp ->dcr_fastretrans_thresh. This function deals with
deciding weather to decrease the congestion window, by differentiating between loss
and reordering.

4.3.4 Debugging GridDT

As GridDT is currently in development, it comes with debugging activated.

Disabling the debug features in GridDT is done by commenting the macro definition
of DEBUG_GridDT in net/ipv4/tcp_input.c.

A simple function called monitor_TCP is used:

void monitor_TCP(struct tcp_opt *tp) {
printk("0x%x @%d YY cwnd:%d,%d ack:99, srtt:%d cwr:99,99

mrtt:99,99,99\n", (int)tp, tcp_time_stamp, (int)tp->snd_cwnd,
(int)tp->snd_ssthresh, (int)tp->srtt);

}

It displays: the tcp_time_stamp, the value of the congestion window, the value of

sshthresh, and SRTT (Smoothed Round Trip Time). Some of the graphs presented in
the testing section have been drawn based on the output generated by this function.

This function is called inside the tcp_cong_avoid() function. Also, there is code
inside of the tcp_cwnd_down function which prints a message with the new value for
the congestion window, each time it is decreased.

41

5. Testing and evaluating GridDT

This chapter presents a series of comparative tests performed with GridDT and

FAST.

5.1 The testbed

The testbed used while testing GridDT resulted as part of the DataTag Project.

The main objective of this project was the creation of a large -scale intercontinental
Grid testbed involving the European DataGrid project, several national projects in
Europe, and related Grid projects in the USA.

The topology of the testbed is presented in Figure 5 below:

Figure 5: The Datatag testbed

The testbed is based on a high speed transatlantic link (STM-16, 2.5Gbps), with

termination points at CERN in Geneva and Chicago (Starlight). This link is dedicated
exclusively to network research and intensive data access applications.

The workstations connected to the testbed have 1Gbps network interfaces.

42

5.2 Testing strategy

During testing GridDT the iperf tool was used in order to generate traffic. Iperf is

a simple traffic generator, with an architecture based on a client-server model, where
the client generates traffic and the server receives it. The tcpdump tool was used to
capture traffic and based on the output of tcpdump, tcptrace was used in order to
generate the files needed by the graphing tool xplot.

Iperf allows the user to set the size of the TCP window. For the testing sessions a
size of 128MB was chosen (larger than actually needed).

Some TCP related parameters were also modified, by using the sysctl interface:

echo "4096 87380 128388607" > /proc/sys/net/ipv4/tcp_rmem
echo "4096 65530 128388607" > /proc/sys/net/ipv4/tcp_wmem
echo 128388607 > /proc/sys/net/core/wmem_max
echo 128388607 > /proc/sys/net/core/rmem_max

tcp_rmem and tcp_wmem are used to set the minimum, default and maximum size

of the TCP receive/transmit window . Rmem_max and wmem_max are used to specify
the maximum values for the TCP receive/transmit window. For testing GridDT, we
only modify the maximum values, as Iperf can set the window size based on a
command line parameter.

Also, in order to be able to use large windows and avoid local congestion, the size

of the transmit queue was increased to 10000:
/sbin/ifconfig eth1 txqueuelen 10000

For FAST, the parameters mentioned above have been modified by the tuning

script that is part of the FAST distribution. The FAST alpha, beta and gamma
parameters have also been modified for some of the tests. The FAST alpha parameter
represents the number of packets to be buffered inside the network at equilibrium. The
beta parameter represents the maximum number of packets buffered before a FAST
TCP flow needs to reduce its window. The gamma parameter is used to monitor the
packets buffered during slow start in order to avoid packet loss.

Three series of tests were ran:
- a throughput test
- a test with multiple concurrent flows
- a test where packets were dropped, in order to test how well does the tested

protocol handle loss
For these tests, GridDT version 3.1 (without DCR) for Linux 2.6.5 was used. For
the DCR version, tests have been conducted separately.

43

5.3 Actual testing

5.3.1 Throughput tests

The first test in this series measured standard TCP’s performance as concerns
throughput. A throughput test has been run for all the tested protocols, and the results
were compared with those obtained by standard TCP.

The purpose of these tests was to show how each of the tested protocols manages
to use high bandwidths, and how fast can it reach maximum bandwidth utilization.
Two types of tests have been used, one that ran for 10 seconds and the other for 30
seconds. Tests have also been ran for longer periods (180, 300 seconds), but it has
been concluded that a 30 seconds test is relevant as concerns a protocol’s ability to
use high bandwidth.

The first protocol tested was standard TCP, and the results were used as a baseline
for evaluating the performance of FAST and GridDT.

The results for the 10-seconds as output by the iperf tool were:
[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 457 MBytes 767 Mbits/sec
[5] 5.0-10.0 sec 562 MBytes 943 Mbit s/sec
Average throughput:
[6] 0.0-10.5 sec 1019 MBytes 812 Mbits/sec

The graph generated based on these results is presented in Figure 6:

Figure 6: TCP, 10-seconds throughput test

44

For the 30-seconds test, the results are as follows:

[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 462 MBytes 776 Mbits/sec
[5] 5.0-10.0 sec 586 MBytes 984 Mbits/sec
[5] 10.0-15.0 sec 564 MBytes 946 Mbits/sec
[5] 15.0-20.0 sec 549 MBytes 922 Mbits/sec
[5] 20.0-25.0 sec 550 MBytes 923 Mbits/sec
[5] 25.0-30.0 sec 549 MBytes 921 Mbits/sec
Average throughput:
[5] 0.0-30.6 sec 3.18 GBytes 893 Mbits/sec

Figure 7: TCP, 30-seconds throughput test

From the results presented above it can be concluded that TCP’s performance up

to the 1Gbps limit is fair, as it managed to obtain a mean throughput of 893Mbps over
30 seconds and reached the upper limit of its performance in the first 10 seconds of
the test (984Mbps).

The next protocol tested was FAST. The results for the 10-seconds test and the
30-seconds test are:

10-seconds test:

[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 50.7 MBytes 85.0 Mbits/sec
[5] 5.0-10.0 sec 150 MBytes 252 Mbits/sec

45

The average throughput:
[ID] Interval Transfer Bandwidth
[6] 0.0-10.4 sec 201 MBytes 162 Mbits/sec

Figure 8: FAST, 10-seconds throughput test

For the 30 seconds test:
[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 50.7 MBytes 85.0 Mbits/sec
[5] 5.0-10.0 sec 168 MBytes 282 Mbits/sec
[5] 10.0-15.0 sec 435 MBytes 730 Mbits/sec
[5] 15.0-20.0 sec 545 MBytes 914 Mbits/sec
[5] 20.0-25.0 sec 570 MBytes 956 Mbits/sec
[5] 25.0-30.0 sec 559 MBytes 938 Mbits/sec

Mean throughput:
[ID] Interval Transfer Bandwidth
[6] 0.0-30.3 sec 2.27 GBytes 645 Mbits/sec

As it can be easily noticed, FAST increments the congestion window cautiously in

the slow -start phase, just like Limited Slow Start. This is why it reaches throughput
greater than 900Mbps only after 15 seconds. This cautious approach to increasing the
congestion window is very useful in networks with high bandwidth delay products,
where during slow start, the congestion window can be increased by thousands of
segments in a single RTT. In such cases it is possible to have a large number of
packets dropped in a single RTT, which drastically limits TCP’s performance.

46

Figure 9: FAST, 30-seconds throughput test

FAST’s performance is very good after the throughput reaches 900Mbps, as

illustrated by the iperf output for a 60 seconds test:

[5] local 192.91.239.4 port 32812 connected with 192.91.239.34 port 5001
[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 50.7 MBytes 85.0 Mbits/sec
[5] 5.0-10.0 sec 149 MBytes 250 Mbits/sec
[5] 10.0-15.0 sec 416 MBytes 698 Mbits/sec
[5] 15.0-20.0 sec 553 MBytes 928 Mbits/sec
[5] 20.0-25.0 sec 572 MBytes 959 Mbits/sec
[5] 25.0-30.0 sec 544 MBytes 913 Mbits/sec
[5] 30.0-35.0 sec 570 MBytes 956 Mbits/sec
[5] 35.0-40.0 sec 561 MBytes 941 Mbits/sec
[5] 40.0-45.0 sec 554 MBytes 929 Mbits/sec
[5] 45.0-50.0 sec 573 MBytes 961 Mbits/sec
[5] 50.0-55.0 sec 551 MBytes 925 Mbits/sec
[5] 55.0-60.0 sec 561 MBytes 941 Mbits/sec

The average throughput achieved during this 60-seconds test was 787Mbps.

Considering the fact that FAST is designed for very large file transfer over large

BDP networks(transfers which usually take a long time to complete, even when
available bandwidth is used efficiently), the fact that it needs 15 seconds to achieve
900Mbps throughput is not such a drastic limitation.

47

Also, by carefully tuning the FAST parameters, even better results can be
obtained. In the example below, the FAST parameter alpha was set to 500 (default
200), and the beta parameter to 512 (default 212):

[5] local 192.91.239.4 port 32813 connected with 192.91.239.34 port 5001
[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 50.7 MBytes 85.0 Mbits/sec
[5] 5.0-10.0 sec 286 MBytes 481 Mbits/sec
[5] 10.0-15.0 sec 564 MBytes 946 Mbits/sec

The average throughput:

[6] 0.0-60.8 sec 5.81 GBytes 821 Mbits/sec

As it can be observed, a faster increase to more than 90% bandwidth utilization was
achieved. Also, an average throughput of 821Mbps was obtained during the 60-
second test.

The last protocol tested was GridDT. The first test was run using the following
parameters:

- Sysctl_tcp_cwnd_decr was set to 8, resulting in a window decrease factor of
1/8

- Sysctl_tcp_ rtt_ref was set to 50
- The default value of 100 was kept for max_ssthresh

The results for the 10-seconds test, as output by iperf are:

[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 136 MBytes 229 Mbits/sec
[5] 5.0-10.0 sec 147 MBytes 246 Mbits/sec
[5] 0.0-12.7 sec 283 MBytes 187 Mbits/sec

The average throughput during this test:

[ID] Interval Transfer Bandwidth

[6] 0.0-12.5 sec 279 MBytes 188 Mbits/sec

It is obvious that the default value of max_ssthresh is too conservative. In order to
determine the optimum value for max_ssthresh, another test was performed. This test
set max_ssthresh to a very large value(a value highly unlikely to be reached during a
1Gbps test), in order to determine the value of the congestion window at which
congestion occurs. Figure 10 presents the evolution of the congestion window during
this test:

48

Figure 10: Congestion window evolution, GridDT

It is easily observed that congestion occurs somewhere around the 20000 mark.
Considering this, a value of 8000 for max_ssthresh was suggested for this link
(1Gbps, 120ms RTT). This value will insure both desiderates: a relatively rapid
increase to full bandwidth utilization, and a more cautious increase towards the end of
slow-start. With this value, limited slow -start will be much less aggressive as slow
start after max_ssthresh is reached (the maximum increase of the congestion window
will be ½ per ACK received).
Another 10-seconds test has been ran with max_sstrhesh set to 8000, with much better
results.

[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 472 MBytes 791 Mbits/sec
[5] 5.0-10.0 sec 557 MBytes 935 Mbits/sec
[5] 0.0-10.8 sec 1.00 GBytes 796 Mbits/sec

The average throughput:
[ID] Interval Transfer Bandwidth
[6] 0.0-10.7 sec 1.00 GBytes 804 Mbits/sec

The following test is a 30-seconds test for GridDT, with max_sshthresh set to 8000.
The results as output by iperf were:

[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 449 MBytes 753 Mbits/sec
[5] 5.0-10.0 sec 588 MBytes 987 Mbits/sec
[5] 10.0-15.0 sec 561 MBytes 942 Mbits/sec
[5] 15.0-20.0 sec 556 MBytes 933 Mbits/sec
[5] 20.0-25.0 sec 557 MBytes 935 Mbits/sec
[5] 25.0-30.0 sec 563 MBytes 944 Mbits/sec

Congestion window evolution

0

5000

10000

15000

20000

25000

TCP Timestamp

cwnd
(sg)

49

The average throughput:
[ID] Interval Transfer Bandwidth
[6] 0.0-30.7 sec 3.20 GBytes 894 Mbits/sec

As it can be observed, the increase in bandwidth utilization is more reserved

during the first 5 seconds, due to limited slow start, but the overall results show good
bandwidth utilization.

Fig. 11 below presents the evolution of the average throughput over the 30-
seconds test.

Figure 11: GridDT, 30-seconds throughput test

5.3.2 Concurrent flows test

This series of tests evaluated each protocol’s behavior when multiple concurrent

flows are competing for bandwidth.
The first protocol tested was the standard TCP. A test with 3 concurrent flows was

ran for 30 seconds. The results as output by iperf follow:

[7] 0.0-30.5 sec 1.81 GBytes 511 Mbits/sec
[8] 0.0-30.5 sec 1.26 GBytes 355 Mbits/sec
[6] 0.0-59.5 sec 33.5 MBytes 4.72 Mbits/sec

50

[SUM] 0.0-59.5 sec 3.11 GBytes 448 Mbits/sec

It can be observed that the first flow started is heavily affected when the other 2
flows start to increase their bandwidth usage, and the first flow never recovers.

The results are also illustrated graphically below Fig. 12.

Figure 12: TCP, 30-seconds test, 3 concurrent flows

FAST was the last protocol tested during this test. The iperf output is presented

below:

[ID] Interval Transfer Bandwidth
[6] 0.0-30.8 sec 936 MBytes 255 Mbits/sec
[8] 0.0-30.6 sec 919 MBytes 252 Mbits/sec
[7] 0.0-30.8 sec 1.11 GBytes 309 Mbits/sec
[SUM] 0.0-30.9 sec 2.92 GBytes 812 Mbits/sec

 The graphics generated based on these results are presented in Fig. 13.

51

Figure 13 : FAST, 30-seconds test, 3 concurrent flows

As it can be easily noticed from the results, FAST exhibited excellent behavior

during this test. All three flows got to use bandwidth, and their increase in bandwidth
utilization was uniform, with none of the flows starving for bandwidth at any time.

GridDT was also tested, and showed only slightly better results than TCP, due to
its more aggressive behavior in the congestion avoidance phase. However, the is still
room for improving GridDT in this respect.

Based on these results, it can be concluded that FAST showed the best results
during the concur rent flow test.

5.3.3 Packet loss test

This series of tests evaluated the ability to recover from loss for the tested
protocols. The way TCP handles loss, together with its slow increase of the
congestion window during the congestion avoidance phase are the main factors that
contribute to TCP’s unsatisfactory performance in networks with a high bandwidth-
delay product.
During these tests, packets were dropped using iptables in order to simulate packet
loss.
The first protocol tested was standard TCP. Traffic was dropped after 10 seconds
(after bandwidth utilization reached 900Mbps) for half a second. The results, as
output by iperf are:

52

[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 483 MBytes 811 Mbits/sec
[5] 5.0-10.0 sec 560 MBytes 939 Mbits/sec
[5] 10.0-15.0 sec 135 MBytes 227 Mbits/sec
[5] 15.0-20.0 sec 291 MBytes 488 Mbits/sec
[5] 20.0-25.0 sec 288 MBytes 484 Mbits/sec
[5] 25.0-30.0 sec 311 MBytes 521 Mbits/sec

The average throughput:
[ID] Interval Transfer Bandwidth
[6] 0.0-31.3 sec 2.02 GBytes 554 Mbits/sec

These results are illustrated in Fig. 14.

Figure 14: TCP, 30-seconds test, packet dropping for 0,5s

It can be noticed that TCP never recovered to the bandwidth utilization that it
reached before the packet drop. The same test was run for 120 seconds, and the graph
in Figure 15 was generated, based on throughput values obtained by sampling at every
5 seconds.

53

Figure 15 : TCP, 120-seconds test, dropping packets for 0.5s

This graph shows that even after 120 seconds, only a small increase in throughput

is achieved. From these results, it can be concluded that standard TCP has poor
performance when packets are dropped, as it takes a very long time to recover from
loss.

The next protocol to be tested during this series was FAST. The same 30-seconds
test was performed, but dropping started after 20 seconds (when bandwidth utilization
exceeded 900Mbps). The results as output by iperf are presented below:

[ID] Interval Transfer Bandwidth
[5] 0.0- 5.0 sec 50.7 MBytes 85.0 Mbits/sec
[5] 5.0-10.0 sec 147 MBytes 247 Mbits/sec
[5] 10.0-15.0 sec 445 MBytes 747 Mbits/sec
[5] 15.0-20.0 sec 551 MBytes 924 Mbits/sec
[5] 20.0-25.0 sec 81.3 MBytes 136 Mbits/sec
[5] 25.0-30.0 sec 260 MBytes 437 Mbits/sec

The average throughput:
[ID] Interval Transfer Bandwidth
[6] 0.0-30.5 sec 1.50 GBytes 423 Mbits/sec

Since dropping packets started after 20 seconds, this 30-seconds test is not entirely

relevant. A 60-seconds was conducted in order to see how FAST recovers from
packet loss. Based on throughput measurements taken every 5 seconds, the graph in
Fig. 16 has been drawn.

TCP, 120-seconds packet loss test

0
100
200
300
400
500
600
700
800
900

1000

5 15 25 35 45 55 65 75 85 95 105 115

Time (s)

Throughput
(Mbps)

54

FAST, 60seconds, drop

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

T
h

ro
u

g
h

p
u

t
(M

bp
s)

Figure 16: FAST, 60-seconds test, dropping packets for 0.5s

By examining this graph, it can be noticed that FAST recovers very well from

packet loss, as bandwidth utilization over 900Mbps is reached only 20 seconds after
packet loss is encountered. Also, FAST shows good stability, as bandwidth utilization
over 90% is maintained after recovering from packet loss.

The last protocol tested was GridDT. The first test ran for 30 seconds, and packets

were dropped for half a second, after bandwidth utilization over 900Mbps was
reached. The results as output by iperf were:

[5] 0.0- 5.0 sec 458 MBytes 768 Mbits/sec
[5] 5.0-10.0 sec 565 MBytes 948 Mbits/sec
[5] 10.0-15.0 sec 176 Bytes 295 Mbits/sec
[5] 15.0-20.0 sec 568 MBytes 952 Mbits/sec
[5] 20.0-25.0 sec 567 MBytes 951 Mbits/sec
[5] 25.0-30.0 sec 561 MBytes 941 Mbits/sec
[5] 0.0-30.8 sec 2.83 GBytes 788 Mbits/sec

The average throughput achieved:
[ID] Interval Transfer Bandwidth
[6] 0.0-30.7 sec 2.83 GBytes 791 Mbits/sec

The same results are illustrated graphically in Fig. 17 below.

55

Figure 17: GridDT, 30-seconds test, packets dropped for 0.5s

GridDT showed excellent results, recovering from loss in only 10 seconds.
Fig. 18 presents the evolution of the congestion window during this test:

Figure 18: Congestion window evolution, GridDT packet loss test

Cwnd evolution

0

5000

10000

15000

20000

25000

TCP Timestamp

C
w

nd
(s

g)

56

It can be easily observed that loss indicated by a retransmission timeout expiration
has taken place, and GridDT reacted to loss by setting the congestion window to 1.

A second test was ran, that lasted 60 seconds. Packets were dropped after 10
seconds for an interval of 3 seconds. Fig. 19 illustrates the evolution of throughput
during this test.

GridDT, 60seconds, 3s loss

0

200

400

600

800

1000

1200

5 10 15 20 25 30 35 40 45 50 55 60

Time (s)

Th
ro

ug
hp

ut
(M

bp
s)

Figure 19 : GridDT packet loss, 60-seconds test, dropping packets for 3s

Based on these results, it can be concluded that both GridDT and FAST exhibited

excellent results as concerns the capability to recover from packet loss.

5.3.4 Testing DCR

In order to test the implementation of the Delayed Congestion Response

mechanism, a tool called dummynet was used. Dummynet is a flexible tool designed
for testing protocols, which can simulate queue and bandwidth limitations, delays,
packet loss, and multipath effects. Dummynet is used on a host running FreeBSD, and
it works by intercepting packets in their way through the protocol stack and passing
them through structures called queues and pipes. Pipes are fixed-bandwidth and fixed-
delay channels. Queues are queues of packets, associated with a weight, which share
the bandwidth of the pipe they are connected to proportionally with their weight. In
order to define the rules which are used to decide which packets will be intercepted,
ipfw (a tool used to configure FreeBSD firewall support) is used.

During the tests performed with GridDT, a multipath effect was generated which
in turn lead to packet reordering. Two hosts running Linux were interconnected with a
FreeBSD host operating as a bridge and running dummynet. The host that generated
the traffic used Linux-2.4.26-GridDT with DCR.

57

For the test three pipes were created, associated with different probabilities. The
different delays associated with each of the pipes insured a multipath effect and hence
packet reordering. Iperf was used to generate traffic for 30 seconds. The configuration
used during this test was the following:

ipfw add prob 0.3 pipe 1 ip from 192.168.2.2 to 192.168.2.1
ipfw add prob 0.5 pipe 2 ip from 192.168.2.2 to 192.168.2.1
ipfw add pipe 3 ip from 192.168.2.2 to 192.168.2.1

ipfw pipe 1 config bandwidth 30Mbps delay 100ms
ipfw pipe 2 config bandwidth 50Mbps delay 80ms
ipfw pipe 3 config bandwidth 20Mbps delay 85ms

The results obtained without DCR:

[ID] Interval Transfer Bandwidth
[6] 0.0- 5.0 sec 5.67 MBytes 9.51 Mbits/sec
[6] 5.0-10.0 sec 12.0 MBytes 20.2 Mbits/sec
[6] 10.0-15.0 sec 16.2 MBytes 27.2 Mbits/sec
[6] 15.0-20.0 sec 19.6 MBytes 32.8 Mbits/sec
[6] 20.0-25.0 sec 23.2 MBytes 39.0 Mbits/sec
[6] 25.0-30.0 sec 26.2 MBytes 44.0 Mbits/sec
[6] 0.0-30.3 sec 105 MBytes 29.0 Mbits/sec

When DCR was used, a small increase in bandwidth utilization was achieved:

[ID] Interval Transfer Bandwidth
[6] 0.0- 5.0 sec 5.53 MBytes 9.29 Mbits/sec
[6] 5.0-10.0 sec 14.6 MBytes 24.5 Mbits/sec
[6] 10.0-15.0 sec 19.3 MBytes 32.4 Mbits/sec
[6] 15.0-20.0 sec 23.0 MBytes 38.5 Mbits/sec
[6] 20.0-25.0 sec 24.7 MBytes 41.5 Mbits/sec
[6] 25.0-30.0 sec 26.3 MBytes 44.0 Mbits/sec
[6] 0.0-30.4 sec 116 MBytes 32.0 Mbits/sec

Based on these results, it can be concluded that DCR brings some performance

gain when packet reordering is present, but this increase in performance is not
spectacular. Tests have been also conducted with DCR enabled but no packet
reordering, and it has been concluded that when packet reordering is not present, DCR
does not negatively affect performance.

58

6. Conclusions

During the testing session presented in Chapter 5, valuable information as regards

the performance of standard TCP, FAST TCP and GridDT when used in high
bandwidth-delay product networks has been gathered. The main goal of this chapter is
to present conclusions reached after examining the test results and to evaluate how
does the implementation of GridDT meet GridDT’s design goals. Conclusions
regarding the performance of FAST TCP are also presented.

As regards the TCP tests, they have only been used as a baseline used in order to

present improvements brought by GridDT and FAST. The results obtained showed
problems that were already known: slow increase in the congestion window during
congestion avoidance, a decrease that is too drastic when congestion is encountered,
poor performance in recovering from packet loss.

Based on the results obtained while testing FAST TCP it can be concluded that

FAST successfully addresses the limitations of the standard TCP. FAST has also
shown the best results in the concurrent flows test, where TCP and GridDT did not
perform very well.
FAST also employs a mechanism similar to Limited Slow Start proposed by RFC
3742 and implemented in GridDT, which can be very useful in high bandwidth-delay
networks. Very good results have also been obtained when recovering from packet
loss. It can be concluded based on these arguments that FAST has accomplished its
design goals.

As concerns GridDT, valuable conclusions have been drawn based on the results
of the tests. First of all, it has been showed that a value of 100 for the max_ssthresh
parameter used during Limited Slow Start, is too conservative. This has implications
related to the time it takes GridDT to reach full bandwidth utilization when starting up
or when ramping up from periods when the congestion window is small (after loss is
encountered). For the links used in the testbed (1Gbps, 120ms RTT), a value of 8000
has been suggested for max_ssthresh. With this value good performance when
recovering from loss was obtained and the goal of Limited Slow Start was still
achieved: the increase of the congestion window after max_ssthresh is less aggressive
than with slow -start.
GridDT has showed the best results when recovering from loss, due to the modified
congestion window update algorithm.
DCR has also showed a small increase in performance, but not spectacular. Tests have
also been ran with DCR in the lack of packet reordering, and it has been showed that
DCR does not negatively affect performance in the absence of packet reordering.

Based on the results obtained during testing it can be stated that the GridDT
implementation has successfully accomplished the design goals:

- achieve high per-connection throughput
- Implement Limited Slow Start

59

- reach high throughput without overly long delays when recovering from
multiple retransmit timeouts, or when ramping-up from a period with small
congestion windows.

- No additional feedback or support required from routers
- No additional feedback required from TCP receivers

There is however room for improvement, as the results obtained during the

multiple concurrent flows test were not nearly as good as the results obtained by
FAST TCP. Future efforts made in order to improve GridDT should be aimed towards
improving the protocol’s behavior in this respect.

60

Bibliography

[1] W. Richard Stevens , “TCP/IP Illustrated, Volume I”, Addison Wesley, 1994

[2] K. Fall, S. Floyd, “Simulation Based Comparisons of Tahoe, Reno & SACK
TCP”, ACM SIGCOMM Computer Communication Review, Volume 26, Issue 3,
1996

[3] W. Stevens, “RFC 2001: TCP Slow Start, Congestion Avoidance, Fast Retransmit,
and Fast Recovery Algorithms”, IETF Repository http://www.ietf.org/rfc/rfc2001.txt ,
January 1997

[4] M. Allman, V. Paxson, W. Stevens, “RFC 2581: TCP Congestion Control”, IETF
Repository, http://www.ietf.org/rfc/rfc2581.txt, April 1999

[5] T. Kelly, “STCP: Improving performance in High Speed Wide Area Networks”,
http://www-lce.eng.cam.ac.uk/~ctk21/scalable , 2002

[6] P. Sarolahti, A. Kuznetsov, “Congestion Control in Linux TCP”,
http://www.cs.helsinki.fi/research/iwtcp/papers/linuxtcp.pdf , 2002

[7] S. Bhandarkar, A.L. Narasimha Reddy “Improving the robustness of TCP to Non-
Congestion Events”, IETF draft, http://www.ietf.org/internet-drafts/draft-tcpm-tcp-
dcr-00.txt, October 2003

[8] S. Floyd, “RFC 3649: HighSpeed TCP for Large Congestion Windows”, IETF
Repository, http://www.ietf.org/rfc/rfc3649.txt, December 2003

[9] Cheng Jin, David X. Wei and Steven H. Low, “FAST TCP: Motivation,
Architecture, Algorithms, Performance”, IEEE Infocom, Hong Kong, March 2004

[10] S. Floyd, “RFC 3742: Limited Slow Start for TCP with Large Congestion
Windows”, IETF Repository, http://www.ietf.org/rfc/rfc3742.txt, March 2004

[11] R. Shorten, D.J. Leith, “H-TCP: TCP for high-speed and long-distance
networks”, http://www.hamilton.ie/net, 2004

[12] D.J. Leith, “Linux TCP Implementation Issues in High-Speed Networks”,
http://www.hamilton.ie/net/LinuxHighSpeed.pdf

